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Two-dimensional avalanches as stochastic Markov processes
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A theory is proposed to describe two-dimensional avalanches in granular materials. The theoretical
framework is based on a set of experiments in which avalanches are generated intermittently by means of
a rotating drum. From measurements of the instantaneous average angle of the free surface, e(t), the
relevant quantities that characterize avalanches, such as critical angles and times, are found to be given

by distributions. It is then shown that e(t) is a stochastic Markov process. Consequently, a master
equation is constructed for P(a, t), the conditional probability that the slope is n, at time t, given an ini-
tial state. Finally, a consistency test is carried out, finding full agreement with the experimental data.

PACS number(s): 05.40.+j, 46.10.+z

The history of a steady state punctuated by abrupt ca-
tastrophic events is the generic feature that excites in-
terest in the study of avalanches. These can be viewed as
prototypical of a class of extended nonlinear systems
[1—3] for which a variety of different theoretical treat-
ments has been developed to describe their evolution
[3—14]; most of these approaches are in some sense mi-
croscopic descriptions, since they follow the motion of in-
dividual grains. A macroscopic theory to describe some
of the coarse features, leading eventually to a formulation
of the appropriate constitutive relations for granular ma-
terials, is still the subject of considerable research
[11—14]. A successful application of an approach similar
to the one presented here is on long-term earthquake pre-
diction [15].

In this Rapid Communication we present a general
theoretical approach to describing the evolution of two-
dimensional (2D) avalanches as a stochastic process. The
theory stems from experiments that focus on the instan-
taneous (average) angle of the free surface of the system,
a(t), without considering the microscopic degrees of free-
dom explicitly. The observations lead in a natural way to
a description in terms of distributions and probability
densities. Further analysis shows that avalanches are
such that a(t) is a stochastic Markov process, and as a
consequence the evolution of the system can be described
by a master equation [16]. One of the virtues of this level
of description is that it provides a solid basis for a fully
macroscopic theory, while incorporating the sensitivity
to microscopic configurations characteristic of granular
media.

Experiments and simulations. The experimental setup
consists of a horizontal rotating acrylic cylinder, which is
half-ulled with granular material, similar to that used by
other authors [14,17—19]. We used spherical glass beads

of even size with diameter d (3 mm) and a density of 2.34
g/cm . The length of the cylinder is such that no more
than one layer of beads can be placed between the two
faces of the cylinder. With this arrangement, the system
can be considered as two dimensional, since all Aows take
place on a vertical plane. Although the effect of the walls
is hard to quantify, it is systematic throughout the experi-
ments; moreover, there are studies that indicate that the
lateral walls play a minor role [20]. The system is small
in the sense that the diameter ratio s =D/d, where D is
the cylinder's diameter, is varied between 50 and 150.

The cylinder was rotated with a constant and low an-
gular velocity (0) in order to have a clear separation be-
tween the average time between avalanches (5t ) and the
average duration of an avalanche (5r); typically, the
time scales involved were 10 min for I/O, 20 sec for 5t,
and 1 sec for 6~. This way the system was far from the
"fluidization" regime [14,21]. All the experimental data
that are reported here correspond to the case s =50 and
0=0.6'/sec.

The front face of the rotating cylinder was continually
registered with a video camera. Automatically, and in
real time, a frame was taken, digitized, and an average
angle was determined by a least-squares fit, using the pix-
els that constitute the free surface; each value of n took
0.5 sec. In this way we were able to measure a(t) with a
1.5% error. Figure 1 shows part of the time series of
3338 avalanches analyzed here.

As can be seen from Fig. 1, after the termination of an
avalanche there is a "loading" time interval 5t, during
which a(t) increases steadily with II, until the system
reaches an (instability) angle P, from which the next
avalanche of short-duration occurs.

From a(t) we extracted the following information:
g(P), the distribution of angles P at which avalanches ini-
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avalanche proper is a fully dynamic stage where collision-
al processes are determinant. This should be an impor-
tant point in understanding avalanche dynamics.

We also determined P(a, t;txo)= P—(a, t), the normal-
ized probability distribution that the system takes the an-
gle a at time t, given that initially the angle was ao,' and
P, (a), the stationary, or long-time limit, of P(a, t). The
sequence in Fig. 5 illustrates the fast time approach to the
stationary value. In Fig. 5(a), P(ct, t) is determined after
a time equal to half the average time between avalanches
( ( 5t ) l2 ); the large peak corresponds to those cases in
which an avalanche has not yet taken place, and the an-
gle has grown steadily with At. In Fig. 5(b), the time is
2( ot ); in the majority of the cases at least one avalanche
has taken place and in very few, one is yet to happen.
Figure 5(c) is the "infinite time" probability distribution;
P(a, t) remains unchanged after 5(5t ), as the system has
"forgotten" the initial state. In what follows we shall be
concerned essentially with the stationary case.

Theoretical treatment. Supported by the experiments,
we assume that a(t) constitutes a stochastic Markovian
process. A direct consequence is that P(a, t) satisfies the
Chapman-Kolmogorov equation. An alternative and
equivalent formulation is given by the following master
equation [16]:

+A P(a, t)
a
Bt Bo.

vian nature of the avalanche processes, we also showed
that the loading and the discharge mechanisms are in-
dependent. Consequently, we can write

W(a, a') =y(a)Qo(a')+C(a, a'), (4)

g(a)=c, 'P, (a)Qo(a), (5)

where c& is a normalization constant. Note that c& is the
average number of avalanches per unit time; in a given
experiment, it is precisely the total number of avalanches
divided by the total observation time (t,b, ))fit).

Using Eq. (2) for the stationary case and substituting
Eqs. (3)—(5), we have, after one integration,

where C(a, a') stands for the correction implied by the
evident fact that avalanches must terminate at a lower
angle than the one at which they are initiated (a') a).
As an approximation, we neglect the corresponding
correlation so that the kernel W(a, a') becomes com-
pletely factorable. Incidentally, this correlation is
rejected by the small overlap between the distributions
g(a) and y(a) (Fig. 2).

Also, we note that we have experimental access to the
normalized distributions of initiation angles g(a) and
final or termination angles y(a). The former is equal to
the probability that the system reaches an angle tz, P, (a),
times the probability per unit time that an avalanche is
initiated with this value, Qo(a); that is,

= f [ W(a, a')P(a', t) W(a', a)P—(u, t)]da' . (2)
0 P, (a) —P, (0)= f da'[y(a') —g(a')] . (6)

W(a, a ) is the transition probability per unit time that
the system whose angle is o.' evolves by way of an
avalanche to the final angle a. The presence of ABIBa in
the streaming operator stems from the fact that the angle
increases steadily in time due to the rotation of the sys-
tem. We define Qo(a) as the probability per unit time
that a transition (avalanche) begins at an angle a:

Qo(a)= f W(a', a)da' . (3)

The next step, a crucial one, is to verify that the system
is correctly described by the master equation, Eq. (2). In
view of the fast approach to the stationary distribution
(Fig. 5), we concentrate on the latter.

To proceed we must give a prescription for W(a, a').
To do so, we note that together with showing the Marko-

We now proceed with a consistency test between the
proposed theory and the experiments. Since we can mea-
sure all the quantities involved in the above equation,
with no adjustable parameters, we can numerically evalu-
ate both sides. The comparison is shown in Fig. 6. The
agreement justifies the approach we have followed, ex-
pressed in Eq. (2), at least in the stationary case, as well
as the approximation introduced upon factoring the ker-
nel.

Remarks. The two-dimensional experimental arrange-
ment we have used allows for a systematic and precise
procedure to determine the values of the mean angles.
Also, it offers the possibility to measure directly the in-
stantaneous local grain densities; we found that there are
only scattered domains of local order, separated by dis-
clinations, voids, and random 2D packing regions, as op-
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FIG. 6. Experimental test for the master equation, Eq. (6):
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posed to the crystal-like arrangement one might expect.
This structure, of short-range order and long-range disor-
der, is reminiscent of glassy materials [11]. The random-
ness we have found is in part a reAection of this disorder.

Figure 1 illustrates one particular feature that is sel-
dom emphasized in the literature; namely, that there is
considerable dispersion in the angles of initiation and ter-
mination of avalanches. Following Coulomb [23], there
has been a tendency to assume that there is a unique criti-
cal angle that controls both the initiation and the propa-
gation of avalanches. In fact, these systems were expect-
ed to have some features of self-organized criticality
[4]; that this is not the case has been already noted [24].
At first sight it appears that our analysis is consistent
with a second class of observations and models
[14,18,19,25,26—28], which presume that such systems
have two critical angles: one associated with the initia-
tion of an avalanche ({()) and another associated with its
termination (8). We believe that the Iluctuations in the
values of the angles of avalanche initiation and termina-
tion are a fundamental property of the system, and must
be described in terms of distributions. The nonunique-
ness of 6 and P is a consequence of a strong dependence
of the system's evolution on details of the microscopic

configuration [13]; this sensitivity is included in the sto-
chastic treatment. This dependence, together with size
and boundary effects, is incorporated into the, not yet ful-
ly understood, structure of the transition probability ker-
nel W(ct, tz').

Concerning the size, we found it instructive to deal
with rather small systems, since in this case statistical
fluctuations tend to be enhanced, providing insight into
the nature of the dynamics, which may not always be ap-
parent in a larger system; furthermore, end or size effects
can readily be explored [14,19,25,29]. We have repeated
the experiment with larger systems (s =100, 150); while
the distributions themselves are slightly modified, being
displaced and narrower, none of the principal features of
the experiments reported here is modified.

Finally, we speculate that the generalization to three-
dimensional inhomogeneous systems will not change the
essential points of our analysis. That is, the master equa-
tion should remain an appropriate description for a wider
class of dry and smooth granular materials.
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