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Lattice Boltzmann thermohydrodynamics

F. J. Alexander, S. Chen, and J. D. Sterling*
Center for Nonlinear Studies and Theoretical Diuison, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 23 July 1992)

We introduce a lattice Boltzmann computational scheme capable of modeling thermohydrodynamic
flows of monatomic gases. The parallel nature of this approach provides a numerically e%cient alterna-
tive to traditional methods of computational Auid dynamics. The scheme uses a small number of
discrete velocity states and a linear, single-time relaxation collision operator. Numerical simulations in
two dimensions agree well with exact solutions for adiabatic sound propagation and Couette Aow with
heat transfer.

PACS number(s): 47.10.+g, 02.70.—c

The lattice Boltzmann (LB) method is a discrete, in
space and time, microscopic, kinetic-equation description
for the evolution of the velocity distribution function of a
Quid [1—3]. Like lattice-gas (LG) automata [4], LB
methods are well suited for simulating a variety of physi-
cal systems in a parallel computing environment. As a
result, the LB approach has found recent successes in a
host of Quid dynamical problems, including Rows in
porous media [5], magnetohydrodynamics [6], immiscible
Auids [5], and turbulence [7,8]. Its efficiency competes
with, and in some cases exceeds, that of traditional nu-
merical methods, while its physical interpretation is
transparent.

Noticeably absent, though, from the list of successful
applications of LG and LB methods is a model that can
simulate the full set of thermohydrodynamic equations.
Previous attempts at developing such a model have ex-
clusiuely involved LG automata [9,10] whose Fermi-
Dirac equilibrium distributions do not have sufficient

flexibility to guarantee the correct form of the energy
equation (3). LB methods are considerably more flexible,
but have not, until now, been applied to this problem.

The thermohydrodynamic equations of classical kinetic
theory result from a Chapman-Enskog expansion of the
continuum Boltzmann equation, with the assumption of a
Maxwellian equilibrium distribution. Since an exact
Maxwellian distribution with a continuous distribution of
velocities, both in angle and magnitude, cannot be imple-
mented in a system that is discrete in both space and
time, we seek an alternative distribution that will never-
theless give rise to the same macroscopic physics. In this
Rapid Communication we address this issue and intro-
duce a LB scheme that can simulate the following con-
tinuity, momentum, and energy equations for viscous,
compressible, and heat-conducting flows:
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where n is the Quid mass density, E is the internal energy
per unit mass and is proportional to the temperature T, u
is the local velocity, p is the pressure, and A, , p, and K are
the second viscosity, shear viscosity, and thermal conduc-
tivity, respectively.

The starting point of the LB method is the kinetic
equation for the velocity distribution function, f;(x, t ):

f, (x+e, , t+1)—f, (x, t )=0;, (4)

where the non-negative, real number f; (x, t ) is the mass
of Quid at lattice node x and time t, moving in direction i
with speed Ie; =cr, cr =1,2, . . . , N, where N is the num-
ber of speeds. The o. =O speed corresponds to the com-
ponent of the Auid that is at rest. The term 0;
represents the rate of change off, due to collisions. For
computational efficiency, it is desirable to find the
minimal set of o. and i, for which a coarse graining of the
kinetic equation (4) leads to the macroscopic dynamics of
interest.

The microscopic dynamics associated with Eq. (4) can
be viewed as a two-step process: free streaming and col-
lision. During the free-streaming step, f;(x+e;) is re-
placed by f;(x). Thus each site exchanges mass with its
neighbors, i.e., sites connected by lattice vectors e;. In
the collision step the distribution functions at each site
then relax toward a state of local equilibrium. For sim-
plicity, we consider the linearized, single-time-relaxation
model of Bhatnagar, Gross, and Krook [11],which has
recently been applied to LB models [6,12—14]:

B&p+ p +
BXp

(2) The collision operator Q; conserves the local mass,
momentum, and kinetic energy: g,A; =0,
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,
.Q, e, =0, and g;0;e;/2=0, and the parameter

~ controls the rate at which the system relaxes to the lo-
cal equilibrium, f'~.

The LB method, unlike LG s, has considerable flexibili-
ty in the choice of the local equilibrium distribution. A
general equilibrium distribution is given by a truncated
power series in the local velocity u, valid for ~u~ && 1,

f'~= A +8 e; u+C (e, u) +D u

+E (e; u) +F (e; u)u

where the velocity is defined by nu=g, f;e;. The
coefficients A, B, . . . , F are functions of the local density
n =g;f; and internal energy no=a;f;(e; —u) /
2, and their functional forms depend on the geometry of
the underlying lattice.

The long-wavelength, low-frequency behavior of the
system is obtained by a Taylor-series expansion of Eq. (4)
to second order in the lattice spacing and time step:

8+e, Vf, + ,'e;e;—:VVf;+e,V f;

order e, the continuity equation
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Bt

the momentum equation
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and the energy equation
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The momentum flux tensor
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the heat flux,
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and P is the pressure tensor,

q =
—,'g f'q+ 1 — f",' (e, —u) (e, —u)

1

2r

(14)

(16)

1'2 ai arf- =-
1P &= —,

' g f (+ 1 — f" (e;—u) (e;—u)& .
27-

CT, lIn order to derive the macroscopic hydrodynamic equa-
tions, we adopt the following Chapman-Enskog multi-
scale expansions. We expand the time derivative as To recover the Euler equations, we neglect the order e

terms and impose four further constraints on the equilib-
rium distribution function. The first of these constraints
requires that the momentum fiux tensor II'$ be isotropic.
The velocity-independent portion of the tensor is then
identified as the pressure, and this immediately results in
the equation of state for an ideal gas, p =no. . The
remaining two constraints require that the convective
terms be a Galilean invariant, and that the heat flux van-
ish to first order in e, q' =0. Thus we obtain the equa-
tions for compressible, inviscid, and nonconducting flow
of a monatomic gas.

Retaining terms to order e and imposing two addition-
al constraints, we recover the Navier-Stokes level equa-
tions. These constraints are that the momentum flux ten-
sor II'" be isotropic and that the heat flux q'" be propor-
tional to the gradient of the temperature, q'"-V T. Note
that the order e terms describe diffusive processes and,
as assumed in Eq. (8), evolve on a slower time scale than
the convective terms associated with the order e Euler
equations.

To demonstrate the utility of the above LB method, we
apply it to a two-dimensional triangular lattice. The
model has one rest particle state, cr =0, for which e;=0;
and two nonzero speeds for which e;=o (cos(2vri/
6),sin(2vri/6)) for i =0, 1, . . . , 6 and (r=1,2. The exten-
sion to three dimensions is straightforward and will be
discussed elsewhere [15].

For this lattice geometry and the constraints discussed
above, we can solve for the coefficients of the distribution
function. One possible solution is the following:

(} (} p (}
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+

where e is a small parameter, and the lower-order terms
in e vary more rapidly. Because we are interested in
small departures from local equilibrium, we expand the
distribution function as

f f q +Ef(; +—6.2f (2. )+

and the collision operator as

1 (~f(1)+~2f (2)+. . . ) (10)

Substituting the above expansions into the kinetic
equation, we find

f:~+e., Vf':, = ——f'.,
'
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to order e, and

f",'+ f q +e, Vf",'+ ,' e,e, :VVf'q—

to order e . With Eq, (11) and some algebra, we can
rewrite Eq. (12) as
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Summing moments of Eqs. (11) and (13), we obtain to
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Identifying the coefficients in Eqs. (1)—(3) with the cor-
responding terms from the Chapman-Enskog expansion,
we determine the values for the transport coefficients.
The shear viscosity and the thermal conductivity are
given by p=nE(r ,')—a—nd a.=2nE(r —

—,'), respectively,
and yield a Prandtl number Pr= —,'. As in the case of a
monatomic gas, the bulk viscosity vanishes because

p.
We carried out four numerical tests to determine the

accuracy of this method for simulating Eqs. (1)—(3).
Each test focused on one aspect of thermohydrodynamic
transport.

We determined the viscosity p by simulating an iso-
thermal Poiseuille Aow. Numerical results demonstrate
that our model accurately reproduces a parabolic
momentum profile (not shown here). The viscosity is re-
lated to the momentum at the channel center by
p = W f /8u „„,where f is the magnitude of the forcing,
u„„ is the velocity at the center, and 8' is the channel
width I16]. In Fig. 1, we show the dependence of viscosi-
ty on the relaxation time w and two internal energies c.
The resulting viscosities from measurements agree with
the Chapman-Enskog theory to within around 1% over
the entire range of parameters simulated.

We determined the thermal conductibility ~ by
measuring the heat transfer across a temperature gra-
dient, using Fourier's law q= —aVT. By fixing the tem-
peratures at the channel walls, we obtain a linear temper-
ature profile and thus a constant gradient. Again, numer-
ical results agree with the theoretical predictions quite
well. Since the thermal conductivity has the same func-
tional form as the viscosity, we also display the results in
Fig. 1.
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FIG. 2. Numerical simulations of adiabatic sound speed (+)
as a function of internal energy c.. The solid line is the function
&2c.

For the two-dimensional LB scheme, linearized pertur-
bation theory gives a simple relation between the adiabat-
ic sound speed c, and internal energy c, =&2E. In Fig. 2,
we present the sound speed as a function of internal ener-

gy for both numerical measurements and theory —the
agreement is evident.

We simulated a Couette shear Aow with a temperature
gradient between the boundaries I17]. For small temper-
ature gradients the pressure is essentially constant across
the channel, and the temperature profile has an analytic
solution given by E*=(E—so)/(ei —Eo)= —,'(1+y*)
+(Br/8)(1 —y' ), where y' is the normalized distance
from the center of the channel; E& and Ep are the internal
energies of the upper and lower walls, respectively. The
Brinkman number Br is the product of the Prandtl and
Eckert numbers. The agreement between theory and
simulation, as shown in Fig. 3, demonstrates the validity
of the method in simulating Aows in which energy dissi-
pation is an important factor.

In conclusion, we have developed a lattice Boltzmann
scheme for the simulation of viscous, compressible, heat-
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FIG. 1. Shear viscosity (+) and thermal conductivity (0), as
functions of relaxation parameter ~. Upper curve corresponds
to internal energy v=0. 625; lower curve, v=0. 5. The solid
lines are the theoretical predictions.

FIG. 3. Normalized internal energy c* for Couette flow with
heat transfer for Brinkman numbers Br=5 (+) and Br=10 (X).
The upper wall is moving with speed Ul =0.1, and the lower
wall is stationary. The solid lines represent analytical results.
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conducting fl.ows of an ideal monatomic gas. The kinet-
ics of this model can be easily implemented on a parallel
architecture machine. We have demonstrated theoreti-
cally and numerically that the macroscopic behavior of
this model corresponds to that of Eqs. (1)-(3). Several is-
sues remain. First, the current model uses the single-
time-relaxation approximation, and this restricts simula-
tions to Rows with Prandtl number Pr= —,'. In order to
simulate Aows with other Prandtl numbers, we should use
a full matrix collision operator, which leads to a muIti-
time-scale relaxation [15]. Second, the equation of state
in the present model is that of ideal monatomic gas. To
simulate nonideal gases we may incorporate some inter-

nal degrees of freedom. An analysis of the numerical sta-
bility of the current model and its benchmarking against
other computational Quid dynamical schemes are under
investigation.
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