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Small-noise approximations to the solution of the Smoluchowski equation
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We explore the connection between the two perturbation methods that have been suggested for solv-
ing Smoluchowski-like equations with weak noise. A slight modification of the first of these methods
(the size expansion of van Kampen) makes it identical to the second (the method of running coordinates).
We point out that a number of modifications to both methods are possible and should be explored. We
illustrate the advantages of both of these methods as applied to three solvable examples.

PACS number(s): 05.40.+j, 82.20.Fd

I. INTRODUCTION

Smoluchowski equations for the probability density
p (r,t) for the position r of a particle at time ¢ subject to
space-dependent diffusion and convection,
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arise in many applications of chemistry and physics [1,2].
There are two methods available for generating solutions
to Eq. (1) in the so-called weak-noise limit. This limit is
defined by the requirement that the D;;(r) are small in
comparison to 1 in some suitable dimensionless set of
units and |v,-(r)| =0(1), in the same dimensionless units.
The first is due to van Kampen, [2], who assumes the ex-
istence of a large parameter () which he uses both to ex-
pand all of the functions in Eq. (1) and as part of a trans-
formation of coordinates. This leads, in lowest order, to
an Ornstein-Uhlenbeck equation whose solution in an un-
bounded space is readily found. The second technique
was originally suggested by Weiss and Dishon [3], and
expresses the Smoluchowski equation in terms of a scaled
running coordinate which serves to eliminate the velocity
or the set of nonperturbative terms in Eq. (1) and forms
the starting point for a systematic perturbation expan-
sion. The method leads, in lowest order, to a diffusion
equation in contrast to the Ornstein-Uhlenbeck equation
associated with the van Kampen analysis. In this paper
we compare the performance of these two techniques on
some simple exactly solvable examples of the Smolu-
chowski equation, showing that neither method is intrin-
sically more accurate than the other. For simplicity we
discuss only the one-dimensional version of Eq. (1) which
will suffice to make our point, although the extension of
these methods to related problems in higher dimensions
does not introduce appreciably more conceptual prob-
lems.
II. DESCRIPTION OF THE APPROXIMATIONS

The Smoluchowski equation, or equivalently the
Fokker-Planck equation in one dimension can be written
as
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where the small parameter is € which multiplies the
diffusion coefficient. The function D(x)=0 can be re-
garded as being a spatially varying diffusion coefficient
and v (x) is a convective term. We implicitly assume that
the coordinates in Eq. (2) are dimensionless, and the two
functions that appear as coefficients in Eq. (2) are O(1).

As mentioned, there are two ways to develop a pertur-
bation expansion of the solution to Eq. (2) in the limit
€—0. Both of these can be regarded as singular pertur-
bation expansions in € away from the solution of the
deterministic equation

x=v(x) (3)

associated with the stochastic equation in Eq. (2). We
denote the solution to this equation which corresponds to
the initial condition x (0)=xg, by X (¢).

The first technique for generating approximate solu-
tions to Eq. (1), the so-called system size expansion, was
suggested by van Kampen [2], and is equivalent to replac-
ing the spatial variable x in Eq. (2) by a new variable y, by
the substitution

x=X(t)+Vey . 4)

Let the lowest-order term in the hierarchy of approxima-
tions to the true solution p (x,?) in the system size expan-
sion be denoted by py(y,t). On substituting Eq. (4) into
Eq. (2) one obtains an Ornstein-Uhlenbeck equation
which takes the form

9po —a(1) 3’po .
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in which the coefficients a(¢) and b(t) are expressed in
terms of D (x) and v (x) as
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a(t)=D(X(1)), .
X |x=X(1)

(6)

Systematic corrections to this lowest-order result are
readily generated.

A second approach that has been explored, mainly in
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literature dealing with chromatographic methods, is
based on a transformation to a running coordinate &

£e={" da__, (7)
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This is obtained from the first-order differential equation
which follows from Eq (2) when D is set equal to zero as
motivated by the method of characteristics [see Eq. (18)
below]. We will denote the solution to this equation for x
in terms of £ by x =H (£+1) so that when there is no
diffusion the position of a peak initially located at x is
x =H (¢). This permits us to identify the function H(¢)
in terms of the solution of the dynamic equation (3) by
H (t)=X(t). For future analysis we also define the quan-
tities D(H (B))=2D(B) and v(H(B))=YVY(B) which are the
diffusion coefficient and the velocity evaluated at the peak
for the diffusion-free system. Since the solution to the
zero-noise limit of Eq. (2) is equivalent to setting £=0 in
Eq. (7) we can assert that in the weak-noise limit £ should
also be expected to be close to zero. With this in mind
one can return to Egs. (2) and (7) and introduce a
stretched coordinate p by

=& (
= , 8)
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further defining a reduced form of p (p,t) by
Yp, )=V (p)p(p,t) . 9)
The substitutions of Egs. (7)-(9) into Eq. (2) allow us to
transform that equation to the form
W_a [Du+ve 8 [
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No approximations have been made so far. While this
equation is clearly as hard to solve as is Eq. (2), it is nev-
ertheless useful because from it one can generate a sys-
tematic series of approximations in the small parameter
€. The lowest-order term in this sequence, ¥y(p,?),
satisfies an equation that is found by setting €e=0 in Eq.
(10). That is to say, ¥, is the solution
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which reduces to the standard diffusion equation provid-
ed that one replaces 7 in this equation by the variable
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III. COMPARATIVE PROPERTIES OF THE
TWO APPROXIMATIONS

As already mentioned, it is possible to calculate sys-
tematic higher-order corrections to both the van Kampen
approximation and to that discussed by Weiss and
Dishon, as well as to develop the theories for problems
arising in dimensions greater than one. A natural ques-
tion to ask is whether the two techniques are identical.
We will show that a slightly modified version of the van
Kampen approximation is equivalent, at least in lowest

order, to the theory developed in [3].

Indeed, since the coordinate £ is small whenever € is
small we can expand the formal relation for x in terms of
& [or p as defined in Eq. (8)] to lowest order as

x=H(t+E~H+HMDE=X(1)+VeH(t)p . (13)

This differs from the van Kampen transformation in Eq.
(4) because a time-dependent term H(t¢) appears as a
coefficient of p, implying that the two approximations, as
originally formulated, are not equivalent. However, the
difference is apparent and not real, as may be demonstrat-
ed by slightly modifying the original van Kampen ansatz,
replacing Eq. (4) by the generalization

x=X(1)+VepX)p , (14)
and at the same time replacing p (x,t) by

p(x,t)=I(p,t)/a(X) , (15)

where p is the new spatial variable and a(X) and @(X)
are so far unspecified. The specific choices
a(X)=@(X)=v(X) suggested by Eq. (13) suffice to pro-
duce a diffusion equation for Ily(p,?) that is identically
equal to that in Eq. (11). Hence the modified van Kam-
pen theory can be brought into a form that is essentially
equivalent to the theory presented in [3].

Along with the van Kampen approximation, that of
Weiss and Dishon also can be modified. In fact, the
choice of the running coordinate in Eq. (7) is by no means
a unique one, and slightly different versions of Eq. (11)
can be found by adopting different choices in place of & as
given in Eq. (7). One can sometimes take advantage of
this flexibility by putting the equation for the lowest-
order term in a more convenient form than the one pro-
vided by the definition in Eq.(7). This point will be illus-
trated in the analysis of the example considered in the
following section.

IV. ANALYSIS OF LINEAR DRIFT IN THE
PRESENCE OF ADDITIVE AND
MULTIPLICATIVE NOISE

As a first simple case in which one can compare how
each of the two techniques works we consider that in
which D (x)=D =const and v(x)= —xT, where T is also
a constant. The initial condition is taken to be
p(x,0)=8(x —x,). The Smoluchowski equation with
these specific features is

p _.3p 190
ot Pox? Tox P (16)
which is already in the form of an Ornstein-Uhlenbeck
equation. This implies that the lowest-order term in the
van Kampen approximation will automatically produce
the exact solution for p (x,?), independent of the order of
magnitude of D.

Let us next consider the approach based on a transfor-
mation to moving coordinates. The application of Eq. (7)
yields the definition

X

E=T |=% |—t. 17)
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The solution of the Ornstein-Uhlenbeck equation in free
space is known to be a Gaussian in x. The solution for
the lowest-order approximation given in Eq. (11) will be a
Gaussian in p, which is equivalent to the statement that it
is Gaussian in In(xq/x) rather than in x. Hence the
lowest-order approximation obtained in this way cannot
be the exact solution. However, one can choose a
different form for the running coordinate §&. The particu-
lar form in Eq. (17) follows from the appropriate charac-
teristic equation which, of this example, has the form

£t~=_de
1 x

(18)

The choice of the running coordinate in Eq. (17) is
equivalent to choosing a specific form for the constant of
integration in Eq. (18). However, this choice is not
unique, and one can, for example, also choose the con-
stant of integration, &, to be

E=xe!/T (19)

i.e., at t =0 one has £=x,. In this case a short calcula-
tion shows that one again finds the exact solution of the
original equation in the lowest-order approximation ob-
tained from the solution of Eq. (11).

A second instructive example is one in which the un-
derlying dynamics consist of linear drift and a simple
form of multiplicative noise. The Langevin equation
describing this model is

x=—kx +xn(t), (20)

where 7 (t) is white noise with {n2(¢)) =1/T, the param-
eter T having the dimensions of time. Equation (20) is to
be interpreted in the Stratonovich sense. The corre-
sponding Fokker-Planck equation can be solved exactly,
leading to an expression for the probability density p (x,?)
in the form

{In(x /xo)+kt}?
4t/T

—__1 exp | — , 21

)= e
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from which the moments are readily calculated as
(x™(t))=xlexp[n(n —kT)t/T)], (22)

which increases or decreases monotonically as a function
of time depending on the order of the moment.
J
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p(x,t)~ exp

The corresponding lowest-order approximation given by
van Kampen has the form

1 [x —In(1+12)]?
s e —————¢ —_—— 28
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Comprehensive analyses of Egs. (20)-(22), including a
treatment of such properties as the effect of the boundary
at x =0 and critical slowing-down behavior at some
values of k, can be found in Refs. [6-8]. In this example
the introduction of a running coordinate suggested in Eq.
(7) leads to an exact solution while a solution based on
the original van Kampen formulation has a second mo-
ment that is always monotonic in the same direction re-
gardless of the parameters.

V. EXPONENTIAL DECAY OF DIFFUSION
AND MOBILITY

A third slightly less trivial example based on an exactly
solvable equation for diffusion-dependent peak broaden-
ing in electrophoresis [7] also allows us to compare the
two approximation techniques. The diffusion equation
derived in that context takes the form

— 0 (emxpy . 23)
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When the initial condition is p (x,0)=258(x) the exact solu-
tion has been shown in [7] to be

zex/z
€t
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(24)
where I,(x) is a Bessel function. Realistic values for €
based on electrophoretic systems are the order of
€=1073. In this regime we may make a further approxi-
mation to the last expression by using the asymptotic re-
lation [8]

1 eM](a)
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which is valid for large A. The function n(a) is

a
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On making use of the approximation for the Bessel func-
tion in Eq. (25), collecting terms, setting
B=(2/t)exp(x /2), and inserting the result into Eq. (24)
we find

(B+1)'"2—1
B

—

and the lowest-order approximation furnished by the de-
velopment in [3] is

X__1__+\2
Polx,1) Je—l”—]. (30)
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A comparison of the relative errors incurred through the
use of Egs. (28) and (30) is shown in Fig. 1. From the two
curves in the figure it is evident that the van Kampen ap-
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0.50
0.33 | /
J FIG. 1. A comparison of the relative error
017 F } ! ! of the lowest-order approximations generated
5 I i ‘f/' by the two perturbation techniques applied to
o : o /| the example in Eq. (23). The solid line denotes
2 0.00 i = T - i that produced by the van Kampen method
© i ' o i while the dashed line corresponds to results
2 K { | produced by the method of running coordi-
-0.17 S ! ! nates. The central of the three vertical lines
/ p(%,05)/ 10 N 5)/10 indicates the position of the peak maximum,
0.33 | / e Xmax and the two surrounding lines indicate
K the abscissas of the points at which
,/ P (x,t)=p(xpax,2)/10.
.0.50 L 1 I 1
1.50 1.60 1.70 1.80 1.90 2.00
X
proximation is more accurate in the trailing edge of the tion” [9]. Moreover, they characterized their method as

cure and, more importantly, in the neighborhood of the
peak, while the approximation produced by the theory of
Weiss and Dishon is more accurate in the leading edge of
the curve. We have not considered whether this holds
true as well for initial conditions other than the & func-
tion at x =0.

VI. DISCUSSION

We have described the simplest formulation of two
techniques for generating approximate solutions to para-
bolic equations in a limit in which diffusive effects are
small. Both techniques can be extended to lead to a per-
turbation expansion that goes in powers of €!/2. The re-
sults of our limited investigation do not suggest that ei-
ther expansion in its original formulation is uniformly su-
perior to the other, but we have also shown that different
extensions of the two expansions are possible which have
not been explored to any great extent. It remains as an
open question whether this flexibility can be exploited
and, if so, how, knowing only the form of the Smolu-
chowski equation.

A number of investigators have proposed other
methods for generating solutions to parabolic equations
with weak diffusion effects. However, all of these
methods generally reduce to one or the other of the two
methods that have been described or do not allow one to
develop a systematic perturbation expansion. For exam-
ple, de Pasquale, Tartaglia, and Tombesi suggested what
they termed the ““quasideterministic approach which ... is
the mapping between the original stochastic process and
a new process which is associated with the initial condi-

being a ‘“non-perturbative expansion” [10]. However,
their technique can be shown to be equivalent to the
lowest order of the running coordinate approximation in
the form of Eq. (19).

Two final comments should be made. First, both tech-
niques are practical only for the solution of problems that
involve diffusion in an unbounded space. When absorb-
ing or reflecting boundaries are required in the underly-
ing physical picture both techniques are generally inap-
plicable due to difficulties associated with boundary con-
ditions. The difficulty in using the van Kampen method
is traceable to the fact that no solution is known to the
Ornstein-Uhlenbeck  equation with time-dependent
coefficients in the presence of boundaries. The difficulty
with the technique based on moving coordinates is that
any boundaries which, in the formulation of the problem
in physical coordinates, are fixed in space become time
dependent after the coordinate transformation indicated
in Eq. (7). Our second comment is that we expect that
neither of the two mentioned techniques provides an ap-
proximation that is uniform in time. This difficulty is not
unique to the two formulations that we have discussed,
but is rather a failing of all perturbative techniques that
do not specifically incorporate a technique for extending
their validity over longer periods of time. The work of
Suzuki as summarized in [11] provides one (ad hoc) ap-
proach to overcoming that particular problem.

The problems remaining open in this general area re-
late to the incorporation of the effects of boundaries into
the perturbation formalism and that of enlarging the
range in time over which the perturbation expansion is
able to furnish accurate results.
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