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Staircase polygons, elliptic integrals, Heun functions, and lattice Green functions
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We show that the generating function for d-dimensional staircase poiygons (by perimeter) can be
expressed in terms of the generating function for the square of d-dimensional multinomial coeKcients.
This latter generating function is found to satisfy a linear, homogeneous differential equation of order
d —1. This equation is solved for d & 4. For d = 3 and d = 4 the solution is obtained in terms of Heun
functions, which are then shown to be expressible in terms of the complete elliptic integral of the
first kind. The solutions are also shown to be related to lattice Green functions on three-dimensional
lattices. The critical behavior of this model is determined exactly in all dimensions.

PACS number(s): 64.60.Ak, 36.20.Ey, 75.40.Cx

In recent years there has been renewed interest in a
number of two-dimensional polygon problems [1—3]. In
particular, the generating function by perimeter of pyra-
mid polygons, bar-graph polygons, staircase polygons,
convex polygons, row-convex polygons, and almost con-
vex polygons [4] have all been obtained, while for self-
avoiding polygons on the square lattice, enumerations to
70 steps are now known [5]. As well as their intrinsic
combinatorial interest, and as models of phase transi-
tions, these exactly solved models will, it is hoped, shed
light on the solution of the unsolved self-avoiding poly-
gon problem. Additionally, they are of some interest in a
computer science setting [2, 3], as manifestations of cer-
tain grammars.

In dimension d & 2, however, essentially nothing
is known. In this Rapid Communication we study
d-dimensional staircase polygons, and show that their
perimeter generating function can be expressed as the
square of the d-dimensional multinomial coe%cient. We
then find that this generating function satisfies a Fuch-
sian difFerential equation of order (d —1). We solve these
ordinary differential equations for d = 3 and d = 4 in
terms of Heun functions, which we show can then be
transformed into lattice Green functions and hence [6]
expressed in terms of complete elliptic integrals of the
first kind. We also obtain the exact critical point, criti-
cal exponent, and amplitude for the generating function
(free-energy analogue) of the model in all dimensions.
This is the first nontrivial polygon problem to be com-
pletely solved in dimensions 3 and 4.

Any d-dimensional staircase polygon of perimeter 2n
may be considered as made up of two paths, each of
length n, with common origin and end point, and with
successive steps joining neighboring points on the lattice
Z". The two paths are constrained to have no point in
common other than the origin and the end point, and
successive steps must be in the positive direction in all d
coordinates.

We denote the generating function of staircase poly-
gons in d dimensions by G(xr, x2, . . . , xd). If there
are k, steps in direction i, then the number of dis-
tinct paths is clearly given by the multinomial coeffi-
cient ("'&+"&'+'"+&""). Relaxing for the moment the con-
dition that the two paths do not intersect, the number
of two such paths with common origin and end point
at (ki, k2, . . . , kd) is given by the square of the above
multinomial coefBcient, and the corresponding generat-
ing function Z(xi, x2, . . . , xd), including a walk of zero
length for later convenience, is

Z(xi, x2, . . . , xg)

OO 2fkl + k2+ ' ''+ kd 2k' 2k' 2k'

k1,kg, ... ,kg =0

This generating function produces a chain of staircase
polygons (Fig. 1), each link of which comprises either a
staircase polygon or a double bond. Let H(xi, x2, . . . , xd)
be the generating function for a link, that is, for a single
staircase polygon or double bond

G

H(xi ix2& ~ ~ ~ ) xd) = ) x~i + 2+(xi) x2) ~ ~ ~ 1 xd) (2)

[due to the orientability of walks, each staircase polygon
is produced twice in the definition of H(xi, x2, . . . , xd)].

We see in Fig. 1 that the chains consist of polygons
generated by H, or H, or H, etc. , whence

Z =1+H+H +H +2 3 1
1 —H

(where the arguments of Z and H have been suppressed).
Combining (3) with (2) we get
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(k„k,)

with

(d} =
2

ski, k2, . . . , kg
).

(0, 0)

1(G= —
~ & —) *', I= —

I
1 —) z,' —Z

)
(4)

Setting xq
G(x, x, . . . , z)

d
have

z2 = —— zg = z and writing
Gg(z2) [Z(x, x, . . . , x) = Zg(z2)], we

d

FIG. 1. Two directed walks with common start and end
points forming a loop in two dimensions. This can be inter-
preted as a chain consisting of staircase polygons and double
bonds. The picture is readily generalizable to higher dimen-
sions.

For d = 1 this last sum is just S„)= 1, hence Gi (z2) =
0. For d = 2 the multinomial is a binomial and from the
identity pk 0 (~k) = (2") we Bnd

G2(x ) = -(1 —2x —Jl —4z2) .2=1 2

2

For d ) 2 no expression is known for the generating
function of the square of the multinomial coefficient. We
observe the simple recursion

n 2
(~)=)

I

n S(~ i)
i,m

but that does not help in simplifying the generating func-
tion.

However, if we simply generate the coefficients of the
generating function Zg(z ) from the definition, inspec-
tion of the coefficients (aided by computer algebra) re-
veals a simple recurrence relation among the coefficients.
Such recurrences abound in exactly solvable models in
statistical mechanics, and their identifi. cation and analy-
sis are standard tools [7]. In particular, we'get

Gg(z ) = — 1 —dx
Zg x2 j

where

Zd(z')

(5)
nS(') = 2(2n —1)S„"'„ (lla)

n S( ) = (10n —10n + 3)S„ i —9(n —1) S (1lb)
ns S(4) = 2 (2n —1)(5n —5n + 2)S„ i —64 (n —1) S„

(1lc)

and, respectively,

(6)

OO 2). ki+k2+ . +kg) 2(k, +k, + +„,)z
ki, k2, . . . , kg )

(1le)

n'S(') = (35n' —70n'+ 63n' —28n+ 5)S„"',
—(259n —518n + 285) (n —1) S(

+225(n —1)'(n —2)'S„"'„ (lid)
n'S(') = 2(2n —1)(14n' —28n'+ 28n' —14n+ 3)S(

—4(196n —392n+ 255)(n —1) S„
+1152(2n —3)(n —1)'(n —2) 'S„"),.

Gg(z ) = —( 1 —dz — ) S„z2 1 2 ~ (d) 2

( =0
(7)

These recurrences can be reexpressed as differential
equations. In this way we find the following differential
equations for Zg(z):

2
Z2(z) — Z2(z) = 0,

1 —4x
1 —20x+27x,

( )
3(1 3z

Z ( )z(1 —x)(l —9z) ' x(1 —x)(l —9z)
3(1 —30z+ 128x ) „1—68z+ 448x2, 4

Z4'(x) + Z4 x +
z(1 —4x) (1 —16x) z2(l —4z) (1 —16x) x2 (1 —4z)

(12a)

(12b)

(12c)

(4) 2 (3 —140x + 1295x2 —1350zs ) „, 7 —518x + 6501z2 —8550z2

x(l —x) (1 —9x) (1 —25x) x2(l —x) (1 —9x) (1 —25x)

1 —196z + 3963x2 —7200xs, 5(1 —57x + 180x2)
zs (1 —x)(1 —9z) (1 —25z) zs(l —z) (1 —9x) (1 —25z)
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10(1 —70x + 1176xz —4032xs) (4l 25 —2408x + 51196x2 —211968xsz'"(z) + z,x(1 —4x) (1 —16x)(1 —36x) xz (1 —4x) (1 —16x)(1 —36x)

3(5 —812x + 23992x —126720xs) „1—516x + 25956x —193536xs
xs (1 —4x) (1 —16x)(1 —36x) x4(1 —4x) (1 —16x)(1 —36x)

These differential equations are all Fuchsian, with reg-
ular singular points at the origin, at infinity, and at
x = 1/d, 1/(d —2), 1/(d —4), . . ., the sequence of singu-
lar points terminating at x = 1 (d odd) or x =

4 (d even).
Moreover, the solutions that are regular in the neighbor-
hood of x = 0 have singularities with exponents "z at
the other regular singular points, so that, in particular,
the dominant singular behavior is given by with

+[4f( )g( ) + 2g'(*)]Z( ) = 0, (17)

6(1 —170x+ 2304x )
z4 (1 —4x) (1 —16x)(1 —36x)

I

logarithmic.
In d = 4, the differential equation can be rewritten as

Z"'(x) + 3f(x)Z"(x) + [2f(*)'+f'(x) + 4g(x)]Z'(*)

(1 d2x2)(d —sl/2
d(* ) B (I d2x2)(d —sl/2 in(1 d2x2)

d even
d odd.

1 —30x + 128x2

x(1 —4x) (1 —16x) '

Further analysis of the coefficients S shows that the(d)

asymptotic behavior is

d)'' 'I d

d2n+d/2
[1+O(n )] .

(4~n) ~
(14)

From this the amplitudes Bd in (13) can be readily
calculated. Furthermore, denoting the number of d-

dimensional staircase polygons with perimeter 2n as T„
we get for large n

'
1/4n,
1/ in(n) 2,

Cd ) 1/2,

d=2
d=3
d)3

with Cd ~ 1/2 for d ~ oo. It follows that the probability
of self-intersection of a d-dimensional directed random
loop (given by lim„~ 1 —2T /S„) equals 1 for d &{d) (d)

3. However, for d ) 3 it is strictly smaller than 1 and
approaches zero for d ~ oo. Therefore d = 3 can be seen
as an upper critical dimension for this problem.

For d = 2 the solution can clearly be expressed as a
qFi hypergeometric function, but we have already given
the solution in terms of simpler algebraic functions.

For d = 3 the difFerential equation can be rewritten
as Heun's equation [8], a generalization of the 2Fi hy-
pergeometric equation to the case of four, rather than
three, regular singular points. The definitive work on
Heun functions is by Snow [9], but further and more re-
cent applications can be found in [10]. We denote the
solution as

-2(1 —8x)
g(x) =

x(1 —4x)(1 —16x)'

and hence [ll] its solution can be expressed in terms
of the two linearly independent solutions Yj, Yp of the
second-order differential equation

Y"(*)+f( )Y'(*)+g( )Y( ) =o (19)

4(x ) = [ (4& si z& 2 » 2i )] (20)

and that the singularities at all four regular singular
points are square-root branch points.

To proceed further, we note from Snow (Eq. VII.15)
that the Heun functions can be analytically continued,
so that

Zs (to ) = F( si, —s, 1, 1, 1, 1; iU )
tD

s'I 4) 1 ) 'I ) g i)9

(»)
Joyce [6] has shown that this Heun function is related

to the simple-cubic lattice Green function

1
P(z) =— dx] dx2dx3

1 —
s (cos zi + cos x2 + cos xs)

(22)

as Z = AYi +BYiY2+CYz. This second-order differen-
tial equation can also be written as the Heun differential
equation, and so, after matching the arbitrary constants
A, B,C to the boundary conditions, given by the first
terms of the generating function, we find

Zs(x ) = F(s, —s, 1, 1, 1, 1;x ) (16) through

in the notation of Snow. (This notation becomes trans-
parent if compared to the Riemannian representation of
the differential equation, and is an obvious generalization
of the hypergeometric notation. ) The singularities are all

F(s, —4, 1, 1, 1, 1;xs)

= [&(&)]~(1—-', ») 4(1 —*i)'(1—-'») ' (23)
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where

9m

9~2 1

X]
X2 =

)xl —1

=1 X2 1 X2= —+ ——— (1 —x2) 1 ——,
2 4 2 4

(24.)
(24b)

1 x 1 X
zi = —+ ——— (1 —x)

2 6 2 g

and x = t~. Also

(24c)

2 =1 X2 1 1 1

k~ = —+ —(4 —x2) & ——(2 —x2)(1 —xq) &

2 4 4
(26)

and K(k) is the complete elliptic integral of the first kind.
Hence we conclude that

Zs2(io ) = — (1—9io ) '(1—w ) 'K(k+)K(k ),

(27)

where the argument of the complete elliptic integral is
given implicitly as a function of io through Eqs. (22) and
(24), and so Gs(x ) follows immediately from (27) and
(5).

Similarly, for d = 4, the Heun function can also be
transformed (Snow, VII.13) to give

4(*') = [ (4, —s, —, 2» 2
')]'

= [F(4, —2, 2, 2, 1, 2, 16x )]
4= —K(k+)K(k ), (28)

where k+~ —
2 + 8x (1 —4x ) & —

2 (1 —8x )(1 —16x ) &.

Note that Z4(x ) is simply related to the lattice Green
function for the face-centered-cubic and diamond lattices,
as [6]

3 l ' f2)'
P(t) =

[ 1 ——xi [ (1—xi) [
—

[ K(k+)K(k ),4 ) &~)

(25)

where

- 2

(29)

and

P(z)diam = [F(4~ 2i 2 ~ 2 ~ I~ 2 I )] (30)

Finally, Q4(x2) follows immediately from (28) and (5).
For d ) 4 the theory of generalized hypergeometric

functions with five or more regular singular points is not
known to us, though the full singularity structure of the
diEerential equations is clear from (12d) and (12e).

Thus we have explicitly solved the problem of stair-
case polygons in dimensionality d & 4. For d ) 4 a
Fuchsian differential equation with transparent singular-
ity structure is given for d = 5 and d = 6, and is read-
ily constructable for other values of d. We have found
an unexpected connection between the generating func-
tion for multinomial coefFicients in d = 3 and d = 4 and
Heun functions, and hence between multinomial coefB-
cients and lattice Green functions and complete elliptic
integrals of the first kind. Since the complete elliptic in-
tegral can be expressed as an ordinary hypergeometric
function, an additional connection between these Heun
functions and the hypergeometric function can also be de-
duced. Additional connections with the generating func-
tion for random returns to the origin —a closely related
problem —with lattice Green functions and with lattice
dynamics can be deduced from the work of Joyce [6].

This connection becomes clearer if one considers the
fact that the projection of a d-dimensional directed walk
along the directed axis leads to a restricted random walk
on a hypertriangular lattice in d —1 dimensions. Thus
d-dimensional staircase polygons can be interpreted as
(restricted) random returns on such a lattice [12].

We note that the critical exponents of the staircase
polygon model are clearly rational for all dimensionality.
Whether this is true for more realistic systems for d & 2,
or whether it is due to the simplicity of the model remains
a tantalizing open question.
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