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Traveling-wave wall states in rotating Rayleigh-Bénard convection
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We show that the wall-localized convection states observed in Rayleigh-Bénard convection in rotating
cylindrical cells can be explained in terms of a geometry-independent traveling-wave wall state. We cal-
culate the onset Rayleigh number, frequency, and wave number of such a state, as well as its amplitude
equation. We also study the large-rotation-rate asymptotic behavior and the small-rotation-rate limit.

PACS number(s): 47.54.+r, 47.20.Bp, 47.32.—y, 47.20.Ky

There have been many studies, both experimental and
theoretical, of Rayleigh-Bénard convection in finite rotat-
ing systems. Some of the older studies are by Rossby [1],
Davies-Jones and Gilman [2], Buell and Catton [3], and
Pfotenhauer, Niemela, and Donnelly [4]. In general,
heat-transport measurements in the experimental studies
found that the onset of convection occurred at Rayleigh
numbers below that predicted for the infinite unbounded
system. This is in contrast to Rayleigh-Bénard convec-
tion in a nonrotating system, where the boundaries of the
system suppress the onset of convection, and the critical
Rayleigh number is greater than that of an infinite sys-
tem.
Recent experimental studies by Zhong, Ecke, and
Steinberg [5] and Ning and Ecke [6] employing the sha-
dowgraph visualization technique have shown that the
convection states that occur below the infinite-system
critical Rayleigh number exist along the sidewalls of the
rotating cell, and precess counter to the direction of rota-
tion. Furthermore, the theoretical study of convection in
rotating cylinders by Goldstein et al. [7], in which they
solved for the fluid equations in the full cylindrical
geometry, found the existence of precessing modes local-
ized near the sidewalls of the cylinder at Rayleigh num-
bers below the infinite-system critical Rayleigh number.

In this paper we show that these states are not just a
feature of small-aspect-ratio systems as might be thought
from the earlier studies [2,3], instead we show that they
can be explained in terms of a traveling-wave wall state,
the existence of which depends only upon the presence of
the sidewall, and the addition of the Coriolis force in the
equations of motion of the fluid. The onset below that for
the unbounded system will therefore persist even for
large-aspect-ratio systems. This system thus provides an
example of the existence of wall-localized states induced
by boundary conditions in pattern-forming systems previ-
ously suggested by Kramer and Hohenberg [8] from gen-
eral arguments. Idealizing the sidewall state as a
geometry-independent state allows for much simpli-
fication in calculating the characteristics of the observed
convection states, just as does the concept of the un-
bounded infinite system for the familiar bulk roll state.
In this approach, the sidewall state is essentially one di-
mensional in nature, characterized by its wave number
along the wall and its frequency. The characteristics of a
convection state in a real physical geometry may be cal-
culated in terms of finite-size corrections to these asymp-
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totic results.

We are able, with relative ease, to calculate the charac-
teristics of this wall state in the idealized case of an
infinite, straight sidewall, for free-slip top and bottom
boundary conditions. The calculations should be readily
generalizable to no-slip top and bottom boundary condi-
tions. The effect of realistic sidewall boundary
conditions—including the thickness, and thermal con-
ductivity and diffusivity of the wall—are easily incor-
porated into the calculation. We can also study the
asymptotic behavior at large rotation rates, as well as the
small-rotation-rate region, where the wall state connects
to the bulk state. Moreover, since the wall state is quasi-
one-dimensional, its dynamics can be described by a one-
dimensional complex amplitude equation, and we calcu-
late its parameters to lowest nonlinear order. We find
that (for free-slip top and bottom boundary conditions)
the bifurcation is forward; thus, rotating Rayleigh-
Bénard convection in large-aspect-ratio systems may pro-
vide a convenient experimental realization of a traveling-
wave instability with a forward bifurcation, and is there-
fore worthy of further theoretical and experimental
study.

We consider convection in a rotating semi-infinite hor-
izontal layer of fluid with one straight infinite sidewall.
The angular velocity @, =Q,Z is constant and in the
vertical direction.

We use the usual dimensionless variables in which
length is measured in units of the cell height d, time in
units of the thermal diffusion time d2/k (k is the thermal
diffusivity of the fluid), and temperature in units of
Kv/agd3 (v is the kinematic viscosity, a the coefficient of
thermal expansion, and g the gravitational acceleration).
In these units, the equations of motion for the fluid veloc-
ity v=(u,v,w), the deviation of the pressure from its
linear conduction profile, 8, the deviation of the pressure
from its conduction profile, p, and the incompressibility
condition, are

o [av/dt+(v-V)v]=—0"'V(p/p,)+ 62

+2QvXZ+Viv, (1)
36/3t+(v-V)0=Rw +V?0 , (2)
V-v=0. (3)

Here Q=Q,d?/v is the dimensionless angular velocity,
R=ag(AT)d?/kv is the Rayleigh number (AT is the tem-
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perature difference between the bottom and top plates),
o=v/k is the Prandtl number, while p, is the mean fluid
density. The term due to the centrifugal force,
—(60?/2g8)V|Q Xr|?, which would be on the right-hand
side of (1), has been neglected (g is the gravitational ac-
celeration in the units above). In practice, this term is
negligible compared to the gravitational buoyancy term if
03%1/g << 1, where [ is the radius of the cell.

We will take the coordinate system to be such that the
height of the cell is from z=0 to z=1, and the sidewall
runs along the x axis at y =0, with the fluid occupying
the positive y half of the xy plane. The sidewall lies in the
negative y half of the plane, and is of arbitrary thickness.
With this setup, the boundary conditions at the bottom,
z=0, and the top, z=1, are the (unphysical) free-slip
fluid boundary conditions and the physical thermal
boundary condition

w=0u/9z=9dv/3z=0, 6=0, (4)

and those at the sidewall, y=0, are the physical no-slip
fluid boundary conditions and the continuity of heat

u=p=w=0, 90/3y —u6=0, (5)

where p depends not only on the thermal properties of
the sidewall and the fluid, but also upon the nature of the
solution in the fluid.

The unphysical free-slip boundary conditions have
often been used in convection problems to allow a simple
calculation that may illustrate the behavior of the more
physical no-slip boundary conditions. In this particular
case, there are reasons to believe the calculation may be
quite accurate, and even exact for the linear terms in the
large-rotation-rate limit. In their paper [7], Goldstein
et al. showed that in finite cylindrical cells, at least for
large rotation rates, the critical Rayleigh number, preces-
sion frequency, and azimuthal mode number of the “fast
mode,” which corresponds to the traveling-wave wall
state, do not depend strongly upon whether one uses the
free-slip or the no-slip boundary conditions at the top and
bottom plates. Also, Clune and Knobloch [9] showed
that for the bulk state, the no-slip and free-slip solutions
to the linear stability problem become identical as
Q) — oo. Similar arguments justify our use of the free-slip
boundary conditions for the purposes of calculational
simplicity. The reason for this weak difference between
free-slip and no-slip boundary conditions, particularly at
large rotation rates, is the existence of thin
[~(v/Qp)'"?] Ekman boundary layers in the case of no-
slip boundary conditions. Outside the thin boundary lay-
ers, the dominant mode may be similar to the mode for
free-slip boundary conditions, and thus the linear onset
solution will have similar critical parameters. This, how-
ever, probably does not hold for nonlinear calculations,
which involves coupling the dominant mode to other
modes.

Traveling-wave wall states should have a basic space
and time dependence that ~ exp[i(g,x —wt)]. Thus to
find the lowest Rayleigh number critical onset wall state,
we seek solutions of Egs. (1)-(3) of the form (the com-
ponents of x are the physical variables we are interested
in)
i(qxx~a)t)

X(x,y,l,t)=)(0(y,z)e “+¢.C.
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for different g,, which also satisfy the boundary condi-
tions (4) and (5), as well as the condition that y not
diverge as y— + o. The solution with the lowest onset
Rayleigh number is then the critical onset wall state, and
we have thus found R,, o, and g, the critical Rayleigh
number, precession frequency, and wave number of the
traveling-wave wall state.

Equations (1)-(3) can be linearized and combined to
give a dispersion relation that is fourth order in q,f-f—qyz.
Thus for free-slip top and bottom boundary conditions,
we can write for the onset state

uy(y,z) Uy cosmz

vo(y,2) L Vo cosmz
Xolp,2)= wo(y,2) =j=1e Y W, sinmz | °

6o(y,2) ©,; sinmz

where g, is complex, as are U,, V,, W, and ©,, and of
each pair of ¢,’s satisfying the dispersion relation with
equal value of g7, only the one that allows y—0 when
y— + o is included. The boundary conditions at the top
and bottom (4) are thus automatically satisfied. For a
solution of this form, the value of u in (5) is

u=K,k, tanh(k,1l,) , (6)

where K, is the ratio of the thermal conductivity of the
sidewall to that of the fluid, /, is the width of the
sidewall, and with «, the thermal diffusivity of the
sidewall,

k2=(ql+7"—ix, ') . (7)

To satisfy the sidewall boundary conditions (5) we first
use the (linearized) equations of motion (1)-(3) to solve
for Uy, Vy;, and W), in terms of ©y;. The four sidewall
boundary conditions then become a 4 X4 complex matrix
condition on ©y=(0;,0,,03,0y,). For given g, we
can find, numerically, R and o, such that the characteris-
tic equation of this complex matrix condition is satisfied,
and then find the eigenvectors of the matrix to give the
form of the onset solution.

This gives the onset Rayleigh number and frequency
for a given g,. Minimizing the onset Rayleigh number
with respect to g,, we find the critical Rayleigh number
R, the critical frequency w,, and the critical wave num-
ber g,.. Figure 1 shows R, », and g,., respectively, as a
function of the rotation rate for Prandtl number o equal
to 6.4 and thermal boundary conditions K,=0.25,
k,=1, and [, =0.15. (Note that the values of w, are ac-
tually negative.) This corresponds to the experimental
conditions of Ref. [6].

Near onset, the traveling-wave wall state may experi-
ence slow modulations in both space and time (along the
wall), and the dynamics may be calculated by expanding
in a small parameter e=(R —R_)/R.. The amplitude 4
is the complex envelope of the basic traveling wave,
expli(g,. —w.1)], i.e., the physical quantities are

X(x,p,2,0)=A(x, e =%y (3. 2)Fe.c. +hoo.t. ,

where 4 ~¢'”? and the higher-order terms (h.o.t.) are
O(e). The amplitude equation is one dimensional in the
sense that the dynamics of the amplitude depend only
upon the spatial variations parallel to the sidewall, and
can be written
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FIG. 1. Critical onset parameters for the wall state for the
experimental conditions of Ref. [6] vs the dimensionless rota-
tion rate Q. (a) Critical Rayleigh number R, : (solid line) wall
state; (dash-dotted line) bulk mode. (b) Magnitude of the criti-
cal frequency w.: (solid line) numerical work; (dashed line)
asymptotic calculation. (c) Critical wave vector g,.: (solid line)
numerical work; (dashed line) asymptotic calculation.

dA dA . LY |
To —t—+s—5;— =e(1+icy) A +§(2,(1+1c1)-a~x~2—

—g(1+icy)| 4]%4 (8)

to lowest nonlinear order. The parameters s, 7o, £, & Co»
¢, and c; are (real-valued) parameters that can be calcu-
lated and measured. s is easily seen to be the group veloc-
ity, and 7, and £, are the time and length scales of the
modulation respectively. The cubic term turns out to
have negative real part (g is positive); thus the solution 4
saturates when | 4| ~€'/2, and the bifurcation is forward.

The parameters in the linear part of the amplitude
equation can be calculated by finding (numerically) the
complex growth rate =y —i(w,+Aw) as a function of
€e=(R—R_,)/R, and the wave-number difference
k=gq, —gq,. for small € and small k, such that, as in cal-
culating the onset parameters, the dispersion relation and
boundary conditions are satisfied for the solution found
for the linearized equations of motion. [Here the value of
u in the thermal boundary condition is calculated in (6)
by changing —iwin (7)toI'=y —iw.]

We have also developed the expansion in the nonlinear-
ity to third order to calculate the real and imaginary
parts of the coefficient of the nonlinear term in the ampli-
tude equation. The method, which is standard [10], will
be described in detail elsewhere. We point out here, how-
ever, that since the linear solution is a sum of exponen-
tials, the whole procedure may be carried out analytical-
ly, except for the numerical solution of the dispersion re-
lation to find the wave vectors of the linear solution and
of the second-order, nonlinear homogeneous solution.
The constant g depends on a choice of normalization: we
normalize such that the ratio of the convected heat to the
heat conducted through a strip of fluid of width equal to
the cell height is | 4 |2.

The various parameters of the amplitude equation are
shown in Fig. 2 as a function of the rotation rate, again
for Prandtl number o equal to 6.4 and thermal boundary
conditions as before. It is worth pointing out that the
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group velocity s, which is positive, is in the opposite
direction to the phase velocity w,/q., which is negative.
We also note that, at least for our calculations, there is no
Benjamin-Feir instability, as 1+c¢,¢; >0.

In Fig. 1(a) the critical onset Rayleigh numbers of both
the traveling-wave wall state and the stationary bulk con-
vection state that occurs in infinite unbounded systems
are plotted as a function of the rotation rate. In contrast
to the “large”-rotation-rate region where the traveling-
wave wall state has the lower onset, below a critical rota-
tion rate ., the bulk state has the lower onset, and
would be the convection state that actually occurs first as
the Rayleigh number is increased. As can be seen from
Fig. 1(a), however, the wall state persists below (2., but
not all the way to zero rotation rate. Instead, we find
that the frequency goes linearly to zero at a nonzero rota-
tion rate, as shown in Fig. 1(b). (Although we are plot-
ting the values of R, and w, for the critical wave vectors,
which vary as a function of ), these conclusions remain
true if instead we use a fixed wave vector g,.) At this
same rotation rate the spatial decay rate Img, also goes
to zero, while Reg, goes to a nonzero constant. Thus,
rather surprisingly, we find that the wall mode bifurcates
continuously from a bulk mode at a particular orienta-
tion to the sidewall (given by Reg, /q,). The nature of
this bifurcation is explored further in Fig. 3, where we
show the critical Rayleigh number plotted against the
wave vector parallel to the wall for the wall mode (solid
line) and the bulk mode that connects to the wall mode
(dash-dotted line) for a particular rotation rate. For this
rotation rate the wall mode has the lower minimum Ray-
leigh number, and would be the first mode to go unstable
if the wave vector g, were free to adjust. For large q,,
however, the wall mode disappears at the codimension-2
point P. The inset shows how the frequency and the spa-
tial decay rate of the wall mode go to zero as g, varies.

The application of these results to a finite experimental
system is quite delicate. In a finite system the bulk modes
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FIG. 2. Amplitude equation parameters defined by Eq. (8) for
the wall state for the experimental conditions of Ref. [6] vs Q.
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would be expected to gain a small rotation rate (probably
going as L ~!, where L is the size of the system). Thus we
would expect to see either a bifurcation or a rapid cross-
over between two finite frequency modes, with one hav-
ing a frequency largely independent of aspect ratio (the
wall mode) and the other having a frequency becoming
smaller as the aspect ratio is increased (the bulk mode).
The structure of the bifurcation as shown in Fig. 3 may
also have implications for the transition between the two
states in the nonlinear regime as the Rayleigh number is
increased.

In the case of the bulk convection state in an infinite
unbounded system, Chandrasekhar [11] showed that,
when the rotation rate is large, the asymptotic behavior
of R, and g, for both free-slip and no-slip top and bottom
boundary conditions is R, ~Q*/3 and g, ~ Q!>

We find that the traveling-wave wall state has a
different asymptotic limit at large rotation rates, and that
this limit also depends upon the thermal boundary condi-
tion imposed at the sidewall. In the case of insulating, or
nonperfectly conducting sidewalls, we find the asymptotic
behavior to be R, ~(, g,. —const, and w,.—const in the
limit Q—o. In the case of perfectly conducting
sidewalls, the asymptotic behavior appears more compli-
cated, but numerics and a balance of terms in the disper-
sion relation would indicate that it is R,~Q%73,
Qe ~Q'% and ©, ~013 as Q— 0.

In the former case we have solved for the exact asymp-
totic solution at large Q. We find the onset Rayleigh
number and frequency at wave vector g, to be given by
the solution of

(m+ig, ig,—p)+Rq, =0, 9)
with u(q,,) given by (6) and R=R /27Q, and where
g,=(—io—qg?—m")"? is the complex wave-vector com-

ponent giving the decay perpendicular to the wall. For
the parameters and boundary conditions quoted earlier,
this yields R, —74.40Q, o, — —57.68, q,.—5.545. For the
insulating case p=0, (9) can be solved analytically for
R(q,) and o(q,). In this case we find R,—63.64Q,
w.— —66.05, g,.,—6.069. Fits to our numerical results up
to 2=50000, assuming corrections to the asymptotic lim-
it go as a polynomial in Q7!/? give good agreement with
these values. [See the dashed lines in Figs. 1(b) and 1(c)].

The asymptotic behavior for the special case of perfect-
ly conducting boundaries is more involved, and we do not
have analytic results here.

In conclusion we have proposed considering the new
state in rotating convection that preempts the bulk onset
for large rotation rates as a one-dimensional wave with
an onset enhanced by the presence of a sidewall in a
semi-infinite system. This simplifies the calculation of
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FIG. 3. Critical Rayleigh number R, vs g, for a fixed rota-
tion rate Q=4.5 for the experimental conditions of Ref. [6].
The wall mode (solid line) merges with a bulk mode (dash-
dotted line) at the codimension-2 point P. Note that this dash-
dotted line is drawn for the particular g, of the bulk mode from
which the wall mode bifurcates at P. The dashed line shows the
lowest bulk Rayleigh number, allowing g, to vary. The inset
shows the critical frequencies w, (solid) and the inverse decay
lengths Im g, (dashed) of the wall mode; both w. and Img, go
to zero at P.

many properties of the linear onset solution and the non-
linear state. We have illustrated this using the model of
free-slip upper and lower boundaries, and have presented
several novel results, including the large- and small-
rotation-rate limits of the onset, and all the coefficients of
the amplitude equation describing the nonlinear state.
Many of these results will be accurate for the physical
case of no-slip boundaries for large rotation rates.

Note added in proof. We recently became aware of
work by J. Herrmann and F. H. Busse [J. Fluid Mech. (to
be published)] that independently arrives at similar re-
sults for R, w., and q,, for the cases of perfectly con-
ducting and insulating sidewalls. In addition, they
present new analytic results for the large frequency
asymptotic values for the conducting sidewalls: the sug-
gestions we made in this case based on numerical results
are consistent with these analytic expressions. We have
also found out (private communication) that M. L. van
Hecke and W. van Saarloos have performed similar cal-
culations to ours in a slab geometry.
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