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1/f noise occurs in an impressive variety of physical systems, and numerous complex theories
have been proposed to explain it. We construct two relatively simple renewal processes whose power
spectral densities vary as 1/f: (i) a standard renewal point process, with 0 & D & 1; and (ii) a
finite-valued alternating renewal process, with 0 ( D ( 2. The resulting event number statistics,
coincidence rates, minimal coverings, and autocorrelation functions are shown also to follow power-
law forms. These fractal characteristics derive from interevent-time probability density functions
which themselves decay in a power-law fashion. A number of applications are considered: trapping
in amorphous semiconductors, electronic burst noise, movement in systems with fractal boundaries,
the digital generation of 1/f noise, and ionic currents in cell membranes.

PACS number(s): 05.40.+j, 02.50.—r, 72.80.Ng, 87.10.+e

I. INTRODUCTION

Noise with a power spectral density that varies as an in-
verse power of frequency is called 1/ fD noise [1—5]. 1/ f
noise is ubiquitous, occurring in many diverse environ-
ments, including resistors and semiconductors [6—8], vac-
uum tubes [9], traffic [10], and mechanical [11],chemical
[12], biological [13], and optical (photon-counting) sys-
tems [14]. Mathematical models generating continuous-
time 1/f noise include fractal shot noise [15—17], suit-
ably filtered white Gaussian noise [18], fractionally inte-
grated white noise [19], fractal Brownian motion [20, 21],
and a superposition of relaxation processes with an ap-
propriate distribution of time constants [5, 22, 23]. The
fractal-shot-noise-driven doubly stochastic Poisson point
process is a discrete (point) process that also yields 1/f ~
noise [24].

In this paper we develop two relatively simple fractal

renewal point processes (FRPs) that provide plausible
models for a number of physical and biological processes.
Both generate 1/f+ noise, in the ranges 0 & D & 1 and
0 & D & 2, respectively. The first is a standard fractal
renewal point process (SFRP), with events represented
as points distributed on a line; the second is an alternat-
ing fractal renewal process (AFRP), where the process
switches between two states (see Fig. 1). Both processes
exhibit power-law scaling in many of their statistics, and
are therefore fractal. For most of the analysis presented
in this paper we consider the case where the processes
have reached equilibrium so that the renewal density, or
expected rate of events, is constant in time, and thus the
processes are stationary. Qur FRPs have applications in
trapping in amorphous semiconductors, electronic burst
noise, movement in systems with fractal boundaries, the
digital generation of 1/f noise, and ionic currents in
cell membranes.

FIG. 1. Sample functions of fractal renewal processes. In-
terevent times are power-law distributed. (a) The standard
fractal renewal process (SFRP) consists of Dirac 6 functions
and is zero-valued elsewhere. (b) The alternating fractal re-
newal process (AFRP) switches between values of zero and
unity. The symmetric case is shown here.

II. RENE'WAL PROCESSES
A standard (nonalternating) renewal process (SRP)

N(t) is a point process in which the interevent times
are independent random variables drawn from the same
probability density, denoted p(t) [see Fig. 1(a)] [25]. We
require that p(t) = 0 when t & 0. This density has an
associated mean value (T), and we define p = (T)
to be the average rate of events, where the angle brack-
ets without any subscript () represent expectation taken
over the distribution of interevent times. We require that
the mean interevent time (T) be finite, although this re-
quirement may be relaxed in some cases, as in Sec. V C.

Below we summarize a few of the relevant properties of
SRPs. The coincidence rate of a stationary (equilibrium)
SRP, defined as [26]

Pr(8(t, t+ 2) and e(t+~, t+~+ 4))G~ r:—lim 2b, ~O

where 8(x, y) represents the occurrence of at least one
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event in the interval (x, y), is given by

G~(&) = &) .&""(I~I)= pu(t)
n=O

Here u(t) is the renewal density, and p*"(t) is p(t) con-
volved with itself n times (the symbol * represents the
convolution operation). For short delays w the infinite
sum in Eq. (2) may be approximated by its first-order
term, yielding G~(~) —pp(~~~), and for long delays the
probabilities of events near t and t + ~ are essentially
independent, so that G~(w) —p .

Treating the events dN(t) in the SRP as Dirac 6 func-
tions, the power spectral density becomes [27]

Siv(~) —= P(Giv(~) j = p 6(~/2vr) + pRe2 1+4(~)
1 —Pw

(3)

where P() is the characteristic function of the interevent
time T. The constant term in the coincidence rate (p2)
leads to the impulsive (first) term in the power spectral
density. In the low-frequency limit the power spectral
density approaches an asymptotic value of psVar(T) [28],
and for high frequencies a value of p, .

For a stationary SRP N(t), the mean rate of events is

p, so that E(N(t)) = pt, where E() represents averag-
ing taken over the realizations of the SRP. Using Fourier
and Z transforms [28] we obtain expressions for a type
of factorial momentE::=E/N(t) N(t)+1 . N(t)+k )

N(t) + k!
N(t) —1 !

given by [29]

Sx(cu) = E(X)b'(~/2vr)

2M 1 —4p(~) 1 —4i(~)+ Re
(T.)+(T )

(6)

where wp =—(Tp) +(Ti) and k—:2wp ((Tp)+(Ti))
Returning to the general ARP, in the low-frequency limit
the power spectral density approaches an asymptotic
value [28]

(Tp) Var(Ti) + (Ti) Var(Tp)
((T.)+ (T ))'

whereas for u —+ oo,

~ ( ) -2 '((T.)+(T ))-'

(8)

In the special case pp(t) = pi(t) = p(t), with arbitrary
p(t), the power spectral density simplifies to [30]

Sx(~) = sic(~/2vr) + p~ Re
1 —P(~) (10)

In this case the autocorrelation function is given by [28]

where Pp() and Pi() are the characteristic functions of
the dwell times Tp and Ti, respectively. For a Markovian
system, where both dwell times are exponentially dis-
tributed, the power spectral density assumes the familiar
I orentzian form

Sx(u)) = E(X)b(cu/27r) + k

u up 2+1

= p, (k + 1)! (t —v)u*" (v) dv. (4)

In particular, the variance is given by where

1 1=
2 2 =n=o

r *p""(v)dv,

Var(N(t)) = 2p (t —v) u(v) —p dv —pt. p(v) dv

An alternating renewal process (ARP) differs from a
standard renewal process (SRP) in that the interevent
times are drawn alternately from two different distribu-
tions, and that the process is generally defined to be
Bnite-valued rather than composed of Dirac 6 functions
[see Fig. 1(b)]. Consider a process X (t) with two states,
valued 0 and 1, respectively. The system alternates be-
tween the two states, with the random time Tp spent in
state 0 drawn from the density pp(t), and the random
time Ti in state 1 drawn from pi(t). All times are inde-
pendent of each other. We require that pp(t) = pi (t) = 0
for t ( 0, and that the associated mean dwell times (Tp)
and (Ti) be finite, in which case the average value of the
process E(X) = (Ti)((Tp)+(Ti)) is defined, finite, and
positive. The requirement that the mean dwell times be
finite may be relaxed in some cases, as in Sec. V C. We
note that X'(t) can only take values of zero and unity,
so that X"(t) = X(t) for any exponent n, and therefore
E(X")= E(X).

The power spectral density for an arbitrary ARP is

is the recurrence time density. For small delays ~, the
probability of a state transition occurring in the interval

(t, t + 7) is nearly zero, so that Rx(w) —E(Xz) = zi,

while for large delays 7, the states of X' at t and t+ w are
essentially independent, so that Rx(~) —E(X')2 = 4.

For the case where the times T~ spent in state 1 are
much smaller than the times To spent in state 0, the
power spectral density reduces to a simpler form related
to the result for the SRP [28]

Sx (cu) = b(~/2~) + Re . (13)(Ti) 2(Ti)' 0p(~)
p Tp 1 — pM

Geometrically, the ARP X'(t) itself looks like a SRP if
the time spent in state 1 is small; X (t) remains in state
0 except for relatively brief visits to state 1. In this case
the process may be modeled as a marked SRP, where the
marking values correspond to the widths of the pulses,
which are independent and identically distributed accord-
ing to pi(t). This approximation holds for time scales



994 S. B. LOWEN AND M. C. TEICH 47

greater than the characteristic time of Tq., for times less
than this the Lorentzian approximation of Eq. (7) holds.

10

10

III. FRACTAL RANDOM VARIABLES

Fractals are distinguished by power-law scaling behav-
ior; we consider fractal random variables that have a
power-law decay in their associated probability density
functions. Fractal renewal processes may be constructed
from these random variables. Such power-law behavior
cannot persist for all values of the random variable since
the resulting probability density would not be able to be
normalized. We consider the general case with cutoffs in
the probability density at both extremely large and ex-
tremely small values, which ensures that the FRPs will
have a positive rate in the stationary state (equilibrium)
(see Fig. 2).

Possibly the simplest such interevent-time density is
the abrupt-cutofF power-law density
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FIG. 2. Double logarithmic plot of two fractal interevent-
time probability density functions p(t) vs t for D = 2: abrupt-
cutofF and exponential-cutofF power-law (A = 10,B = 10 ).
Note the power-law region between t = A and t = B.

t ~ +'& forA&t&B,
A —~ —B otherwise. (14)

The associated moments are given by

(T.) (A/B)DB. ( / )
n —D 1 —(A/B) D (15)

with corresponding characteristic function

/Bj A)

Kz) (2~2/~B)

In the case B i (( w « A i, then [28]

1 —P(~) = (—j(uA) I'(1 —D)

Another density with essentially the same power-law
dependence but with smoother transitions is

(AB)~~' —Ai t —t/B ~
—(D+X)

2K~ (2~2/~B)
(18)

where KD () is the modified Bessel function of the second
kind of order D. The associated moments are given by

n) (A )n/2 Kl&—nl (2~A/~B)
K~ (2~A/~B)

and the characteristic function of the interevent time is
—jurB

-~ +'~dx

(2o)

For D =
2 and B —+ oo this density becomes the one-

sided Levy-stable density of order z [31]. Combined with
exponential tails, one-sided Levy-stable densities for ar-
bitrary D between zero and unity also follow a power-law
form while providing smooth transitions [28].

IV. FRACTAL RENEWAL PROCESSES

The fractal probability densities defined in Sec. III may
be used to construct well-defined SRPs, since the densi-
ties are zero for nonpositive arguments.

For the abrupt-cutoff power-law process the power
spectral density exhibits 1/f D behavior, but contains sig-
nificant oscillations arising from the abrupt nature of the
interevent-time density. In the medium-frequency limit,
B « cu « A, we obtain [28]

' 2[I'(1 —D)] i cos(7rD/2)(wA)
7r ln(cuA) (~A)

Siv(u) ~ p x ( 2D ~(D —l)I'(2 —D) —cos(vrD/2) (aA)
~i —in((uA)

,D '(D —2) '(D —1)z

for 0&D(1,
for D=l,
for1(D&2,
for D=2,
for D&2.

(21)

Figure 3 shows the resulting power spectral density, nor-
malized to unity at the low-frequency limit, where the
asym;&totes are given by Eq. (21) and Sec. II. The abrupt
cutoff in the probability density function leads to large
oscillations in the characteristic function, which appear
in the power spectral density. Thus for 0 ( D & 1 the

power spectral density varies as 1/f ~ over a substantial
range of frequencies B i &( u = 27rf « A i, which
may be made as large as desired, where D corresponds
to the power-law exponent in the interevent-time den-
sity. However, this power-law exponent never reaches
unity, and no new exponents are introduced by consider-
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FIG. 3. Double logarithmic plot of the normalized power
spectral density for the SFRP, with an abrupt-cutofF power-
law probability density. Three values of the exponent D are
shown: 0.5, 1.0, and 1.5 (A = 10, B = 10 ). Asymptotic
forms from Eq. (21) and Sec. II are included for comparison.
The abrupt cutofF in the interevent-time probability density
function gives rise to oscillations in the frequency domain,
especially for larger values of D.

ing D ) 1. Presumably any probability density having
a power-law form would show the same behavior, and
thus the SFRP will generate 1/f noise only in the range
0 & D & 1. Figure 4 shows the power spectral density for
the abrupt- and exponential-cutoff densities with D = z.
The exponential-cutofF density has a relatively smooth
shape, and thus the resulting power spectral density ex-
hibits less oscillation. The essential power-law character
of the power spectral density, however, is unchanged.

An approximation for the coincidence rate of the
abrupt-cutofF power-law process may be obtained by in-
verse Fourier transforming the quantity given in Eq. (21),
which for 0 & D & 1 yields

G~(7.) (7rD) B A sin(srD) lwl

FREQUENCY ~ (rad/sef:)

FIG. 4. Double logarithmic plot of the normalized power
spectral density for the SFRP, comparing abrupt-cutofF and
exponential-cutofF power-law probability densities (D =
A = 10 3, B = 10 ). The exponential-cutofF density has
smoother transitions in the time domain, which lead to less
oscillation in the frequency domain.

in the range A « l~l && B.
For the interevent-time density given in Eq. (18) and

the particular case D = 2, useful expressions may be
obtained for the coincidence rate, and Eq. (2) yields

Giv(~) = v~(~)+v) p*"(l~l)
%=1

(AB)
—i/2p(~) + ( B)—i/2l~l s/2e 1~iI&—

x ) nexp 2(A/B) / n —(A/lwl)n
n=1

In the limit ]wl )) A and B )) A, the terms in the sum
vary slowly, so the sum may be approximated by an in-
tegral, and the coincidence rate simplifies to

Giv (7 ) (~B) zexp 2(A/B) / T —(A/lwl)x d2:

= (4~A B) / l~] / e l l/ + (2AB) erfc( —l~l / B / ) (24)

where

erfc(x) =—27r exp( —t ) dt

I

of the interevent-time probability density function. In
particular, for the abrupt-cutofF SFRP, E(N(t)) = pt
and substituting Eq. (22) into Eq. (5) yields

l~(t) + &]' tl, a+i
[N(t) —I]! (26)

The constants of proportionality depend on the details

is the complementary error function. Figure 5 shows the
coincidence rate for D =

2 as provided by Eqs. (23) and
(24).

For the case A « lrl « B and 0 & D & 1, but with
arbitrary cutoffs, we have u(t) t, so that u*"(t)t"+ i, and Eq. (4) provides

Var(N(t)) = vrD (D+ 1) BD A sin(m. D)t + .

(27)

Calculation of the capacity dimension yields the ex-
pected result that, for the parameter ranges 0 & D & 1
and 0 & A « B & oo, the set of points generated by the
SFRP is itself fractal with dimension D. Consider a real-
ization of the process, and a covering of it using segments
of length L. For a minimal covering, place the beginning
of each segment on the first uncovered event, in which
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FIG. 5. Double logarithmic plot of the coincidence rate
for the SFRP, with the exponential-cutofF probability density
function, for D =

~ (A = 10, B = 10 ). Asymptotes are
provided in Sec. II, and by simplification of Eq. (24) in the

case the empty space between coverings is simply the
residual waiting time for a pure renewal process at time
I If W(L. ) represents the expected value of the time be-
tween coverings, including the coverings themselves, then
by Wald's lemma [31]

W(L) = (T) u(t) Ch.

For the range A (( L (& B, the approximation u(t)
provides W(I ) L+. Thus the number of intervals

required to cover the SFRP will scale as L +, and the
capacity dimension is D.

The AFRP by construction resembles the SFRP, so
many of the characteristics derived above apply to the
AFRP as well. The symmetric AFRP and the SFRP
by definition have identical transition number statistics;
the only difference is that the AFRP transitions are of

I

FIG. 6. Double logarithmic plot of the normalized power
spectral density for the AFRP, with an abrupt-cutofF power-
law probability density. Three values of the exponent D are
shown: 0.5, 1.0, and 1.5 (A = 10, B = 10 ). Asymptotic
forms from Eqs. (8), (9), and (29) are included for comparison.
The abrupt cutoff in the interevent-time probability density
function gives rise to oscillations in the frequency domain,
especially for larger values of D.

two types which alternate. For the extreme asymmetric
AFRP, where Ti is very short compared to To, a different
correspondence exists. Here the state transitions occur
in closely spaced pairs of negligible width, and thus the
AFRP transition-pair number statistics are essentially
identical to the SFRP single transition number statistics.
In addition, in the extreme asymmetric case the AFRP
power spectral density (and thus the coincidence rate)
are proportional to the SFRP results except for the high-
frequency (short-time) limit, in which case the AFRP
power spectral density varies as S~(w) —2u /(To).

For dwell times of the two states given by identical,
abrupt-cutoff power-law distributions, the power spectral
density also varies as 1/f, but with a different form
from that of the SFRP. In the medium-frequency limit

(A &( cu &( B ) we obtain [28]

2I'(1 —D) cos(vr D/2) A+~~
'Ir ALd

S (u) —x
f

2(D —1) iI'(2 —D) —cos(aD/2) A
2A~ —1n(uA)

,D(D —2) 'A~

for 0 & D & 1,
for D=1,
for 1(D&2,
for D=2,
for D&2,

(29)

for the abrupt-cutofF power-law interevent-time density.
Figure 6 shows the resulting power spectral density, nor-
malized to unity at the low-frequency limit, where the
asymptotes are given by Eqs. (8), (9), and (29). Note
that the power spectral density has an overall 1/fD
shape. Thus the AFRP generates 1/f~ noise in the full
range 0 & D & 2 over a substantial range of frequencies
B i « w = 2vrf « A i, which may be made as large as
desired.

The autocorrelation function, like the coincidence rate,
will show power-law behavior in some cases, since it is the
inverse Fourier transform of the power-law-varying power
spectral density. For D between 1 and 2, then Eq. (29)
yields

[

~~(r) —E(X}=(2D) —c'os(srD/2) A

(30)

for A &( ~r~ && B. When 0 & D & 1, then the autocor-
relation function assumes a constant value in the limit
A « [r [ « B [28].

V. GENERALIZATIONS OF FRACTAL
RENEWAL PROCESSES

A. Fxltexing

The events in the SFRP may be treated as Dirac 6
functions (impulses) distributed along the time axis, so
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a natural extension to the above theory is to pass these
impulses through a linear filter. This results in a kind of
generalized shot noise [27]. For a deterministic filter, the
resulting overall power spectral density is given by linear
systems theory [25]

S((u) = ~H((u)~ Siv(~) = p]H((u)~ Re
1 —&(~)

(31)
where H(u) is the Fourier transform of the linear-system
impulse response function h(t). The AFRP may also be
filtered.

For the AFRP with Pr(TI ) Tp) « 1, the result-
ing process may be modeled as a marked SFRP, as in
Sec. IV, or as a randomly filtered SFRP. In this case the
impulse response function of the filter will have a rectan-
gular shape with fixed height and random duration given
by the density pi(t).

The power spectral density in Eq. (3), without filtering,
approaches an asymptote of p for large frequencies w,
and therefore the total power integral f Siv(cu) eke/2vr
is unbounded. Real systems, however, have a frequency
response which decreases faster than ~ for sufBciently
large a, yielding finite energy integrals.

B. Superposition of renewal processes

A difFerent point process will result when several
SFRPs are superposed, but the overall power spectral
density will still be 1/f C.onsider M identical and in-
dependent SFRPs. We define the conditional coincidence
rate as

GIv,„(r)
Pr(g„(t,t+b, ) and 8 (t+r, t+r+&))—:lim QzA-+0

where 8„(x,y) represents the occurrence of an event in
the interval (2:,y) due to the individual SFRP indexed
by n, where 1 & n & M. For the same SFRP (n =
m), the conditional coincidence rate is the same as that
given in Eq. (2), while for n g m, the two processes are
independent, and we have Giv, „g~= p~. Therefore the
total coincidence rate Giv T (r), due to all M individual
SFRPs, is given by

GN, T(r) =) ) GN, nm(r) = ) ) GN, ntn(r) + ) GN, nn(r)
n m n m(g~) n

= ) ) p~ + ) Giv(r) = (M —M) p + MG~(r)
n m(AA) n

= (M —M)p + Mp) p*"(~r~).
i=0

(33)

As the number M of independent SFRPs increases, the
impulsive term grows as M~ —M while the smooth term
increases only as M; thus for large M the impulsive term
dominates, as it would for most point processes with high
rates. The corresponding power spectral density is

S~7 (u)) = (Ms —M)p, b(u)/2m) + MS~(~)

= (Mp, ) 6'(cu/2vr) + (Mp)Re
1+/ u
1 —4(~)

(34)

Thus for w g 0 the shape of the power spectral density is
independent of M. Indeed, Eq. (34) shows that to second
order, the superposition of M SFRPs with identical rates
p is exactly equivalent to a single SFRP with rate Mp.
Thus the superposition process tends to a clustered Pois-
son process limit [32]. The number of events in small in-
tervals (t « A) will be independent Poisson-distributed
random variables, but for longer times (A « t « B),
the process will exhibit clustering, described by the co-
incidence rate Giv T (r) given in Eq. (33) above. In par-
ticular, for J3 &( [~[ (& A the 1/f+ character is
preserved. For applications where this frequency range
is important, the impulsive term in the power spectral
density may be removed with a high-pass filter.

An identical argument for the AFRP yields the same
results. Here the total autocorrelation Rx,T(r), due to
all M individual AFRPs, is given by

Rx,T (r) = (M —M)E(X) + MRX(r),

and the corresponding power spectral density is

Sx T (~) = (M —M) E(X) b(~/27r) + MSx (~). (36)

Since E(X") = E(X) = (Ti)((Tp) + (Ti)) ( oo ln
general, then the first and second moments of the AFRP
X(t) are finite in particular, and the total process XT (t)
will converge to a Gaussian process with mean ME(X),
and autocovariance function M Rx.(r) —E(X')z' .

C. Nondegenerate realization of a zero-rate process

For stationary (equilibrium) SFRPs constructed from
infinite-tail power-law distributions with D & 1, the
mean interevent time is infinite, and thus the mean rate
of events is zero. Since the rate is non-negative, this im-

plies with probability one that no events will be observed
in any Rnite interval. However, the framework developed
above for the stationary SFRP may be extended to yield
nontrivial results in this case. (All the results in this
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section also apply for symmetric AFRPs. ) For SRPs
beginning with an event, rather than in equilibrium, the
above does not apply, and the resulting energy spectral
density will not be degenerate. A segment of such a SRP
may therefore contain a positive number of events, even
though the mean number of events in the segment of
the stationary process is zero. For both of the fractal
random variables considered in this paper, if the outer
cutoK B is set to inanity, then the probability of observ-
ia.g no events in a segment of length C can still be made
vanishingly small as the ratio C/A increases, where A is
the inner cutoiF. A SFRP beginiung at an event, with
an associated interevent-time probability density func-
tion p(t) t ~ + &, will have a residual waiting time
that approaches a limiting density [31]. Specifically, sup-
pose that the interevent-time survivor distribution may
be put in the form

p(v) dv = t I(t),

phous semiconductor. If a pulse of light strikes such a
semiconductor, then many carriers will be excited out
of their traps and are available to carry current until
they are recaptured by a trap, which happens relatively
quickly. At some point each carrier will be released from
its trap by thermal excitation and become mobile for a
time, and then be recaptured by another trap. For expo-
nentially distributed states with identical capture cross
sections, the electrons will tend to be trapped in shallow
states at first, but the probability of being in a deep trap
will increase as time progresses. This leads to a current
which decreases as a power-law function of time.

In this section we recast the multiple trapping model
in terms of the SFRP [36, 28]. Consider an amorphous
semiconductor with localized states {traps) which are ex-
ponentially distributed with parameter Ep between limits
of EL, and EH. If the random variable E represents the en-
ergy difference between a trap and the conduction band
edge, then the probability density function for the states
pe(E) is given by

where I (t) is a "slowly varying" function such that

lim L(xt)/L(t) = 1 (38)

k exp( —E/Ep) for El. & E & EH,pe —
O otherwise,

where
for any x ) 0. Now define Z(t) to be the random variable
denoting the time between the deterministic time t and
the next event in the SFRP. Then Z{t) has the density
[31]

t~ sin(~D) z ~
p&(~) =

vr @+8
(39)

Thus when a SFRP with zero mean rate begins on an
event, the resulting process has a nonzero e8ective rate
for all Gnite times. Therefore, any experiment will of
necessity measure a process with positive expected rate,
and the results derived above will also apply to this pro-
cess.

For any realization of an infinite-mean SFRP which
begins with an event, and which is observed for a fi-
nite time, there will be a largest and a smallest interval,
labeled Tis and T~, respectively. Given the power-law
exponent of the distribution and only the values of TA
and T~, the other intervals will be power-law distributed
between them, also with the same power-law exponent.
Thus the observed process will have the same statistics
as a finite-mean SFRP with cutofF times A & T~ and
B ) TJs, and the results derived above apply to this pro-
cess, with the a posteriori values of T~ and T~. Although
these values TA and T~ cannot be known a priori, the
sample power spectrum will decay in a power-law fashion
whatever these values may be.

&I. APPLICATIONS

A. Trapping in amorphous semiconductors

The multiple trapping model as developed by Oren-
stein and Kastner [33,34], and Tiedje and Rose [35] shows
how exponentially distributed traps over a large range of
energies lead to a power-law decay of current in an amor-

k—:Ep exp( —El. /Ep) —exp( —E~/Ep)

is a normalizing constant. Since band gaps always have
finite widths, every semiconductor will have a maximum
trap depth, and thus EH will be finite. Similarly, El. must
be greater than zero. Very shallow traps, with energies
E (( k~2, where k~ is Boltzmann's constant and 'T is the
absolute temperature, will be occupied so infrequently
that they can be neglected. There may be other practical
limits which impose a larger SI..

For a trap with energy E, the corresponding mean wait-
ing time r is rp exp(E/k~2 ), where 7 p is the average vi-
brational period of the atoms in the semiconductor. If
we define characteristic time cutofFs A—:rp exp(EI. /k~1 )
and B = rp exp(E~/k~2 ), and the power-law exponent
D = kgy2 /Ep, then the mean waiting time r has the
power-law density

D t ~~+i'i for A&t &B,p t= 'x
A —D —B D—otherwise. (42)

p(t) = p7(tlr)» (r)dr

D g-(D+~}
A-D —a-D

C//A

2:De- coax. (44)

For A && B, which is usually the case, the unconditional
trapping time density has the asymptotic forms

Each trap holds carriers for times that are exponentially
distributed, given the conditional parameter r

(43)

Averaging this exponential density over all possible val-
ues of 7. yields the unconditional trapping-time density
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'D(D+1) 'A ' for t (& A

p(t) = ~ DI'(D+ 1)A~t-ID+'l for A &&t && B,
, D(A/B)~t e '~ for t )) B.

{45)

p(2 ) (80/k~7 —1) ' exp( —ZH/kryo 2 ). (49)

For an exponential distribution of trap energies with a
long tail, Err &) So, since Zo ) krr'T, then to first order

p(2) = poexp( —FH/krrT). (»)
Finally, a simpler model, which invokes power-law dis-

tributed trapping times directly, also generates 1/fD
noise [40]. In particular, trapping times distributed as

~ generate both current and resistance fluctuations
which vary as 1/f .

H. Electronic burst noise

Burst noise occurs in many communications systems
and is characterized by relatively brief noise events which
cluster together, separated by relatively longer periods
of quiet. Mandelbrot [41] showed that burst errors in
communication systems are well modeled by a version
of the SFRP, and in particular that the interevent times
were essentially independent of each other. In his model
the upper cutofF B was infinite, and the lower cutoff A
was defined by the resolution of the observation. How-

ever, the interevent-time histograms shown do not follow

Thus each carrier will be trapped for a period which is
essentially power-law distributed.

Upon escaping from a trap, the carrier can conduct
current for a relatively short time until it is again cap-
tured by another trap. Thus each carrier executes a series
of current-carrying jumps well described by the AFRP
with extreme asymmetry, which is in turn well approxi-
mated by a marked SFRP. If the experiment begins with
a pulse of light then the SFRP begins on an event; if the
experiment begins after transients have died out then the
SFRP is in equilibrium. Assuming that each carrier acts
independently of the others, then the action of the car-
riers as a whole can be modeled as the superposition of
SFRPs. In particular, the steady-state current should
behave as impulsive 1/f+ noise. Indeed, experimental
[37] and theoretical [38] results show exactly this type of
frequency dependence, with 0 & D & 1.

As a check we consider the resistivity as a function of
temperature, which to first order follows the form [39]

p(2) = ppexp(E'p/krr2). (46)

Since the time the carriers spend outside the traps is
relatively small, the resistivity should vary directly with
the average time spent in the traps, which is

(~) = B' A
D

1 —D (47)

for B )& A and 0 & D & 1. Substituting for A, B, and
D as defined above in this section we obtain

{v.) = 70(80/kryo 2
—1) exp —(S~ —Zr, )/80

x exp( —ZH/k~1 ), (48)

so that

a power-law form for very large values of the interevent
time, but rather decrease in a fashion consistent with an
exponential tail. Thus the exponential-cutofF density de-
scribed above should apply to burst noise in electronic
systems. In addition, some systems may contain several
independent sources of burst noise, and therefore the su-
perposition of several SFRPs should model these noise
sources.

C. Movement in systems arith fractal boundaries

If a particle moves in a system with two simple basins
of attraction and a white-noise forcing function, then the
dwell times in the basins will be independent and expo-
nentially distributed, leading to the familiar Lorentzian
spectrum. However, if the boundary between the two at-
tractors is fractal, then the distance between the particle
and the boundary will be distributed over a large range of
scale lengths, leading to power-law distributed or fractal
dwell times [42]. Similarly, one-dimensional determinis-
tic mappings such as the modified Bernoulli system can
lead to fractal dwell times [43, 30]. In both cases the two
states of the system are symmetric, and thus the system
is well modeled by the AFRP.

D. Digital generation of 1/ fD noise

In addition to being a useful description of unavoidable
1/f + noise, the FRP model may be used for deliberately
generating test signals with power spectral densities vary-
ing as 1/f . Indeed, the particular case D = 1, which
corresponds to precisely 1/f noise, has equal power per
octave and is useful in audio testing. If U is a random
variable uniformly distributed in the interval 0 & U ( j.,
then the transformed random variable

T=A ]. —A BD,, U+ A BD (51)

has the power-law density of Eq. (14). Thus a conven-
tional computer random number generator may be used
to generate a real approximation to the AFRP model
which varies as 1/f for any D in the range 0 & D & 2.
For practical implementation, the random variable T
may be approximated as a multiple N of some fixed
clock period ~, by choosing N to be the integer clos-
est to T/w Finally, valu.es of N may be computed ofHine
and stored, yielding a finite-length segment of an AFRP.
If this segment is repeated periodically, then the result-
ing power spectrum will be approximately 1/f for fre-
quencies much greater than the repeat frequency of the
sequence, and much smaller than the clock frequency.

E. Ionic currents in cell membranes

Ion channels are openings in the membranes of cells
which allow ions to diffuse into or out of a cell [44]. These
channels are usually specific to a particular ion or group
of related ions, and block the passage of other species of
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ions. Further, most channels have gates, and thus the
channels may be either open or closed. In most cases
intermediate conduction states are not observed. A few
ion channels may be modeled by a two-state Markov pro-
cess, with one state representing the open channel, and
the other representing the closed channel. This model
generates exponentially distributed dwell times in both
states. However, many ion channels exhibit power-law
distributed closed times and relatively short, exponen. -
tially distributed open times [45], and are well described
by a marked version of the SFRP. The relatively short
open times are modeled by Dirac b functions, which suf-
fices for all but the highest-frequency scales. The AFRP
model, in contrast, describes the activity of other ion
channels for which the open and closed times are similar
and fractal. Whole cell ion currents exhibit spontaneous
fluctuations due to the additive effects of large numbers
of ion channels on the cell membrane. If these ion chan-
nels are independent of each other, then this model pre-
dicts that the whole cell ion current will be Gaussian-
distributed I/f+ noise. Even for dependent ion chan-
nels, evidence exists that the overall effect will be the
same, although with a higher variance than for the in-
dependent channel case [46]. Indeed, the spontaneous
voltage fluctuations of neurons often exhibit Gaussian-
distributed 1/f~ noise [47].

VII. CONCLUSION

We have developed two fractal renewal processes,
the SFRP and the AFRP, for which the associated
interevent-time probability density functions decay in a
power-law fashion. We then derived a number of the
statistical properties of these FRPs, including the power
spectral densities, event number moments, coincidence
rates, capacity dimension, and autocorrelation functions.
All of these measures exhibit power-law variation, indi-
cating that the SFRP and AFRP are fractal. Finally, we
considered a number of applications, showing that FRPs
are useful in understanding a wide variety of phenom-
ena in engineering, physics, and biology. The SFRP and
the AFRP are therefore useful additions to the family of
fractal processes, which include fractal shot noise [15—17],
fractionally integrated white noise and fractal Brownian
motion [19—21], and the fractal-shot-noise-driven doubly
stochastic Poisson point process [24].
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