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Random walks on random systems:
Eigenspectrum of large Markov matrices
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We study the eigenvalue spectrum of the hopping transition probability matrix W for the random
walk in randomly diluted clusters, both in critical and weak dilution. We obtain. the relations between
the spectrum in the limit where the eigenvalue IAI -+ 1 and the long-time behavior of the velocity
autocorrelation function and mean probability of the random walk to return to the starting point
after t steps by scaling and by numerical diagonalization of R'.
PACS number(s): 05.40.+j, 05.50.+q, 64.60.Fr

The random-walk problem is encountered in many
physically interesting situations, including transport phe-
nomena such as electrical conduction [1], the Brownian
motion of a tagged particle in fluid [2], and the conforma-
tional statistics of macromolecular chains [3,4]. Particu-
larly interesting in this connection is the case where the
random walk is constrained to a disordered medium, e.g. ,
electrical conduction in a random mixture of good and
poor conductors [5], fluid flow through a porous medium,
or information fiow through randomly flawed network.

On the one hand, the random walk confined to a crit-
ically disordered medium (a fractal [6]) executes anorna
tous diffusion [7], and on the other hand, if the disorder
is weak, a long-time tail appears in the velocity autocor-
relation function as for the so-called Lorentz gas [8, 9]. In
the past, these different regimes were studied mostly sep-
arately using rather different approaches and techniques.
In this Rapid Communication, we focus on some quanti-
ties that are ideally suited for studying the two regimes
from a unified point of view. The key is the spectral
properties of some Markov matrices [10] that describe
the disorder and kinetics of the particular problem at
hand.

We model a disordered medium in the simplest possible
way using a randomly site-diluted lattice in two and three
dimensions. If each site is removed as inaccessible to the
random walker with an independent probability 1 —p,
then the remaining sites of the lattice can be grouped
into connected components (defining connection through
nearest-neighbor bonds between remaining sites) called
clusters, using the terminology of the percolation prob-
lem [11].For p greater than the percolation threshold p„
there will be one indefinitely large cluster (in addition to
finite ones); this cluster will be used as the model disor-
dered medium in which to study the random walk that
hops from a site to one of its nearest neighbors at each
time step. At p = p„ the infinite cluster is incipient in
that it is just at the point of breaking up into many finite
clusters.

First, the transition probability matrix W is con-
structed where the element W,s is simply the probability
for the random walker to jump from site j to site i in a

given time step. The size of the matrix is S x S (S be-
ing the cluster size); an infinite cluster may be effectively
represented either by a truncated large cluster or by us-
ing periodic boundary conditions. W is random since a
nonzero entry corresponds to a nearest-neighbor connec-
tion in a randomly created percolation cluster, and it is a
Markov matrix [10] since the sum of the elements (each
of which is non-negative) in each column is exactly 1. The
kinetics of the random walk is represented in the hopping
probability W~s. In this Rapid Communication, we are
mostly interested in the btind ant [12] k-inetics in which
all off-diagonal nonzero elements W,s = 1/z (where z is
the full coordination number of the lattice) and where the
remaining diagonal elements are such that each column
adds up to 1.

Since R' contains all the information on the geometry
of the cluster and the kinetics of the random walk, we
expect to be able to extract any information on the be-
havior of the random walk at a discrete time t from the
properties of this matrix. One way to obtain the behavior
of, say, the velocity autocorrelation function would be to
calculate the expectation values of R ~ in suitable states
explicitly [13—15]. However, more insight is provided by
looking for the relationship between the intrinsic spectral
properties of W and that of the random walk described
by W.

For the Markov matrix W satisfying the detailed bal-
ance condition when applied to a positive-definite sta-
tionary state, all eigenvalues A are real [16] and between
—1 and l. As we will explicitly determine, the density
n(A) of the eigenvalues has a power-law behavior in terms
of ]

ln IA]] in the limit of ]A] —+ 1, and this behavior can be
related directly to a physical quantity in the time domain
[17].

To see this in a simple way, consider for integer time
step t,

T W'—= S(t)S=) X'.

The quantity P(t) is simply the mean probability of the
random walk to return to the starting point in t steps,
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if the initial distribution is uniform over the cluster. For
large t, only A near kl contribute significantly to P(t).
For a blind ant in general and for a myopic ant (which
avoids attempting to step into vacant sites) in media
that are not bipartite (i.e. , that do not decompose into
two equivalent sublattices connected by nearest-neighbor
bonds), the spectrum for A ( 0 is relatively insignificant
(no A = —1 and no buildup near —1). For a myopic ant
on a bipartite cluster, the spectrum is symmetric about
A = 0. Thus, the right-hand side of Eq. (l) can be re-
placed by P& i A' for the long time behavior. Then,
upon inverse Laplace transforming Eq. (l), we obtain for
small ~

27ri
i(cu —

f
ln A))t (2)

= ) b(cu —
] ln Al),

where (1) has been continued analytically to the complex
plane and I' is along the imaginary axis.

The quantity on the right is the density of the eigen-
values A in the space of w =

l
lnAl, and for A near 1,

it is essentially equal to n(A). Since P(t) has in general
an asymptotic power-law decay in time [12], Eqs. (1)—(3)
then imply that P(t) corresponds to the Laplace trans-
forrn of n(A) in the variable

l

ln Al (for large t, and thus
for A ~ 1). Thus the following scaling relation between
the leading power laws is obtained:

n(A)
l

lnAl* -::-P(t) t *
(4)

Let us note that the Laplace connection between P(t)
and n(A) is a direct analog of the technique known as the
equation-of-motion method, used, e.g. , in the calculation
of the electron density of states for oxides with defects
[18]. In that case, the trace is applied to the time evo-
lution operator e ' ~", giving the density of states for
the quantum-mechanical system with random defects.

Moreover, when we note the equivalence [19] between
the diffusion and the lattice vibration problems, it be-
comes clear that, for p„ the relationship discussed above
is essentially the same as that discussed by Alexander and
Orbach [20] in introducing the so-called fracton regime of
the fractal lattice vibrations. Thus the fracton density of
states corresponds to the density of the eigenvalues of
W at p„and the verification of Eq. (4) by the explicit
calculation of n(A) amounts to verifying the underlying
assumption in the fracton problem that the equivalence
works even for the (randomly) diluted geometry. Above
p„ the analogous correspondence is between the phonon
density of states and the eigenvalue density of W.

Returning to the random walk, since the long-time be-
havior of P(t) is the same for both blind and myopic ants,
the eigenvalue density n(A) must also behave in the same
way as A ~ 1. At critical dilution p = p„P(t)
(where d, is the spectral dimension of the percolation
problem), resulting in n(A) l

ln Al"*/ . For weak dilu-
tion (p ) p, ), we have the usual Lorentz-gas regime with
asymptotically diffusive behavior P(t) t +2, which
leads to n(A)

l
lnA!"/, Note that this implies the

saturation of eigenvalue density for d = 2 and indeed

~(A) - llnlAII" -::-1&v(t) v(O))l (5)

wi'h y = d, /2 —1 for this case. The function vr(A) is

TABLE I. Exponent x for n(A). Estimates at p, are for
the blind ant, and numerical values for d, are from Ref. [12].

d This work (p = p, ) d, /2 —1 (p = p, )
—0.35 + 0.01
—0.35 + 0.01

—0.347 + 0.013
—0.336 + 0.003

d/2 —1(p) p.)

0

a power-law decrease for d = 3 as A ~ 1. It is inter-
esting to note that the study of the crossover from the
anomalous difFusion to Lorentz gas regimes corresponds
to that from the fracton-to-phonon regimes in the lattice
vibration problem [21]. In Table I, the values of x are
summarized for d = 2 and 3.

These results have been checked by calculating n(A)
using a numerical method to approximately diagonalize
the matrix W. In this method [16,22], a relatively small
square matrix of typically 300 rows is first constructed
from the much larger matrix W (of typically several thou-
sand to 15000 rows). Then this smaller matrix is ex-
actly diagonalized. This corresponds to obtaining ap-
proximate eigenvalues A and eigenvectors vg in the sense
that (W —AI)vp is only orthogonal to the basis vectors
of the subspace chosen. In this way, about 200 of the
largest eigenvalues and their eigenvectors are determined
to six digit accuracy.

The square-lattice results in Fig. 1(a) have been ob-
tained for the percolating cluster formed on a 100 x 100
grid with periodic boundary conditions averaging over
750, 1000, and 400 clusters for p = 0.593 (= p, ), 0.75,
and 0.90, respectively, all for the blind ant. The partic-
ular fit line shown at p, has a slope of —0.357, while the
lines to guide the eye for p = 0.75,0.90 have a slope of
about 0.027,0.052, respectively. The corresponding slope
for the myopic ant at p, is nearly the same (0.37j0.01)
as for the blind ant, as expected, but the data are not
shown to avoid overcrowding in the figure [23]. The sim-
ple cubic lattice results in Fig. 1(b) have been obtained
for the blind ant on the 30 grid with periodic boundaries
averaging over 449 and 100 clusters for p = 0.312(= p, )
and 0.50, respectively. The fit line shown here at p, has a
slope of —0.35 and the line to guide the eye for p = 0.50
has a slope of about 0.44. Again the corresponding slope
for the myopic ant at p, is also about —0.35, as it should
be, but those data are not shown [23].

The agreement with the scaling predictions is excellent
at p, for both the square lattice and the simple cubic
lattice. For p & p, only qualitative agreement may be
concluded. Clearly, the density n(A) does not build up
as A ~ 1, as it does for p„but the oscillations (not
statistical fluctuations) are much too great to accurately
fit for a power law.

It was recently pointed out [16] that the long-time be-
havior of the envelope of the oscillating velocity auto-
correlation function for the myopic ant on the bipartite
cluster at p, can be related to the A —+ —1 behavior of a
certain function vr(A):
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1O' TABLE II. Exponent y for n (A) of the blind ant. Numer-
ical values for d from Ref. [12].

10 0.30 + 0.01
0.46 + 0.01

0.30 + 0.01
0.46 + 0.03
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anomalous diffusion exponent y = 1 —2/d applies in
Eq. (5) [12, 13]. Similarly, for p ) p„where the veloc-
ity autocorrelation decays as t +, we would expect
vr(A) ~ ~lnAi /2. In Table II we summarize the values
of y for the blind ant. Even for the myopic ant on a
bipartite cluster, the center line through the oscillating
autocorrelation function behaves much like the autocor-
relation for the blind ant, and the eigenvalue spectrum
near A = 1 is very similar to that of the blind ant.

Plotted in Fig. 2 are the numerical results obtained by
the same approximate diagonalization of the matrix W
as for n(A). The number of clusters used for averaging
is 400, 250, and 200 for p = 0.593, 0.75, and 0.90, re-
spectively for the square lattice in (a), and 199 and 100
for p = 0.312 and 0.50, respectively for the simple cubic
lattice in (b). Otherwise the parameters of these data are

10 I I I ~ llll/ I l I I II«/ I I I I IIII/ I l l I ill+

10
1O-' 10 10

l »llll l l l »»ll l «»»ll
1O-'

10

10

FIG. 1. Density n(A) of the eigenvalues of the Markov
matrix W' for the blind ant on the spanning percolation cluster
is shown in (a) for the square and in (b) for the simple cubic
lattice. In (a) symbols D, +, and x correspond to p = 0.593,
0.75, and 0.90, respectively, and in (b) b, and x correspond
to p = 0.312 and 0.50, respectively.
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given by

1O-4 10 10 1O-'

7r(A) :—n(A)aA(A —1),
where aA are coefficients determined when the stationary
initial distribution is expanded in terms of the eigenvec-
tors of W [13,16].

This was shown assuming that the spectrum near
A = —1 dominates the autocorrelation in the long-time
limit and therefore that the Laplace transform type rela-
tionship exists between the leading behavior of m (A) (as
A ~ —1) and that of the velocity autocorrelation func-
tion (as t ~ oo). Although it was discussed only for the
myopic ant problem at p„such a relation can in fact be
generalized.

For example, for a blind ant, n(A) builds up anoma-
lously at p, as A —+ 1 as discussed above, and the re-
sulting power-law behavior of m(A) dominates the auto-
correlation in the long-time limit. Thus, in this case, the
velocity autocorrelation does not oscillate in sign (rather,
always negative, representing the cage efj'ect), and the
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FIG. 2. The function lr(A) corresponding to each of the
cases in Fig. 1 is shown. Symbols correspond to the same
cases.
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the same as for Fig. l. In (a) the best-fit line for p, has
a slope of 0.30 and the lines drawn to guide the eye for

p = 0.75,0.90 have a slope of about 0.95,1.2 respectively.
In (b) the best-fit line for p, has a slope of 0.46, while
that for p = 0.50 has a slope of 1.65.

Clearly, the discussion above for Eq. (5) is consistent
with the data. Furthermore, we can see that the crossover
from p, to above p, progresses as vr(A) in the region of A

close to 1 first breaks away from the p, result, and then
the newly formed region of the Lorentz gas regime in-
creases in size as p is raised further. This is accompanied
by the overall decrease of ~, as the velocity autocorrela-
tion is much smaller for the Lorentz gas regime than for
the anomalous diffusion regime.

In conclusion, we have presented the scaling relations

between the properties of the spectrum of the Markov
matrix W and the velocity autocorrelation and mean
probability of the random walk to return to the starting
point. These relations are confirmed numerically, which
may be interpreted to verify the equivalence of the difFu-

sion and vibration problems on the randomly constrained
geometry.
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