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Recently, Takayasu and Tretyakov [Phys. Rev. Lett. 68, 3060 (1992)] studied branching annihilating
random walks with n =1—5 offsprings. These models exhibit a continuous phase transition to an ab-
sorbing state. Steady-state simulations yielded an estimate for the order parameter critical exponent P
different from that of directed percolation. This result is quite surprising, as the universality class of
directed percolation is known to be very robust. I have studied the critical behavior of the one-
dirnensional model with n =1 and 3 using time-dependent Monte Carlo simulations, and determined
three critical exponents, all of which are in agreement with directed percolation.
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The study of nonequilibrium many-particle systems is
an important problem in many branches of physics,
chemistry, biology, and even sociology [1,2]. Special at-
tention has been devoted to models exhibiting continuous
phase transitions and in particular the question of deter-
mining the different universality classes. A common
feature of many models is that they contain a single com-
ponent, which we may think of as particles, and evolve
according to a Markov process governed by local, intrin-
sically irreversible transition rules; such models are col-
lectively known as interacting particle systems [3,4]. Ex-
amples are the contact process [5], a model for the spread
of an epidemic, Schlogl's first and second models [6—9]
for autocatalytic chemical reactions, surface reaction
models [10,11], directed percolation (DP) in (d + 1) di-
mensions [12—14], and Reggeon field theory [15]. The
evolution rules for these models typically involve spon-
taneous annihilation of particles, autocatalytic creation
depending on the number of occupied neighbors, and
possibly diffusion of particles on the lattice. As there is
no spontaneous creation process the state with all sites
vacant is an absorbing state for the Markov process.
These models exhibit a (usually continuous) phase transi-
tion from an active steady state to the (unique) absorbing
state when some external control parameter p exceeds a
critical value p, . The appropriate order parameter is nor-
mally just the concentration p of particles. The behavior
of the order parameter in the vicinity of p, may be de-

scribed by a critical exponent P, p ~ ~p,
—p ~~. One of the

major achievements in the study of this type of model is
the discovery that the models mentioned above have the
same critical behavior, i.e., they belong to the same
universality class. Studies of related models via computer
simulations [16—19], field-theoretic arguments [9,20], and
series expansions [21—23] demonstrate the robustness of
this universality class against a wide range of changes in
the local kinetic rules such as multiparticle processes,
diffusion, and changes in the number of components. So
at present there is substantial evidence in favor of the hy-
pothesis [8,9,20], which I will refer to as the DP conjec-
ture, that directed percolation or Reggeon field theory is
the generic critical behavior of models with a scalar order
parameter exhibiting a continuous transition to a unique
absorbing state.

During the years several models have been reported to
violate the DP conjecture. Originally it was reported
that a one-dimensional cellular automaton proposed by
Bidaux, Boccara, and Chate belonged to a new universali-
ty class [24], as steady-state simulations yielded an esti-
mate for P inconsistent with DP behavior. A study of
this model using time-dependent computer simulations
revealed that the model has DP-like behavior [25]. Like-
wise it was not clear for some time whether or not the
Zift'-Gulari-Barshad model [10] for the oxidation of car-
bon monoxide on a catalytic surface was in the DP
universality class, as steady-state simulations [26] yielded
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a value of P suggesting a difFerent critical behavior. This
question was finally settled in favor of DP behavior via
time-dependent computer simulations [11] and field-
theoretic renormalization-group arguments [20]. All this
just goes to show that steady-state simulations can be
tricky and that claims of non-DP critical behavior in this
type of model should be taken with a grain of salt.

Another candidate for a violation of the DP conjecture
is the branching annihilating random walk (BAW) intro-
duced by Bramson and Gray [27]. In the BAW a particle
is chosen at random. With probability p it jumps to a
randomly chosen nearest neighbor, and if this site is al-
ready occupied both particles are annihilated. With
probability 1 —p the particle produces n offsprings, which
are placed on the closest neighboring sites; if there is
more than one possibility for placing the offsprings, a
random choice is made. When an offspring is created on
a site that is already occupied it annihilates with the oc-
cupying particle, leaving an empty site. In one dimension
for n = 1 it has been shown [27] that the BAW has an ac-
tive steady state for sufficiently small p. Computer simu-
lations revealed that the phase transition from the active
state to the absorbing state is continuous [28]. As men-
tioned in the introduction, numerous models, including
models with multiparticle annihilation or creation rules
and diffusion [16,17,18,24], belong to the DP universality
class. BAW's with an odd number of offsprings include a
combination of such rules. One would therefore expect,
bearing in mind the robustness of the DP critical behav-
ior, that the transition should belong to the universality
class of directed percolation. Results from computer
simulations showed, however, that the exponent P differs
from the directed percolation value. Takayasu and Tre-
tyakov [28] found p =0.108+0.001 and P=0.32+0.01
which should be compared to the value

P =0.277+0.001 [21] for directed percolation in 1+1
dimensions. For n = 3 and 5 they found that
p, =0.461+0.002 and 0.718+0.001, respectively, with
P=0.33+0.01 in both cases. These results signal a rather
surprising violation of the DP conjecture. For n =2 the
model does not have an active state [29], whereas for
n =4 it was found that @=0.7(1). The even n case is
very special, as the number of particles is conserved
modulo 2; this means that the absorbing state only exists
if we start out with an even number of particles. If we
start with an odd number of particles the system can nev-
er reach the absorbing state. One might then argue that
the even n case should not be seen as violating the DP
conjecture. A model very similar to the BAW with n =2
has been studied [30] via steady-state and time-dependent
simulations, yielding non-DP values for various critical
exponents.

Determining critical behavior from steady-state simu-
lations is often very difficult due to large fluctuations,
critical slowing down, finite-size effects, and difficulties in
locating the critical point. In addition, special care has
to be taken with simulations of a transition to an absorb-
ing state, as one is studying a long-lived, but intrinsically
metastable state. In this paper I present results from
computer simulations of the one-dimensional BAW with
n =1 and 3, using an alternative approach to the deter-

mination of critical exponents. The method used is
known as time-dependent simulations. Earlier studies
[7,11,14,17,18,25,31] have revealed that this is a very
efficient method for determining critical points and ex-
ponents for models with a continuous transition to an ab-
sorbing state. The general idea of time-dependent simu-
lations is to start from a configuration that is very close
to the absorbing state, and then follow the "average"
time evolution of this configuration by simulating a large
ensemble of independent realizations. In the simulations
presented here I always started, at t =0, with two occu-
pied nearest-neighbor sites placed at the central sites of
the lattice, and then made a number of independent runs,
typicaHy 1 X 10, for different values of p in the vicinity of
p, . As the number of particles is very small an efficient
algorithm may be devised by keeping a list of occupied
sites. In each elementary step a particle is drawn at ran-
dom from this list and the processes are performed ac-
cording to the rules given earlier. Before each elementa-
ry change the time variable is incremented by 1/n(t),
where n (t) is the number of particles on the lattices at
that time. This makes one time step equal to (on the
average) one attempted update per lattice site. Each run
had a maximal duration of 2000 time steps. I measured
the survival probability P(t) (the probability that the sys-
tem had not entered the absorbing state at time t), the
average number of occupied sites n(t), and the average
mean-square distance of spreading R (t) from the center2

of the lattice. Notice that n(t) is averaged over all runs,
whereas R (t) is averaged only over the surviving runs.2

From the scaling ansatz for the contact process and simi-
lar models [7,14] it follows that the quantities defined
above are governed by power laws at p, as t ~ ~,

P(t)~t
n(t) ~ t I,
R '(t) ~ t' .

(2)

(3)

In log-log plots of P(t), n(t), and R (t) versus t we
should asymptotically see a straight line at p =p, . The
curves will show positive (negative) curvature when

p )p, (p (p, ). This makes it possible to obtain accurate
estimates for p, . The asymptotic slopes of the (critical)
curves define the dynamic critical exponents 5, q, and z.
Generally one has to expect corrections to the pure
power-law behavior, so that P(t) is more accurately given
as [14]

P(t) ~ t '(1+at '+bt '+ . ), (4)

and similar expressions for g(t) and z (t). Thus in a plot
of the local slopes versus 1/t the critical exponents are

and similarly for n(t) and R (t). More precise estimates
for the critical exponents can be obtained if one looks at
local slopes

ln[P(t)/P(t/m)]
ln(m )

and similarly for g(t) and z(t); in this work I used m =5.
The local slope 5(t) behaves as [14]

5(t)=5+at '+b5't ~+
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given by the intercept of the curve for p, with the y axis.
The ofT'-critical curves often have a very notable curva-
ture, i.e., one will see the curves for p (p, veering down-
ward, while the curves for p )p, veer upward.

Figure 1 shows the results for n = 1 and Fig. 2 the re-
sults for n =3. From the results, in particular, the curves
for g(t), I estimate that p, =0.1070+0.0005 for the BAW
with n =1 and p, =0.59+0.001 for the BAW with n =3.
These estimates for p, are consistent with the results ob-
tained by Takayasu and Tretyakov [28] within the cited
uncertainty, although the results of the present work gen-
erally favor a lower center value. From the curves closest

to p, I obtain the following estimates for the critical
exponents: 6 =0. 160+0.005, g =0.31+0.01, and
z =1.26+0.01 for n =1; 5=0.165+0.005, g=0. 305
+0.010 and z =1.26+0.01 for n =3.

The values for 5, g, and z are in excellent agreement
with the values for a lattice version of Reggeon field
theory (RFT) in one dimension as obtained by simula-
tions [7]: 5 =0. 162+0.004, g =0.308+0.009, and
z = 1.263+0.008. Series expansions for RFT [15] yielded
5=0.160+0.001 [32], q=0. 317+0.002, and z = 1.272

0.007, which again is in very good agreement with the
simulation results presented in this article. As a further
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FICx. 1. The local slopes —6{t) (upper panel), g(t) (middle
panel), and z {t) (bottom panel), for the BAW with n = 1. Each
panel contains five curves with from bottom to top p =0.1060,
0.1065, 0.1070, 0.1075, and 0.1080.

FIG. 2. The local slopes —6(t) (upper panel), g(t) (middle
panel), and z(t) (bottom panel), for the BAW with n =3. Each
panel contains three curves with from bottom to top p =0.458,
0.459, and 0.460.
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test of the consistency of the data I have used a well-
established [7] scaling relation between the exponents:

1 z5=——d —g (7)
2 2

It is clearly seen that the estimates for the BAW given
above agree very well with this scaling relation.

Takayasu and Tretyakov obtained a static critical ex-
ponent, and it may be possible that the static exponents
are non-DP, though the dynamic exponents agree with
DP. Note, however, that the scaling relation [7] P=5/v,
where v is the correlation length exponent in the time
direction, links the static and dynamic exponents. The
arguments of Ref. [7] are not rigorous but even so do in-
dicate that this possibility is small. Another major
difference between BAW*s and DP is that the critical di-
mension of the DP is known to be 4, whereas the results
of Takayasu and Tretyakov indicate that the critical di-
mension for BAW*s is 2. BAW's do not require a specific
neighboring configuration, e.g. , in the BAW with n =3 a
"creation" event always takes place with probability
1 —p, even though all three neighbors are not empty.
Effectively a creation event can lead to the creation of
three or one new particle or the destruction of one or
three particles, depending on the number of occupied
neighbors. This contrasts with most other models in
which a multiparticle creation event would only happen
if the required number of nearest neighbors were all emp-

ty. This insensitivity to the details of the environment
might explain why the critical dimension of the BAW
seems to be 2 and thus lower than the critical dimension
of DP, which is known to be 4. This situation is some-
what similar to the Bidaux-Boccara-Chate (BBC) model
[24] in which the evolution rules are also insensitive to
the detailed particle configuration. The one-dimensional
BBC model exhibits a continuous phase transition be-
longing to the DP universality class [25]. In higher di-
mensions the BBC model exhibits a ft rst order-phase tran-
sition, in agreement with the predictions of mean-field
theory [24].

All in all I conclude that the BAW with n =1 and 3
offsprings very likely belongs to the universality class of
directed percolation and thus does not constitute a viola-
tion of the DP conjecture. Given the stability of this
universality class, which is further supported by this
work, one would expect that all BAW's with an odd num-
ber of offsprings belong to the DP universality class. The
non-DP estimates for P reported by Takayasu and Tre-
tyakov may be caused by the slight misplacement in their
estimate for p, as compared to this work.
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