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We propose a self-consistent treatment of the Kardar-Parisi-Zhang equation in d dimensions, in order
to calculate the dynamical exponent z and the roughness exponent y, and also amplitude ratios and sub-
leading corrections. We assume that the dynamics of each mode is purely exponential, and find agree-
ment with known results in d = 1 and 2. For d & d* =2.85, however, none of our solutions is compatible
with this assumption. Our method is distinct from, but akin to, the one recently proposed by M.
Schwartz and S. F. Edwards [Europhys. Lett. 20, 301 (1992)].
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The Kardar-Parisi-Zhang equation [1] has attracted
quite a lot of attention in recent years, not only because
of its connection to a variety of important physical prob-
lems (growth, interface dynamics, polymers in random
media, and many others), but also because this equation
is thought to retain —in a simpler form —some of the
features of notoriously difFicult problems such as tur-
bulence or spin glasses. In its native version, the KPZ
equation [see Eq. (1) below] is a nonlinear diffusion equa-
tion driven by an external white noise. The main point is
to understand how the short-wavelength noise interacts
with nonlinearity to give rise to anomalous statistics at
long wavelengths.

As usual, the dimension d of space plays a crucial role.
From perturbation theory, it is easy to see that when
d ~2, nonlinearity is "relevant" in the sense that the

statistics at large times and length scales must strongly
depart from that of the linear equation [1,2]. In fact, in
d = 1, many exact results are available and numerical re-
sults quite easy to obtain, so that most aspects of this
problem are well understood [3—6]. In d )2, perturba-
tion theory is well-behaved, which would normally mean
that the linearized "mean-field" results should hold. Nu-
merical simulations, however, suggest that for su%ciently
large noise or nonlinearity one enters a "strong-coupling"
regime again characterized by anomalous exponents [7].
One major problem is to compute these exponents, and to
estimate the upper critical dimensionality d, (if it exists),
above which mean-field values are recovered. Numerical
simulations [7] and some scaling arguments [8] suggest
that d, = ~ (where the situation is again well understood
[9]), while other works, based on the functional renormal-
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ization group [10], Flory arguments [11], or variational
replica calculations [12] claim d, =4 or d, =2. The ex-
istence of a finite d, is supported by a 1/d expansion [13]
(see, however, [14]),and an argument based on a compar-
ison with directed percolation suggests that d, ~ 4 [15].

The aim of this Rapid Communication is to propose a
self-consistent treatment of the perturbation expansion
(much in the same spirit as the "self-consistent screening
approximation" to critical phenomena [16,17]), which
suggests the existence of a Anite critical dimension. Al-
though by no means exact, this procedure at least pro-
vides an interesting scenario of what could happen in
reality. For d =1, we recover some of the known exact
results. For d =2, we find nontrivial solutions to our
equations, which compare satisfactorily with other esti-
mates. For d ~2.85, however, we find there is no solu-
tion compatible with our simplifying assumption that
each mode decays exponentially [see Eq. (4) below].

The validity of our approach is dificult to assess, but
certainly the method would be totally unreliable if the
conclusions were found to heavily depend on the details
of the self-consistent closure scheme. An alternative path
has been very recently followed by Schwartz and Ed-
wards [18]: they propose a "variational" treatment of the
Fokker-Planck equation (see, e.g. , [19]), which leads to
equations very similar to, but distinct from, our own,

which they investigate in d =2. We have solved their
equation in higher dimensions and the conclusions of
both approaches are very similar —although in fact both
approaches ultimately rely on the same assumption for
the mode dynamics.

We shall consider the KPZ equation, describing, e.g. ,
the evolution of the height h(x, t) of a growing surface
under the inAuence of surface tension, noise, and non-
linearity

c)h (x, t) =vo V' h ( x, t ) +—[V h( x, t ) ] + i) ( x, t ),
where x is a d-dimensional vector and g(x, t) a Gaussian
white noise. Here vo is the "bare" surface tension and X
measures the strength of the nonlinearity. The perturba-
tion theory (in A.} has been fully worked out in Refs.
[20,2]: one can set up diagrammatic rules for obtaining
three important quantities, which are the renormalized
propagator 6, the renormalized noise correlator D, and
the renormalized nonlinear interaction. Defining (in
Fourier space) G(k, co) =—(c)h (k, co)/Bq(k, co)) (where ( )
means averaging over ii) and (h(k, co)h ( —k, —co) )

D2( ken)G(k, co) G(
—k, —co), and denoting by Go and

Do the corresponding "bare" quantities, one obtains the
following expansion to lowest order (see [20,2] for full de-
tails):

X(k, co) = Go '(k, co) —G '(k, co)

= —2A, f f d [q (k —q))[q k]G0(k —q, co —Q)GO(q, Q, )GO( —q, —fl)DO(q, Q)
dn d'q

(2)

and

dd
D(k, co)=DO(k, co)+A, f f [q (k —q)] Go(k —q, co —0)

2m (2~}d

XGO( —k+q, —co+A)GO(q, Q)Go( —q, —Q)DO(q, Q)Do(k —q, co —fl) .

The "vertex" correction to A, can be shown to be zero at long wavelengths, due to a "Galilean" invariance of the KPZ
equation [20,2] [i.e., that an additional convection term in Eq. (1) can be removed by tilting the interface].

A natural self-consistent closure of this expansion is to retain only the above lowest-order terms, but replacing every-
where the "bare" quantities by the renormalized quantities [4,5]. We shall furthermore assume that, in the small-co,
small-k region,

G '( kco) =9 'k r '(vk' i co), —

D(k, ai) =2)k

(4)

where Q, 2) are constants and vk' is an effective, scale-dependent surface tension. Equation (4) assumes that the re-
laxation of each mode is exponential. Directly from Eq. (1), one can show that j(de/2~)G(k= o)=1, which im-

mediately gives y =z and 9=1. The exponent z is the usual dynamical exponent, while p is related to the "roughness"
exponent g through

["(x, t) —h(y, t)] =4f f d [I —cosq'(x y)]IG(q Q)l D(q Sl):—~lx yl z .
(2~)

(6)

Hence p=d+2g —z. Similarly, one finds that the time
evolution of the height is described by
[h (x, t) —h (x,O)]'=Bt'~'.

Let us focus on the zero frequency limit of Eqs. (2) and
(3) and examine the small-k behavior of X(k, co=0) and

D (k, co=0) (we shall now drop the frequency argument).
To leading order, one Ands

A.2'y(k) — k d +4—3r —Pl
V2
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p=d +z +4g —4, (9)

leading to the exponent relation z =2—y, which has also
been found from more general arguments [3,2]. The con-
dition for the convergence of I then reads z & 2 or g & 0.

Turning now to the equation for D(k), we find, provid-
ed p) 0 [21], the following results: 2)=(A, 2) /v )J,
where J is given by

and

( —,
' —u ) I —,'1 —uf

' "I—,'1+uf
2~" —,'1 —u '+ —,'1+u '

p=d +4+z —4z .

(10)

(9')

The exponent equation (9') is exactly the same as the one
obtained from the equation on X, Eq. (9). Hence it is the
prefactors which constrain the possible values of z and g
through the following compatibility condition:

It is interesting to note that the same scenario of dupli-
cated exponent equations occurs in the "self-consistent
screening approximation" in critical phenomena [16,17],
where it is also the prefactor equation which fixes the
value of the critical exponents. It turns out that the ine-
qualities needed for our equations to hold are always
satisfied in the relevant region, d ~ 2 and z & 2. They are
also satisfied in d = 1, since one may check that z =

—,
' and

y= —,
' solve Eq. (11}:one thus recovers the exact result in

this case [4,5, 18]. [In fact, although Eqs. (4} and (5) are
only approximate, the self-consistent versions of Eqs. (2)
and (3) are exact in d = 1 [5].]

In fact, our final equation (ll), together with the sum
rule z +y=2, is extremely close to the one obtained by
Schwartz and Edwards [18]; the only difference is in the
denominators of Eqs. (8) and (10), which read in their
case: [1+ I —,'1 —u I'+

I —,'1 —u I'], instead of simply

[ I
—,
' 1 —uf'+

I —,
' 1+uf']. One should note that precisely the

same diA'erence exists between Edwards's theory of tur-
bulence and the "direct interaction approximation" of
Kraichnan [19]. The present approach to the KPZ equa-
tion is perhaps slightly more direct than that of Schwartz
and Edwards and the appearance of the compatibility
condition [Eq. (11)]is (to our eyes) more transparent.

A numerical solution of Eq. (11} in d =2 leads to
z = 1.74, very close to the result found in Ref. [18],while
the numerical simulations or other approaches suggest
z=1.6—1.7 [7,10,11]. However, when d is increased

where I is given by

( —,
' —u )( —,'+u. 1) I —,'1+ufI=

2~ "
—,
' 1 —u '+ —,

' 1+u '

(1 is the unit vector along k). Equations (7) and (8) impli-
citly assume that d +2—2z —p (0 (for I to be conver-
gent) and hence that X(k)/k diverges for k ~0. We may
therefore identify X(k) with the right-hand side of Eq.
(4) (setting co=0) from which we obtain 3z=d+4 —p,
and v =A, 2)I. Using the definition of y above, we then
determine p as

from 2, z increases and reaches its mean-field value z0 =2
for d =d* =2.85 (or d" =2.78 for the Schwartz-Edwards
equation). Beyond this dimension, no solution satisfying
z & 2 is found within this scheme.

A more stringent test of the theory lies in the value of
the prefactors 3 and B. It is however clear that the value
of (say) v [ defined in Eq. (4)] cannot be fixed within the
present scheme [22]: this would require one to solve the
self-consistent equation in the full k range, rather than
just for k~0. But, as noticed in Refs. [5,6], the com-
bination 8 =B/A 'k ~ ' is a pure number, independent
of the value of v. In d =1, we find 3 =4.69(v/A. ) and
R =0.52, while simulations give R =0.71 [6], and the ex-
act solution of Eqs. (2) and (3) gives R =0.69. This shows
that our simplifying assumptions [Eqs. (4) and (5)] are not
particularly accurate. For d =2, we find R =0.81 and
2 =13.7(v/A. ) .

An interesting question for which our theory provides
an answer lies in the nature of the subleading terms. We
find. that

[h(x, t) —h(y, t)] =Afx —yf z[l+Cfx —
yf + .

where b, =y, and C can be calculated if v is known [23].
This form of the subleading correction is not the one as-
sumed previously in the analysis of numerical results
[7,6], where b. =2y was used.

We have thus developed a self-consistent approach to
the strong-coupling fixed point of the KPZ equation,
which is very similar in spirit to other self-consistent ap-
proaches to turbulence or critical phenomena. Our
"compatibility" equation turns out to be very close, but
not identical, to the one recently obtained by Schwartz
and Edwards [18] and the numerical values of the ex-
ponents are also very similar. We find satisfactory agree-
ment between these values and known results in d =1
and 2. In dimensions greater than d'=2. 8, the nontrivi-
al solution (z%2) disappears, suggesting the existence of a
finite critical dimension. However, our results (and those
of Ref. [18]) rely on our very questionable assumption of
a simple pole structure of the response function G(k, co),
i.e., the purely exponential decay of each mode. It is pos-
sible that in reality this decay is violently nonexponential;
e.g., a power law, in which case the analytic structure of
G(k, co) will be very different [24]. It would be extremely
interesting to solve (numerically) the full frequency
dependent self-consistency equations with the only
assumption that G '(k, co) =k'g(co/k') and D(k, co)
=k "d(co/k'), as was done in the one-dimensional case
by Hwa and Frey [5]. This would give information on
the mode dynamics and thereby corroborate (or dismiss)
the idea of a finite critical dimension. It is not clear how
the corresponding calculation could be done within the
Schwartz-Edwards formalism: this is perhaps another
advantage of the present approach.

Tote added. Once this work was completed, we
learned that J. Doherty, M. A. Moore, and A. Bray were
working along similar lines [24].

We thank Professor Sir Sam Edwards and Dr. J. Ravi
Prakash for very interesting discussions. A very useful
discussion with A. Georges and M. Mezard must also be
acknowledged.
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