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In this paper we discuss the Lyapunov and correlation dimensions of an attractor of a chain of uni-

directionally coupled oscillators at the boundary of a chaos-hyperchaos transition. We discuss the prob-
lem of the distinction between chaos and hyperchaos based on these dimensions.

x) dx)+5 +x, =y cos(Qt),
dt

(la)

PACS number(s): 05.45.+b

Recently a growing interest in chaotically forced sys-
tems has been observed; for example, Refs. [1—4]. Chaot-
ic forcing has some advantages in comparison with a
periodic one. Using chaos we can, for example, correct
nonlinear out-of-phase problems, eliminate fractal basin
boundaries [3], and control unstable orbits [5]. The dy-
namics of chaotically forced systems is strictly connected
with a chaotic signal-synchronization phenomenon
[1,4,6—9]. Synchronization in chaotic systems seems to
be interesting not only from the theoretical point of view.
It gives rise to new applications, such as using chaos for
secure communication [10,11]. As shown recently by de
Sousa, Lichtenberg, and Lieberman [12], the boundary of
the possible synchronization and nonsynchronization is
strictly connected with the transition from chaotic to hy-
perchaotic behavior that is characterized by at least two
positive Lyapunov exponents in a spectrum [13,14].

In this paper we investigate the properties of the
Lyapunov and correlation dimensions of the attractor at
the transition point from chaotic to hyperchaotic
behavior. We discuss the problem of the distinction be-
tween chaos and hyperchaos based on these dimensions.

In our numerical investigation we have considered the
dynamical behavior of a particular yet representative
case, the chain of iV unidirectionally coupled Duffing os-
cillators,

d x„ dx„
+P +x„'=x„

dt
(lb)

where P, y, 5, and 0 are constant, n =1,2, . . . , N. In
our system (1) the output from the preceding oscillator
excites the next oscillator in the chain. We consider
mainly the case when the response of the first oscillator is
chaotic (chaotic forcing), but we also make some refer-
ences to the case when this response is periodic (periodic
forcing). In both cases we consider the Lyapunov
exponent's spectrum of an attractor and Lyapunov di-
mension associated with it,

where j is determined by g~ &~0 but g,. +, 'I,;(0. Ac-
cording to the Kaplan- Yorke conjecture [15], dL =dt,
where dI is the information dimension. Information and
Lyapunov dimensions are related to the other attractor
dimensions as follows:

dc —dI dL —d corr

where d, is a capacity dimension, while d„„is a correla-
tion dimension [16]. Up till now there has been no
effective way of estimating the capacity dimension of at-
tractors of higher-dimensional systems, and this dimen-
sion will not be considered here. The correlation dimen-
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sion, the second attractor dimension measure that we
consider in this paper, is defined in terms of the scaling
behavior of the so-called correlation integral. For a
( d =2N + 1 )-dimensional embedding with trajectory vec-
tors xk we define the correlation sum as

Cd(R )=
k, 1=1,k&1

e(R —
1 &k

—xI I ), (3)

where M is the number of vectors in the data set being
analyzed. 6 is the Heaviside step function. As is well
known, the correlation integral Cz(R) gives the average
of the relative number of trajectory points within the dis-
tance R of another trajectory point. For many attractors,
the correlation dimension is defined as that number that
satisfies

dcorr
log~cC(R )

log, oR
(4)

in the scaling region. In practical situations the scaling
region can be rather limited [17,18]. For larger R, larger
than the size of the attractor, the correlation integral sat-
urates at the value of unity. For small R, smaller than
the smallest distance between data points, the integral
goes to zero. Despite these inconveniences the correla-
tion dimension has been found to be the simplest charac-
terization of experimental attractors, for example [18,19],
while estimation of Lyapunov exponents from tixne series
can sometimes lead to incorrect results [20,21].

In the case of chaotic forcing we took 5=0. 1 (the
famous Japanese attractor [22]) and considered P in the
interval [0.1, 0.2]. The trajectories of Eq. (la) are located
on the three-dimensional (3D) manifold. If the trajec-
tories of the whole system (la) and (lb) are located in this
3D manifold as well, then the oscillators n =2, . . . , X
simply reproduce the chaotic oscillations of the first oscil-
lator as all trajectories converge to the attractor of Eq.
(la). The described manifold exists for any value of the
coupled oscillators parameter /3. This enables us to inves-
tigate the stability of the chaotic set located in this mani-
fold as a function of P. The Lyapunov-exponent spec-
trum of the coupled systems (la) and (lb) can be divided

into two subsets X'" and A,
' ', along and orthogonal to the

manifold, respectively. The first subset of Lyapunov ex-
ponents is associated with driving system (la) and con-
sists of three exponents describing the evolution of per-
turbations tangent to the manifold. The Lyapunov ex-
ponents of the second subset describe the evolution of the
perturbation transverse to the manifold. As shown re-
cently by de Sousa, Lichtenberg, and Lieberman [12],
they are equivalent to the conditional or sub-Lyapunov
exponents of Pecora and Carroll [1]. The dependence of
the Lyapunov dimension on P for a difFerent number of
oscillators is presented in Fig. 1, where we have also indi-
cated the intervals where the Lyapunov exponents spec-
trum has one (dotted line), two (dashed line), three (solid
line), and four (bold line) positive exponents. Lyapunov
exponents have been computed using a computer
software 1NS1TE [23]. Computations have been performed
with the p step equal to 0.005 in the whole interval [0.1,
0.2] and with a step 0.005 in the neighborhood of the
chaos-hyperchaos transition. It clearly appears that for
n =2 and 4 there are small regions for higher values of P
where all A,

( '-Lyapunov exponents are negative (P inter-
vals: [0.173, 0.2] for n =4, [0.121, 0.2] for n =2]). In
these intervals the chaotic limit set of the whole system
(la) and (lb) is located on the manifold of the attractor of
the forcing system (la). For the smaller values of P at
least one k' '-Lyapunov exponent is positive and the re-
sulting limit set is not restricted to the manifold of the
forcing system (la), and we observe a hyperchaos regime.
From Fig. 1 one can find that the Lyapunov dimension-
control parameter I3 relation is a continuous function at
the transition point from chaos to hyperchaos and at the
transitions to higher levels of hyperchaos (when the new
Lyapunov exponent becomes positive). Figures 2(a) and
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FICx. 1. Lyapnnov dimension vs P plot for Eqs. (1): 5=0.1,

y = 10.0, A = 1.0 (chaotic forcing).

FICr. 2. Log-log plot of correlation integral vs distance 8 for
Eqs. (1): 5=0.1, y = 10.0, 0= 1.0. (a) Chaotic regime/3=0. 122
for n =2 and P=0. 173 for n =4, (h) hyperchaotic regime
P=O. 120 for n =2 and P=0. 171 for n =4.
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FIG. 3. Lypaunov dimension vs P plot for Eqs. (1): 5=0.2,

y = 10.0, 0,= 1.0 (periodic forcing).
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2(b) present log-log plots of the correlation integral (3) as
a function of the distance R. In Fig. 2(a) the plot shows
the results for the chaotic case (only one positive
Lyapunov exponent) while in Fig. 2(b) we present a hy-
perchaotic case with two positive Lyapunov exponents.
From these plots we can find that, in the case of chaos,
the correlation integral exhibits only one scaling region
while for the hyperchaotic case two scaling regions are
visible. As shown before in the chaotic case, trajectories
of all oscillators evolve on the 3D manifold of the first at-
tractor, and their behavior is strongly connected (all os-
cillators evolve in the same region of phase space —on
the attractor of the forcing oscillator). In the hyper-
chaotic case the other oscillators evolve in the larger-
dimensional manifolds and their behavior is less connect-
ed with the behavior of the first one (forced oscillators do
not evolve on the same attractor as a forcing oscillator).
With this interpretation our results can be explained in
terms of Lorenz conjectures [18].

To show the robustness of our conjecture that dI (p) is
a continuous function and that the correlation dimension
shifts from one to two scaling regions at the transition
from chaotic to hyperchaotic behavior, we consider sys-
tem (la) and (lb) with periodic forcing. In this case we
have taken 5=0.2. The limit cycle of the first oscillator
lies on the annulus, and of course all k'"-Lyapunov ex-
ponents are nonpositive. If all of the A,

' '-Lyapunov ex-
ponents are negative as well, then the periodic or quasi-
periodic trajectories of the whole system also lie on this
annulus. When one or more k' '-exponents become posi-
tive we observe a chaotic or hyperchaotic regime. The
dependence of the Lyapunov dimension on p in this case
is presented in Fig. 3, where the number of positive
Lyapunov exponents is indicated in the same way as in
Fig. l. It clearly appears that with the increase of P the
behavior of the system becomes simpler, periodic for the
chain of two and three oscillators, and chaotic (one posi-
tive Lyapunov exponent) for the chain of four oscillators.
The transition from periodic to chaotic regimes is associ-

loglO R

FIG. 4. Log-log plot of correlation integral vs distance R for
Eqs. (1): 5=0.2, y=10.0, Et=1.0. (a) Chaotic regime p=0. 114
for n =3 and P=O. 148 for n =4, (b) hyperchaotic regime
P=0. 148 for n = 3 and P=O. 145 for n =4.

ated with the jump of the Lyapunov dimension, while the
transition from chaotic to hyperchaotic behavior cannot
be detected in a similar way, as the Lyapunov dimension
is again a continuous function of p at this transition
point. The log-log plots of the correlation integral (3) as
a function of the distance R are shown in Fig. 4(a)
(chaotic case) and Fig. 4(b) (hyperchaotic case). Again
one can find the same property as that described for
chaotic forcing: one scaling region in the chaotic regime
and two scaling regions in the hyperchaotic regime.

To summarize it has been demonstrated here that the
chain of chaotically forced coupled DufBng oscillators
can show chaotic or hyperchaotic behavior. The same
chain with periodic forcing can show periodic, chaotic, or
hyperchaotic behavior. Chaotic and hyperchaotic re-
gimes can be distinguished by the knowledge of the whole
spectrum of Lyapunov exponents. Unfortunately this
distinction cannot be made based on the Lyapunov di-
mension dL or the associated information dimension
—dI, as the dependence of dL on the system parameter p
has been found to be a continuous function at the chaos-
hyperchaos boundary for both periodic and chaotic forc-
ing. This result is not trivial and quite surprising, as the
information dimension of the attractor plays a crucial
role in the experimental distinction between strange
chaotic and strange nonchaotic at tractors [20,21,24].
The correlation dimension allows us to follow up on the
distinction between chaotic and hyperchaotic regimes as
we observe a different number of scaling regions in both
regimes. This property can be useful to follow up on the
chaos-hyperchaos distinction based on a single experi-
mental time series.
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