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Ziff-Gulari-Barshad model with CO desorption: An Ising-like nonequilibrium critical point
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The Ziff-Gulari-Barshad model for the reaction: CO+O-—CO, on a catalytic surface exhibits a first-
order transition to a CO-poisoned state, as the CO adsorption rate is varied. If the model is modified to
include desorption of CO at rate k, the first-order transition line terminates at a critical point k.. Here
we present detailed simulations of the critical behavior. The results support theoretical arguments plac-

ing the transition in the Ising-model universality class.

PACS number(s): 05.70.Ln, 82.20.Mj, 82.65.Jv

I. INTRODUCTION

Phase transitions and critical phenomena in nonequili-
brium systems have recently attracted considerable in-
terest. Surface reaction models, in particular, have been
studied intensively. One such model, devised by Ziff, Gu-
lari, and Barshad (ZGB) [1,2], describes some kinetic as-
pects of the reaction CO+0O—CO, on a catalytic sur-
face, and exhibits two phase transitions, one continuous,
the other discontinuous. The latter transition (to a CO-
saturated surface) may also be continuous, if CO desorp-
tion is allowed. In this paper we examine the critical be-
havior associated with this transition in detail.

The transition rules for the ZGB model (a nonequilibri-
um lattice Markov process or interacting particle system)
are easily stated: The surface is modeled as a regular lat-
tice of identical adsorption sites, upon which CO and O,
molecules impinge at rates Y and 1—Y, respectively. A
CO molecule may adsorb at a vacant site; if it lands at an
occupied site, it returns to the gas “reservoir.” Oxygen
molecules, by contrast, require a nearest-neighbor pair of
vacant sites to adsorb. Upon adsorption O, dissociates;
the two atoms may react independently. Formation of
any nearest-neighbor O-CO pair (in an adsorption event)
is followed immediately by a reaction to form CO, which
quits the lattice, vacating two sites. (In case a newly ad-
sorbed molecule has more than one nearest neighbor of
the other species, a reacting partner is chosen at random.)
Surface diffusion and nonreactive desorption were not in-
cluded in the original model, but have been explored in a
number of later studies.

Simulations [1,3] and mean-field theories [4—-6] reveal
three distinct (steady-state) phases for the two-
dimensional ZGB model: For sufficiently small values of
the CO adsorption rate (0 <Y <y,) the system eventually
becomes trapped in an ‘“oxygen-poisoned” state, i.e.,
every site is occupied by oxygen. At Y=y, there is a
continuous transition to an active phase (reactions
proceed indefinitely), which persists up to Y=y,, at
which point there is a first-order transition to a CO-
poisoned state.

O poisoning is not observed experimentally because 0x-
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ygen does not block CO adsorption sites. It was never-
theless of interest to establish the nature of this transition
in the ZGB model. By now it has been quite clearly
identified as belonging to the universality class of directed
percolation [7,8]. On the other hand, numerous experi-
ments [9-13] on catalytic surfaces reveal transitions be-
tween states of low and high CO coverage. At low tem-
peratures there is a discontinuous drop in the rate of CO,
production, as the partial pressure of CO is increased.
The jump in the production rate shrinks with increasing
temperature, and finally disappears at a certain critical
temperature. The natural interpretation [9] is that for
T > T, the CO desorption rate is high enough to prevent
occurrence of distinct high- and low-CO-coverage phases.
[For the Pt(210) surface, at O, partial pressures of
(1.3-2.0)X 107 Torr, Ehsasi et al. [9] find T, ~565 K.]
A number of authors [5,6,14—16] have observed that the
ZGB model, modified to include CO desorption, exhibits
qualitatively similar behavior. That is, if CO is permitted
to desorb at rate k, then the distinction between high-
and low-CO-coverage phases persists only for k less than
some critical value k.. The transition between high and
low CO coverage has also been studied at the kinetic
(mean-field) level using a model which is more realistic
than ZGB, in that blocking of CO adsorption by O is not
assumed [17]. This model again reveals a critical CO
desorption rate, with the critical point appearing as a
cusp in the bifurcation analysis.

It is of interest to study the nonequilibrium critical be-
havior associated with CO saturation, both in the ZGB
model and in experiments on catalytic surfaces. We shall
refer to this transition as “CO poisoning” even though it
does not involve an absorbing state. While the ZGB
model does not represent all aspects of the kinetics faith-
fully, the high degree of universality in critical phenome-
na suggests that the model can describe qualitative as-
pects of the critical behavior correctly. In this paper we
present detailed simulation results on the critical behav-
ior. In Sec. II we review the pertinent theoretical back-
ground at the level of mean-field theory, and then state
the argument for Ising-like behavior. The simulations
are described in Sec. III, and a brief summary is given in
Sec. IV.
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II. BACKGROUND

To begin, we consider the simplest (one-site) mean-field
description of the model [4-6,16]. In this approxima-
tion the CO and O coverages, Ocg and O, respectively,
satisfy

o =2(1=Y)(1=85=6¢o)*(1-6co)
—Y(1—6,—60)[1—(1—6)*] (1)
and
doe
—dfg=Y(1—eo—6CO)(1“80)4

—2(1—=Y)(1—=65—60c0)*[1—(1—60)°]
—kO¢o . )

Here k is the CO desorption rate. These equations exhib-
it multiple steady-state solutions, over some range of Y
values, when k <k.. We have determined (numerically)
the location of the critical point as k,=0.2170927,
Y,=0.6006323. The critical concentrations are
©0,.=0.061179 and Oy =0.344115. Let ©65=6,
+1,0c0=0co,. +§ Y=Y, +)y, and k=k.+«k.
Linearizing Egs. (1) and (2) about the critical point, we
find

%=~—0.33229y—(1.316 33+1.07409y )y

—[0.498 60—1.80723y 1¢ (3)

and

%té =0.969 78y —0.344 12«

—[0.36630+1.571 62y —k &
—[0.96693+4.15833p 19 . 4)

At the critical point (y =xk=0) the mode with eigenvalue
zero is (7,£)=(0.354224,—0.935161), and the stable
mode is (7,£)=(0.805923,0.592020). Its decay rate is
approximately 1.676. Call the amplitudes of these modes
¢ and v, respectively. The long-time evolution of the
marginally stable mode follows,

%=0.2879K-— 1.0155y +(1.1823y —0.7823k)¢

—0.3703¢%+ - - - . (5)

This equation has the same form as for the magnetization
in a mean-field theory of the Ising model near the critical
point. Certain combinations of xk and y (i.e., the excess
CO desorption and adsorption rates) serve as analogs of
the temperature and external field.

At the mean-field level, the (nonequilibrium) critical
point in the ZGB model with CO desorption is isomorph-
ic to the (equilibrium) critical point in a system with a
scalar order parameter. We believe that this identity of
critical behavior is not simply an artifact of mean-field
theory, for reasons which may be summarized as follows.

A proper coarse-grained description of the model in the
neighborhood of the critical point is given by a Langevin
equation for a scalar field,

Qﬂg‘t’—”=F(¢(x',t))+n(x,t> , ()

where F is an odd function of ¢ and 7(x,¢) is a Gaussian
noise with zero mean. Since the model does not have de-
tailed balance there is no fluctuation-dissipation theorem
relating the covariance of 7 to F, and we have simply
n(x,t)y(x’,t")=8(x —x')6(t —t")T'($(x,t)), where T is
an even function of ¢ and I'(0)¥0. In writing Eq. (6)
we assume that there is but a single mode ¢ which be-
comes unstable at the critical point. This assumption
should be valid almost everywhere in the parameter space
of models exhibiting critical CO poisoning. In other
words, the simultaneous vanishing of the eigenvalues as-
sociated with fwo independent modes requires ‘““fine tun-
ing” of reaction rules, as Grinstein, Lai, and Browne have
argued in a related context [7]. The evolution of the
order-parameter density is irreversible (at least on short
scales), but free of any bias or driving field, and it cannot
become trapped in an absorbing state. (Here one may
draw a distinction between the present model and two
other classes of nonequilibrium critical points with non-
Ising behavior: driven diffusive systems [18,19], in which
isotropy and reflection symmetry are violated, and mod-
els such as the contact process which exhibit a directed-
percolation transition into an absorbing state [7].)

Grinstein, Jayaprakash, and He [20] have pointed out
that reversible or not, models with short-range interac-
tions which respect the symmetry of the lattice and sym-
metry under spin inversion (here, ¢— —¢), belong to the
Ising universality class. Critical CO poisoning should
therefore be characterized by the usual Ising critical ex-
ponents. The dynamic critical behavior should be of the
Ising, nonconserved order parameter (“model A” [21])
kind. We note that convincing evidence for Ising-like
critical behavior in another nonequilibrium model—the
majority-vote model—has recently been reported by de
Oliveira [22]. Similarly, we expect Ising-like critical be-
havior in the “triplet creation” model with spontaneous
particle creation [23]. (In the absence of spontaneous
creation the latter model exhibits either a continuous or a
first-order transition into an absorbing state. Spontane-
ous creation removes the absorbing state.)

The argument outlined above implies Ising-like critical
behavior for ‘“global” properties such as the correlation
length and the order parameter. Various local properties
of Ising models, such as the energy density or specific
heat, have no analog in the present non-Hamiltonian
model. On the other hand, it is natural to ask how the
critical behavior of the reaction rate in the ZGB model is
related to Ising exponents.

Let R be the rate of CO, production per site. In a
steady state d Op/dt =0 implies

R=Y(1—0,—0:0)— kO - ¥

Since the order parameter ¢ is expected to be a linear
combination of the O and CO coverages, R itself has a
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linear dependence upon ¢. (It would be an extraordinary
coincidence for R to have null projection on ¢.) Letting
r=R —R,, we have for the singular part rg,, <¢ in the
vicinity of the critical point. Now ¢ is the analog of the
magnetization m in the Ising model. With +=(T
—T,)/T, the reduced temperature, and 4 the magnetic
field, the critical behavior of m is given by the well-
known scaling expression [24]

m=|7|PM  (h /|7|B*7), (8)

where the branch of the scaling function M depends on
the sign of 7. M(x)=~xP/BTV=x1/4 35 x > 0. Again
barring a coincidence, 7 and A correspond to linear com-
binations of k and y in the ZGB model. Thus, for exam-
ple, varying y while keeping k fixed at k. corresponds to
h =ay, 7=by, and so to

|1/5

rsing &« |y Sgn(y) . 9)

[There is of course one direction through the origin of the
(k,y) plane along which A =0, but this direction is not
known a priori.] We conclude that, generically, the criti-
cal behavior of the reaction rate involves the exponent 8.

III. SIMULATIONS

The simulation algorithm generates a sequence of tri-
als, adsorption, and desorption, which occur with proba-
bilities 1—k and k, respectively. In the desorption pro-
cess a site is selected at random,; if it is occupied by CO
the site is vacated, if not, the trial ends.

In the adsorption process we choose the molecule (CO
or O,, with probabilities Y and 1—Y, respectively), and a
lattice site x random. Site x must be vacant for the trial
to proceed. The CO molecule is placed at x if none of the
nearest neighbors of x harbors an O atom. But if some
neighbors, y,...,y, (n=1,...,4) are occupied by O, a
reacting site is selected at random from this set. The net
result in this case is the emptying of one neighbor of site
x while x itself remains vacant.

In the case of O adsorption, a nearest neighbor y of x is
selected at random. Both x and y must be vacant for the
trial to proceed. If the nearest neighbors of x are free of
CO then an O atom is placed at x, but if some neighbors
zy,...,z, (n=1,2,3) are occupied by CO, one is selected
for reaction, so that it (and site x) are vacant at the end
of the process. Adsorption and reaction at site y follow
the same rules.

The model was simulated on a square lattice of L XL
sites (L =10-160), with periodic boundary conditions.
All results reported here represent steady-state condi-
tions. A striking result of the simulations is that hys-
teresis is observed (for sufficiently small desorption rates
k), even in rather small systems, i.e., for L =20. Exam-
ples of hysteresis in the CO coverage (for L =40) are
shown in Fig. 1. For k =0.05 hysteresis is absent; this is
somewhat below the critical desorption rate for this lat-
tice size (see below). It should be noted that the coverage
is stable over periods of at least (1-2)X 10* lattice up-
dates, so the results represent well-defined metastable
states of the model. In Fig. 2 we present CO coverage
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FIG. 1. Steady-state CO-coverage vs Y in simulations of the
ZGB on a square lattice of size L =40. Diamonds: desorption
rate k=0.01; filled squares: k=0.02; open squares: k=0.03;
X: k=0.04; =: k=0.05.

curves for larger values of k. The “susceptibility”
dOBOp/dY becomes quite large in a narrow range of Y
values, as one approaches k,. A rapid decrease in the re-
action rate with increasing Y (the primary experimental
indication of the poisoning transition), is also seen in our
simulations, as shown in Fig. 3.

Our original intent was to characterize the critical be-
havior of such properties as the susceptibility and the or-
der parameter (i.e., the differences in CO or O coverage
between the two phases), but it proved very difficult to
obtain results of the precision required for reliable es-
timation of critical exponents. One source of difficulty is
that unlike in simple Ising models, the coexistence curve
Y oex (k) is not known a priori. Similarly, above k. one
must determine the susceptibility over some range of Y
values, to locate the maximum. In fact, a reliable deter-
mination of the value Y, (k) which maximizes the sus-
ceptibility was feasible only for small lattices (L =10,20);
owing to large fluctuations and slow evolution, this was
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FIG. 2. CO coverage in the ZGB model, L =20, for
k=0.04,0.05,...,0.12.
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FIG. 3. CO, production rate R vs Y, k =0.05, L =40.

not practical for larger systems. Below the critical point,
coexistence can in principle be determined using the zero
interface-velocity criterion [1,5], but we found it impossi-
ble to stabilize an interface in small systems. Instead of
analyzing the susceptibility or coverage gap, we turned to
a coverage-histogram analysis [25] to determine the size-
dependent critical desorption rate k.(L).

We estimate the probability distribution for O by
noting the number of times N; the coverage fell in the in-
tervals [0,A),[A,2A),...,[1—A,1] (A=0.01). Plots of
P(Ocp) (“histograms”) are presented in Fig. 4. For
sufficiently small k (depending on the lattice size), the his-
togram is bimodal over some narrow range of Y values,
representing distinct phases. The heights of the peaks
vary with Y in the expected fashion; peaks of equal height
are observed at Y, (k), supporting the interpretation of
Y,.(k) as the coexistence line. For larger k values only a

10

FIG. 4. Unnormalized CO coverage histograms for L =20.
Broken line: k=0.10, Y=0.57; solid line: k=0.075,
Y =0.559; dotted line: k=0.07, Y=0.55625; dashed-dotted
line: k=0.0425, Y=0.542.
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FIG. 5. Critical desorption rate k. vs 1/L.

single peak, whose location varies smoothly with Y, is ob-
served. We locate the effective critical desorption rate
k.(L) at the boundary between these regimes. At k(L)
(and the corresponding Y,, ), the histogram exhibits a pla-
teau extending over a broad range of ©q values.
Finite-size scaling theory [26] implies that the L-
dependent critical point scales with system size so

k(L)—k,=aL 'V, (10)

where k., is the critical desorption rate in the infinite-size
limit and v is the correlation-length critical exponent. In
Fig. 5 we plot k(L) vs 1/L for L =10, 20, 40, 80, and
160. The points (particularly those for the three largest
system sizes) fall very close to a straight line, yielding the
estimate k,=0.04060(5) for L — 0, and confirming the
exponent value v=1, the same as for the Ising model in
two dimensions. A similar analysis yields Y,
=0.542 12(10) for the critical CO adsorption rate. Our
results for k, and Y, are consistent with those recently
reported by Brosilow and Ziff [16], who performed simu-
lations using a ““‘constant coverage ensemble’”” method.

Finally, we report some preliminary results on the
fourth-order cumulant of the CO coverage,

uL:[<e4co>_3(8%:0)2_4(6(:0)(6%0)
+12( 02— 6{O)*]
X {3[(8%0) — (60?1} 71 . (11)

For L =10, 20, and 40 we determined the line Y, (k) of Y
values which maximize the cumulant (at fixed k). To
within uncertainty, this line agrees with Y, (k) defined
above. For Ising models on the square lattice with
periodic boundary conditions, it has been found [27] that
u; takes the value 0.61 at the (infinite lattice) critical
temperature (and for zero external field) independent of L,
so long as one is in the scaling region. The value 0.61 is a
universal, finite-size property of Ising-like models at their
critical temperature. In the present case, if the critical
point is in the Ising universality class, u; should attain
this value at k., on the coexistence line, Y, (k). In fact
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we find that u; =0.61 for kK =0.040—0.041, for the lat-
tice sizes considered. This is certainly consistent with an
Ising-like critical point at k,=0.0406, but we must re-
gard this result as preliminary since we have been unable
to obtain useful data on u; for larger lattice sizes.

IV. SUMMARY

We have performed mean-field and Monte Carlo stud-
ies of the Ziff-Gulari-Barshad model incorporating
desorption of CO. A general argument leads us to expect
that the critical point for CO ‘“poisoning” belongs to the
Ising universality class. The critical behavior of the reac-
tion rate is found, in general, to involve the Ising ex-
ponent 8. Analysis of simulation results using finite-size

scaling yields a correlation-length exponent v=1, con-
sistent with Ising-like critical behavior.
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