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Laser-induced electron acceleration in a counterpropagating rf field

Liang Feng
Physics Department 2, Fudan University, Shanghai 200433, China

Yu-kun Ho
Centre of Theoretical Physics, China Center ofAdvanced Science and Technology (World Laboratory), Bejiing, China

and Physics Department 2, Fudan University, Shanghai 200433, China*
(Received 11 December 1992)

Laser-driven electron acceleration by means of two counterpropagating waves is investigated, where

the comoving field is an intense laser light beam, the other is a rf wave beam. A striking feature of the
interaction is the presence of a ponderomotive potential propagating with phase velocity slower than the

speed of light, allowing one to achieve wave-particle matching. Electron trajectories in the combined
field are derived analytically, following the plane-wave and single-particle approximations. Special at-
tention has been given to analyzing the phase slippage of an electron in the field, and the potential of ac-
celerating electrons by means of this scheme. The results show that a neodymium-doped yttrium alumi-

num garnet laser beam with wavelength 1.06 pm and electric field intensity 4X 10' V/cm is capable of
accelerating electrons from 43 to 258 MeV over 0.27 m by using a rf field of wavelength 10.6 cm and an

electric field of 10 V/cm. The averaged accelerating gradient is 1038 MeV/m.

PACS number(s): 41.75.Fr, 29.17.+w, 41.85.—p, 42.62.Hk

The use of lasers to accelerate electrons is attractive.
The accelerating gradient for conventional linacs is about
10 V/cm, while powerful focused lasers can produce
electric fields as high as 10" V/cm. A wide variety of
laser-based accelerator schemes are being explored. Gen-
erally, those schemes can be divided into two categories,
depending on whether the acceleration takes place in vac-
uum or in media. The emerged schemes associated with
the former are those such as the inverse free-electron
laser [1], coupling light either to slow-wave structure
near walls [2] or to lens waveguide array [3], as well as
many other proposals [4—7]. The second category of
laser-based accelerator schemes includes the plasma-beat
wave accelerator [8,9] and inverse Cerenkov accelerator
[10]. A common feature of the media accelerators is that
the accelerating fields propagate with phase velocities less
than c, the speed of light in vacuum, owing to the fact
that the index of refraction in a medium is larger than 1.
This feature could be used to minimize the phase slippage
of particles in the accelerating field, permitting the parti-
cles to receive more energy from the field. However,
there are always troublesome problems in connection
with the breakdown of media by intense electric field or
the complex features of plasma physics such as instabili-
ties and nonlinearities, which are hard to control. Fur-
thermore, the loaded accelerators are limited by multiple
collisions of electrons with media, causing energy loss
and beam spreading.

In this Rapid Communication, we discuss an alterna-
tive method to produce a longitudinal accelerating poten-
tial in vacuum with a phase velocity slower than c. %'e
study the particle dynamics in the combined field of two
counterpropagating electromagnetic radiation beams
with greatly difFerent frequencies. Emphasis wi11 be put
on analyzing the trajectories of electrons in the phase

A, = A, (x cosg+y sing), (2)

where /=capt —kpz+Pp g= &tco+k, z [cop kp(0 0 kp)]
and [to&, k, (0,0, —kt)] denote the frequencies and wave
vectors of the laser and rf field, respectively, and Pp desig-
nates the initial phase of the laser field. The amplitudes
of the two potentials, Ao and A „aretaken to be con-
stant in the present study. x, y, and z are the unit vectors
along the x, y, and z axes, respectively. The related elec-
tric fields and magnetic fields are found by

c)A; = —co;(zX A;), (3)

loser field

electron

rf field

FICx. 1. Configuration for electron acceleration in two coun-
terpropagating electromagnetic waves.

space of the waves and exploring the potential of using
this scheme to accelerate electrons.

Figure 1 illustrates the proposed arrangement. The
relativistic electron is moving along the z axis, which is
also the propagation direction of the intense laser light
beam. The rf wave beam propagates in the opposite z
direction. For simplicity, we assume that both the waves
are monochromatic, circularly polarized plane waves
with vector potentials

Ap= Ap(x cosP+y sing)

and
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%, =VXA;=(k; z)A;, i=0, 1. (4) (1+P, )(P, —Pg) .
dt 2

(13)

dPi d( Ao+ A, )

dt dt
(5)

Assuming that the energy transferred to the electrons is
not strong enough to affect the fields, then the dynamic
equations of an electron with rest mass mp and charge q
are given by

Thus if p, & p&, one gets d p/dt & 0, the particle slips
behind the potential propagation, and vice versa.

Next, we study the dynamic characteristics of electrons
moving in the field by solving the set of equations
(10)—(13). From Eqs. (10) and (11), one can find another
integral of motion

dP, =q Vi X

(SO+%i�

),
dt QPp

CO)
1 — P,

COp

(14)

mc =q(@0+8,) V~ . (7) %'z is a constant of motion determined by the initial con-
ditions. By taking account of the fact that

The subscript 1 denotes the component in the transverse
direction, P is the electron momentum, and V is the ve-
locity.

From Eq. (5), we can easily obtain an integral of
motion

2

y =1—P, — ( Ao+ Ai)
27yg 2C 2

Eq. (11)becomes

(15)

Pi+ q( Ao+ Ai ) =JVi ', (8)

JV, is a constant determined from the initial condition.
For simplicity and without losing any physical in-
gredient, we assume%', =0, which means that we neglect
the transverse velocity of the electron before it enters the
field. Thus one has

'2

( Ao+ A, +2202, cosf)
mpc

1/2

Vi= — ( Ao+ A, ) .
mph

By inserting Eq. (9) into (6) and (7), it yields

(9)

By setting

(16)

d 'I/'

dt
qAp

mpC

qadi —( coo —co, )sing,
moc y

(10)

mpc

2

(Ho+A, +2303,cosp)

- is~ =a«»

dp,
dt

qAp

Pl pC

qi)
[coo(1—/3, ) +co,(1+P, ) ]sing,

mpc y
(17)

which is a periodic function of P, the solution of Eq. (16)
provides

where y is the Lorentz factor, p, = V, /c, and
g=(coo —co, )t —(ko+k, )z is the particle phase in the
field. Equation (10) illustrates that the electron moves in
a so-called ponderomotive potential with phase velocity
given by

1 — +a(g) [a(t/)] —4
COp

[a(g)] + 1—
COp

COp

2

1/2

(18)

COp 6) )
V~= c .

p+
(12)

The fact that the phase velocity is slower than c and
changeable by adjusting the ratio co, /coo is a striking
feature of this scheme, since it could minimize the slip-
page of the particle in the field and, consequently, cause
synchronous particle-wave coupling. Typically, we take
the wavelengths of the two waves to be kp=1.06 pm and
A. , =10.6 cm, respectively. Then the phase velocity from
Eq. (12) is p&= V&/c=0. 99998. We note that the pon-
deromotive potential arises from the nonlinear interac-
tion of the two waves where the transverse electric field
of one wave gives the particle transverse velocity that
causes longitudinal acceleration through the VXI' force
of another wave. The equation describing the phase slip-
page of the particle in the field is

Figure 2 shows the predicted trajectories of electrons
in the P, -P phase plane with representive field parameters
co&/coo= 10, Eo =4X 10' V/cm, and E& = 1 X 10
V/cm. We note from Eqs. (10) and (11) that the phase
space /=0 —m is the accelerating part, whereas

2m is the decelera—ting part. The whole P, Pplane-
can be divided into three regions delimited by the dot-
dashed curve in the figure. Once a particle locates in one
of the regions, it remains so. There is no trajectory inter-
secting the region boundaries. For instance, consider an
electron moving in the 2), (2)3) region. The longitudinal
velocity remains faster (slower) than the phase velocity
V& all along. The phase of the electron continues to in-
crease (decrease) when the electron travels in the field, as
depicted by the solid line a (c) in Fig. 2. From Eq. (18),
this requirement corresponds to the condition that
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FIG. 2. Phase-space plots for electron trajectories in the
configuration shown in Fig. 1. The adopted field parameters are
A,O=1.06 pm, A, &=10.6 cm, E0=4X10' V/cm, and F& =10
V/cm. The whole phase plane is divided into three regions X)&,

2)2, and 2)& bounded by the dot-dashed curve. The solid lines a,
b, and c are representive electron trajectories in the three re-
gions, respectively. See text for the details.

FIG. 3. y,„and y;„correspond to the energies for elec-
trons at the phase-space points Qo and Q, in Fig. 2, respective-
ly. Ay=y, „—y;„is the maximum acceleration for electrons
trapped in the limited II'j range (the region 2)z in Fig. 2). The
plot shows y,„,y,„,and by as a function of co&/coo. The radi-
ation field parameters are taken to be —qAO/(moc) =1.32 and

q A, /(moc) =0.33.

[a(g)] —4 )0
Mp

L

should be held for all values of i/. Since

(19)

[a(i/ )] —4 (20)

thus Eq. (19) is equivalent to p, )p& or p, (p& for all t/

values. Of great interest, the trajectory for a particle in
the region 2)z is confined in a limited t/ space less than
2m, as shown by the solid closed phase curve b in Fig. 2.
Physically, this corresponds to the situation where the
electron travels nearly in phase with the wave and is
trapped in one of the wave valleys. Its longitudinal veloc-
ity oscillates around V&. The dot-dashed curve in Fig. 2
can be regarded as the limit of the trapped trajectories.
Now let us consider an example of an electron trajectory
in this region. Postulate that the electron is injected at
the point Qo in the P, /plane with t/I-=n and y=y
Since the initial velocity component p, (p&, the electron
will slip behind the potential and travel in the accelerat-
ing region. After passing through the point Q, where
t/-0+ and p, -p&, the electron will slip ahead of the po-
tential and still stay in the accelerating region. The elec-
tron energy will continue to increase until it arrives at
Q2, where t/I=@' and y =y,„.From then on, the elec-
tron enters the decelerating region for a total of 2m phase
slippage until it returns to the original point Qo. The am-
plitude of the electron oscillating in the t/ axis is deter-
mined by

[a(t/ ) ] —4
COp

=0. (21)

Obviously, electrons of trajectories in the region 2)2 are
accelerated more effectively by the Geld due to V, —V&
and twice passing successively through the acceleration
region. With the same parameters as in Fig. 2, an elec-
tron in the region 2)2 could be accelerated, to the max-

imum extent, from y;„=85 to y „=515 over a distance
kpAz = 1.3 X 10 . The transverse undulating amplitude is
about 70 pm. The average accelerating gradient is 1038
MeV/m. We present a plot in Fig. 3 showing y,„,y
and b,y as a function of t/ under the
conditions —

q A 0/(moc) = 1.32, —
q A, /(mcc) =0.33,

A,o=1.06 pm, A, i=10.6 cm.
Few additional comments may be made concerning

this scheme. It can be seen from Eq. (10) and Fig. 2 that
the particle energy, regardless of the regimes in which it
travels, depends sinusoidally on the phase. The electron
will undergo alternatively acceleration and deceleration,
if it moves in free space over an unlimited interaction
length. Hence the chief problem of utilizing this scheme
for a linac is to inject and remove the electron at the
correct positions. There have been a number of proposals
for this difficult task [3,11],and we plan to specifically ad-
dress this problem elsewhere. Synchrotron-radiation loss
resulting from the transverse electron motion will become
severe above 100 GeV. This mechanism is negligible for
the considered parameter values.

In summary, we have studied the dynamics of relativis-
tic electrons in the combined Geld of two counterpro-
pagating radiation beams. The resultant ponderomotive
potential with phase velocity slower than c is a nonlinear
effect of the particle coupling with waves. This interac-
tion may be viewed as a stimulated Compton effect. Al-
ternatively, this conGguration is a type of the inverse
free-electron lasers where the conventional magnetostatic
Geld is replaced by using a larger amplitude electromag-
netic wave to induce undulating motion. This motion al-
lows electrons to receive or give energy to the laser Geld.
There are many questions left open for further discussion.
However, it seems worth it to study this scheme as a po-
tential linac.
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