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Kosterlitz-Thouless transition in a dilute Bose gas
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We study the two-dimensional dilute Bose gas using the ladder or T-matrix approximation, which is
valid if ln(1/na 't))1, and show that this approximation can describe also the critical region of the
Kosterlitz-Thouless transition accurately. In particular, we consider the superAuid properties of the gas
and find that the superfluid density shows the square-root cusp together with the universal jump at the
critical temperature. The theory is applied to spin-polarized atomic hydrogen adsorbed on a superAuid
helium film, since this appears to be one of the most promising experimental setups to achieve the
Kosterlitz-Thouless transition in a weakly interacting Bose gas.

PACS number(s}: 64.10.+h, 67.65.+z, 67.40.—w

I. INTRODUCTION

In the last two decades it has become increasingly clear
that the physics of a many-body system in two dimen-
sions is fundamentally different from the physics of the
same system in a three-dimensional geometry. This can,
for example, be seen in semiconductors, where the study
of the quantum Hall effect [1] has led to the notion of
particles with fractional statistics and in the recently
discovered high-temperature superconductors, which
have such unusua1 normal state properties that it has
been suggested that the copper-oxide layers in these ma-
terials are responsible for a breakdown of Fermi-liquid
theory [2].

This difference is in particular illustrated by the cele-
brated Mermin-Wagner-Hohenberg theorem [3], which
forbids the spontaneous breaking of a continuous symme-
try in two dimensions due to the enhanced importance of
long-wavelength thermal Auctuations. However, a
different kind of phase transition to a state with algebraic
long-range order can occur in various two-dimensional
systems, as first pointed out by Kosterlitz and Thouless
[4]. In the case of a two-dimensional superfluid this so-
called topological phase transition is associated with the
dissociation of a large number of vortex pairs and the im-
mediate destruction of superAuidity caused by the phase-
slip processes that occur once unbound vortices are
present [5]. Nelson and Kosterlitz predicted by means of
a renormalization-group analysis that the discontinuous
drop in the superAuid density n, at the critical tempera-
ture T, is of a universal nature and such that n, A, =4,
where A=(2rrR /mk~T)l'~ is the thermal de Broglie
wavelength and m the mass of the particles in the
superfluid [6]. This prediction was subsequently verified
experimentally for superAuid He films, using third-sound
measurements [7] and also a torsional-oscillator tech-
nique [8].

Another two-dimensional Bose system, which is ex-
pected to show the Kosterlitz-Thouless transition to a
superAuid phase and on which we will concentrate in this
paper, is spin-polarized atomic hydrogen adsorbed on a
superfiuid He surface [9]. In contrast with liquid heli-

um, atomic hydrogen has the advantage of being a weak-
ly interacting Bose gas and ofFers the opportunity to
derive its physical behavior from first principles. More-
over, the property of an, in principle, independent control
over density and temperature makes this an almost ideal
two-dimensional model system for both theory and exper-
iment.

However, there are two important problems. First, at
the densities needed to observe the Kosterlitz-Thouless
transition at moderate temperatures the adsorbed gas de-
cays quite rapidly because of three-body recombination
processes. Fortunately, it seems possible to circumvent
this problem by using a relatively large bufFer volume to
increase the lifetime of the total system [10]. Second, due
to the finite lifetime of the gas sample the time scale for
the nucleation of the phase transition becomes of the ut-
most importance. A similar problem in the context of
achieving Bose-Einstein condensation in magnetically
trapped atomic gases was recently studied by one of us
[11]. In that case it was shown that the actual nucleation
is a fast process and that two-body elastic collisions act as
a bottleneck for the formation of the condensate. Be-
cause of the different nature of the phase transition it is,
however, far from clear that the same is true for the for-
mation of the quasicondensate in two dimensions. Evi-
dently, we can only address this complicated nonequili-
brium question after we have first thoroughly studied the
equilibrium situation. This is our aim in the present pa-
per.

The two-dimensional dilute Bose gas was first treated
by Popov [12],who introduced the concept of a quasicon-
densate as the microscopic explanation for the appear-
ance of superAuidity in the gas. However, it was stressed
by Fisher and Hohenberg [13] that Popov's treatment is
only valid in the extreme limit that ln[ln(1/na )]))1,
where n is the density and a the scattering length. Fur-
thermore, the super Auid density does not show the
universal jump predicted by Nelson and Kosterlitz. This
implies that the theory is not able to describe the
critical region below T„which notably is of
0( T, /ln[ln(1/na ) ]) and very small in the limit
ln[ln(1/na )]))1 [13]. In the case of atomic hydrogen
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the above-mentioned diluteness condition is not fulfilled
and we have only the much weaker inequality
1n(l/na )))1. Hence Popov's theory is not applicable
in this case and cannot give an accurate prediction for
the critical density of the system, which is experimentally
of great importance because the lifetime of the gas is in-
versely proportional to the density squared.

The paper is organized as follows. In Sec. II we discuss
the dilute Bose gas in both two and three dimensions, be-
cause we want to point out explicitly the great similarity
between the two cases, as well as their essential
differences. In Sec. II A we use a saddle-point or loop ex-
pansion and straightforwardly rederive Popov's results.
We extend this theory in Sec. IIB by applying the so-
called T-matrix or ladder approximation, which in three
dimensions can be rigorously justified if na «1 and in
two dimensions if 1/1 (nl/na ) ((I [14]. In particular,
we find in this section the universal jump in the superAuid
density, which indicates that with this approach we have
indeed obtained an accurate description of a weakly in-
teracting Bose gas. In Sec. III we use this formalism to
obtain various quantities of a two-dimensional spin-

polarized atomic hydrogen gas, such as the critical tem-
perature and the superAuid density. Moreover, we also
consider the situation of the two-dimensional gas in
thermal contact with a three-dimensional bu6'er gas and
calculate the surface density as a function of temperature
and volume density. We end with some concluding re-
marks in Sec. IV.

II. DILUTE BOSK GAS
IN TWO AND THRKK DIMKNSIONS

In the functional approach to the imaginary-time for-
malism [15] the grand-canonical partition function of the
Bose gas is a functional integral

Z= f d[4*]d[@lexp &S[—@*,fl1

over c-number fields P*(x,r) and g(x, r) that obey the
periodicity conditions g*(x, r+A'p) = lit*(x, r) and
P(x, r+A'P) =g(x, r) because of the trace involved in the
calculation of the partition function. The Euclidean ac-
tion in the exponent is

S[g*,g) = f dr J dx P*(x,r) A' — —p le(x, r)AP

0 Bt 2m

+ ,' fdx f—dx'lt*(x,r)g*(x', r) V(x —x')p(x', r)g(x, r) ', (2)

with /3=1/k~ T, p the chemical potential, and V(x —x')
the interaction potential.

Since we are dealing with a homogeneous system it is
convenient to expand the fields into Fourier modes via

1 i(k x —e„~)
(x,r)= ~k ne(rPV)'" „„""

and the complex conjugate expression for P*(x,r). Here,
V is the volume or area of the system and co„=2~n /A'P

are the bosonic Matsubara frequencies, which incorpo-
rate the above-mentioned periodicity condition. The ac-
tion becomes

S[a*,a]=g( —i%co„+ok—p)ak „a
k, n

1 1+
g X V(q)+k+q, n+m k' —q n' —m2 fi Vkk,

n, n', m

introducing the kinetic energy ck =A k /2m and the
Fourier transform of the interaction potential
V(q) = jdx V(x)exp(iq. x).

This action completely determines the thermodynam-
ics of the Bose gas. In the case of atomic hydrogen the
envisaged experimental conditions are such that we are
dealing with a gas well inside the quantum regime, which
means that a/A «1 and consequently that only s-wave
scattering is of importance. Hence we can neglect the

A. One-loop approximation

The thermodynamics of the system up to first order in
the loop expansion follows from a calculation of the free
energy after a quadratic approximation to the action. In
the "normal" phase the order parameter ( lit(x, r) ) of the
Bose gas is equal to zero and the action is approximated
by

S„[a*,a]=g( ihco„+—Ek
—P)ak „ak „.

k, n

(5)

Performing the functional integral [15] the free-energy
density becomes

f„(p)= gin(1 —e " )+pn,
k

which is minimized with respect to the chemical potential
if

X p(, )
=—X&(Ek—i).=1 1 1

As expected, this is just the equation of state for the ideal
Bose gas.

In the "superfiuid" phase we have (g(x, w))WO and
equal to the square root of the (quasi)condensate density

I

momentum dependence of all collision quantities in the
following and in particular use V(q) = V(0) =—Vo.
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no. Expanding up to quadratic order the action is given
by

noVp
2

S,[a*,a]= p—np

+g' g[( i—App„+ei, +2np Vp JLc)a f „a& „
k n

+ —,'np Vp(ai, „a

+a'„„a„'„)],
where the prime denotes that the summation is over wave
numbers ~k

~

& kp only. (In three dimensions a condensate
can exist and we must use ko=0. However, in two di-
mensions a single momentum state cannot be macroscop-
ically occupied and the quasicondensate density no corre-
sponds to the density of particles with momenta smaller
than Akp. The magnitude of the low-momentum cutoff
fzkp does not follow from the one-loop theory but is
determined in the next section. ) Diagonalizing the above
action by means of a Bogoliubov transformation, using
the dispersion AAk defined by
(fiQi, ) =(ei, +2np Vp

—p) —(np Vp) and the usual coher-
ence factors ui, =

—,
' [(A'Qi, /si, )' +(Ei,/iriQi, )' ] and

vi, =
—,'[(iriQi, /Ei, )' —(si, /iriQi, )' ], we find for the free-

energy density

noVo 1 1f, (p, n p )= pn p +———g'( A'Q
i,
—si, —2n p Vp +p )

k

following equation of state for the "superAuid" phase:

1 &k+no Vo
n =np+- N(iiicoi, )

[xo)

c,k+ no Vo —Rook+ 2')k

determining the condensate density as a function of tem-
perature and density.

In two dimensions we are, in first instance, not allowed
to take the limit ko &0, which is an ad absurdum proof of
the fact that here a condensate cannot exist. However,
solving for np in Eq. (10b) we find that the logarithmic
divergence in the expression for no exactly cancels the
divergence in Eq. (10a). Therefore the total density

p 1 ~k ~k ~~k
n = ——g N(A'coi, )+

Vo vk (~o) A~k
" 2a~

(12)

is free of infrared divergences if we use
A'roi, =(Ei,+2pEi, )', which is again justified since it only
gives rise to corrections that are of O(A'i).

Unfortunately, Eq. (12) still has an ultraviolet diver-
gence, due to the neglect of the momentum dependence
of the potential V(q). Indeed, the two-body T matrix
describing the scattering of two particles with initial rela-
tive momentum Ak' and final relative momentum Ak at
complex energy z obeys the Lippmann-Schwinger equa-
tion [18]

kg T @gal+ g'ln( 1 —e ")+pn.
k

T (k, k';z)= V(k —k')+ —QV(k —k")1

V z —2c.k

Minimizing with respect to the chemical potential now
leads to

XT (k",k', E) . (13)

t'

E,k+2np Vp p
n =np+ —g' N(iriQi, )

k k

ok+ 2no Vo —p —AQk

2fiAk
(1oa)

whereas minimizing with respect to the (quasi)condensate
gives

Neglecting the momentum dependence we find from this

1

T"(o,o;z)
1 1 ~ 1+-

Vo Vk 2ck —z
(14)

having for z = —2p exactly the same ultraviolet behavior
as the right-hand side of Eq. (12). In a very good approx-
imation, with an error of O(1/ln(1/na )), we thus find
that

2c,k+ 3no Vo —2p
p=np Vp+ Vp —g' N(A'Qi, )

V k ink
p 1

N(iiicoi, ),T' (0,0; —2P) Vi (~p) ~~i
(15)

2~k+ 3no Vo 2p —2AQk

2fiQk

At this point it is important to realize that the loop ex-
pansion can formally be seen as an expansion in orders of
A' [16]. Therefore we can substitute in the second term on
the right-hand side of Eqs. (10) the zero-loop result
p=noVo because this leads to corrections that are of
higher order in A'. In particular, this implies that AQk is
replaced by the well-known Bogoliubov dispersion rela-
tion A'coi, =(Ei,+2npVpei, )' [17]. Taking the linear be-
havior of A'co„ for small ~k~ into account we notice that in
three dimensions we can take the limit ko &0 to find the

in agreement with the results of Popov [12] and Fisher
and Hohenberg [13].

The superAuid density is obtained from an evaluation
of the momentum-momentum correlation function and is
given in d dimensions by

A
n, =n — —g k [N (iiicoi, )+N(iricoi, )] . (16)

k (wo)

As mentioned previously, the superAuid density as a
function of temperature goes to zero in a continuous
fashion and, in two dimensions, does not describe the ex-
pected discontinuity at the critical temperature.
Mathematically, this comes about because at a fixed den-
sity Eq. (15) can be satisfied for all temperatures.
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In addition, comparing the free energies of the "nor-
mal" and "superAuid" phases, we note that at zero tem-
perature the free energy of the "normal" phase is zero
and smaller than the free energy of the "superAuid"
phase, which is equal to &OT /2. This inequality can ac-
tually be shown to hold at all temperatures. Solely on the
basis of the one-loop calculation we are therefore forced
to conclude that the "normal" phase is more stable and
will be favored in thermal equilibrium. In three dimen-
sions this situation represents no problem, because the
ideal Bose gas is indeed a very good first approximation
to the weakly interacting case at all temperatures. How-
ever, in two dimensions the interactions are essential for
the superAuid properties of the system and the approxi-
mation of an ideal gas always breaks down at sufficiently
low temperatures. We thus have to treat the interactions
more carefully. This is done in the following section,
where we apply the T-matrix approximation and find that
both problems are solved.

We first consider the normal phase above the critical
temperature of Bose-Einstein condensation or the
Kosterlitz- Thouless transition. Introducing p' =p —AX
the self-energy is given by

A'X =—g T (0,0; Ek
—A'X)N(Ek —P'),2

k

where p' is determined from

E
n =—QN(ck —p') .

k

(17)

Note that we have neglected the momentum and frequen-
cy dependence of the self-energy, because in the tempera-
ture range of interest a/A (( l. In three dimensions the
two-body T matrix is also independent of energy in this
range, which leads to AX=2nT (0,0;0) or equivalently
AX =Smnak /rn. However, this is not the case in two di-
mensions where the T matrix has a logarithmic behavior
and we must use

B. T-matrix approximation
2

2g( )
4vrh /m

mi —ln(k a /8) —2y
(19)

To extend the previous theory of the extremely dilute
Bose gas to higher densities and temperatures, we calcu-
late the relevant self-energies in the ladder or T-matrix
approximation and hence take diagrams with an infinite
number of loops into account. The procedure to be used
is summarized diagrammatically in Fig. l.

with y =0.5772 Euler's constant [19].
The situation in the superfiuid phase below the critical

temperature is more complicated. From the definition of
the normal and anomalous self-energies X»(k, co„) and
X&z(k, co„), respectively, the quadratic part of the effective
action including all orders of perturbation theory is

~ ff~ a] 2 X~ak, —k, —
k n

Go '(k, co„)

0 Go '( —k, —co„)

X„(k,co„) X,2(k, co„)

X*,2(k, co„) X„(—k, —co„)
(20)

p=fiX„(0,0)—A'X, ~(0,0) . (22)

Because of its central importance for the theory in this
section and to make the paper more self-contained, we
give a simple proof of this theorem in the Appendix.

where the zeroth-order Careen's function Go(k, co„)
=R/(ilia„—Ek+p) describes the ideal Bose gas [cf. Eq.
(5)]. Using this action and neglecting the momentum and
frequency dependence of the self-energies we find for the
density of the system

1
n =no+ g g(ak „ak „)

V k

ok+Ax „ok+As„—a~k=no+ —g' N(A'cok) +
V „A' 2116)k

(21)

with A'cok=(8k+2k'X&zek)' . To eliminate the chemical
potential and X» from this result we used the
Hugenholtz-Pines theorem [20], which states that

(&) T

(b)

FIG. 1. Diagrammatic representation of the T-matrix ap-
proximation. The wavy line corresponds to the interaction V,
the straight line to the dressed one-particle propagator, and the
dashed line to a factor (no)' . {a) T-matrix equation. (b) Self-
energy in the normal phase. (c) Normal and anomalous self-
energies in the superfluid phase.
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Notice that Eqs. (21) and (22) constitute a complete set of
equations for the (quasi)condensate density no and the
chemical potential p at a fixed temperature and density,
once the normal and anomalous self-energies are known.
As announced, they will here be evaluated in the T-
matrix approximation.

To do so we first have to discuss the many-body T ma-
trix T (k, k', K;z), which, due to the surrounding gas,
depends also on the center-of-mass momentum fiK of the
colliding particles and which should incorporate the
influence of the (quasi)condensate on the scattering pro-
cess. Since we are interested in the matrix element with
all momenta equal to zero, we consider only this case. In
a good approximation we find first of all that

[ 1+2N ( %cod ) ]T (k, 0,0;z) = V(k)+ —g'V(k')
V„, z —2

X T (k', 0,0;z), (23)

having the structure of a Bethe-Salpeter equation for the
scattering of Bogoliubov quasiparticles. To arrive at this
result we assume that the range of momenta for which
the Bogoliubov dispersion A~& has a linear behavior is
small compared to I/a. Because A'X, 2 is at most of
O(nT ) this condition reduces to na" ((1,which is con-
sistent with the condition for the validity of the T-matrix
approximation in both two and three dimensions. It is
important to note that the derivation of Eq. (23) is more
involved in three dimensions due to the absence of the
low-momentum cutoff Ako and the divergence of the
coherence factors uk and Uk at long wavelengths. How-
ever, a rigorous justification that avoids all divergences
can be given and is based on the use of the Hartree-
Fock-Bogoliubov approximation to the one-particle prop-
agators in the kernel of the T-matrix equation.

From Eq. (23) we conclude that, even in two dimen-
sions, T does not have a strong energy dependence and
we are allowed to take z also equal to zero. Hence the
self-energies are (see Fig. 1)

Ez+noT B(0,0;0)
n =np+ —g N(g~j, )

~a&0 AQ)g

c,z+ no T (0,0;0)—fico&+
2i6cog

(26)

2M 71

mkB g( —,
'

)
(27)

and g( —', ) =2.612.
In the two-dimensional case we eliminate the quasicon-

densate density no in favor of the chemical potential p.
Introducing p'=p —AX)) = —AX)2 we find

p
T2 (0,0;2p')

N (Acoq)1+2T (0,0;2p') —g'
k ~~k

Fg E,k p '66)g
+—g' N(fico&)+ . , (28)v„ 2Acog

where Acoz=(sk —2p'ek)' and we used Eq. (25) to ex-
press the density solely in terms of the two-body scatter-
ing length a, as in the three-dimensional case.

Comparing with Eq. (15) we note two fundamental
differences between the one-loop result and the result
within the T-matrix approximation. First, due to the
difference in sign of the quasiparticle contribution, Eq.
(28) does not have a solution for all temperatures at a
fixed density: As shown in Fig. 2 the right-hand side as a
function of p' has a minimum for nonzero temperatures.
Hence the Kosterlitz-Thouless transition occurs at the
density and temperature corresponding to this minimum.

the chemical potential by p=(2n n—o)T (0,0;0), and
the dispersion relation of the Bogoliubov quasiparticles is
A'coq= [sz+2noT (0,0;0)E&]' [13]. The superfluid den-
sity is, of course, found from Eq. (16). Note that in the
limit of vanishing condensate density, we exactly recover
the results of the normal phase at p'=0. Therefore the
critical temperature equals the ideal gas value

' 2/3

RX„=2nT (0,0,0;0),
AX, 2=noT (0,0,0;0),

(24)

and indeed momentum and frequency independent as as-
sumed initially. Moreover, using Eq. (13) and assuming
that co=—A ko/2m (&AX&z, which will be verified below,
we obtain the convenient relation

1

TMB(0 0 0 0)
1 N(A'co„)+-

T'B(0,0 —2fiX» )

(25)

2

In three dimensions Eq. (25) shows that the influence
of the surrounding gas on the collision of two par-
ticles is very small, and more quantitatively, that
T (0,0,0;0)= T (0,0;0)[1—O(naA )]. Therefore the
equation of state is given by [cf. Eq. (21)]

-u'lk. T

FIG. 2. Density as a function of chemical potential for three
different temperatures such that (1) a /A = 1 X 10, (2)
a/A=1X10, and (3) a/A=1X10
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co(T) = —koln(a/A)+ A, + A2(a/A),

with Ao ——4. 343 X 10
A2= —9.773X10 '.

For a better understanding of the validity of this ap-
proach it is important to notice the following: From the
preceding results we find that at length scales larger than
1/ko the system is described by the effective action

and

S' [P*,P]=J d~ ~ Jdxf*(x, ~)

x A
a g2p2 +p' P(x, ~)

2m

TMB
+ Jdx Ig(x &)I' (29)

which involves only nontopological phase fluctuations,
because the Landau-Ginzburg equation derived from this
action does not have vortex solutions due to the fact that
the correlation length ( —mp'/fi )

'~ is much smaller
than 1/ko. Therefore all the vortex dynamics has been
integrated out and we expect to find the critical behavior

0.05

0.04

0.03

0.02

0.01

0.00
10' 10' 10' 10'

Note that in this situation the superAuid density, follow-
ing from Eq. (16), is nonzero and we immediately obtain a
discontinuous behavior at the critical temperature.

Secondly, Eq. (28) explicitly depends on the energy
cutoff co, which on physical grounds is proportional to
—p' since the correlation length for amplitude Auctua-
tions is proportional to (mnoT /fi )

'~ . Furthermore,
the proportionality constant co should be such that at the
critical temperature the universal jump (n, A, =4) is
reproduced. We expect co to depend only slightly on
temperature and to be small compared to one for Eq. (25)
to be valid and our theory to be self-consistent. This is
borne out by a numerical implementation of the above
procedure, the result of which is shown in Fig. 3. For
convenience we mention that the function co( T), within
the range of a/A displayed in Fig. 3, is very accurately
described by the expansion

predicted by Nelson and Kosterlitz in the superAuid den-
sity. Moreover, the phase fiuctuations at these length
scales lead to a negligible renormalization of the
superAuid density, although they are clearly crucial for
an account of the algebraic long-range order in the sys-
tem.

In principle, this still does not justify entirely our pro-
cedure for determining the low-momentum cutoff, be-
cause an estimate of the higher-order diagrams to the
self-energies shows that the T-matrix approximation
breaks down close to the critical temperature. This also
reveals itself in the right-hand side of Eq. (28) becoming
sensitive to the cutoff near its minimum. However, the
fact that the right-hand side as a function of p' has a
minimum for nonzero temperatures is anticipated to be
an exact property of the two-dimensional Bose gas. Our
approach, therefore, not only captures the essential phys-
ics but even incorporates in a good approximation the
effect of the higher-order corrections near the critical
temperature, because the critical region is of
0( T, /1 n( A/a) )and thus small for the temperatures of

interest. Herewith, we complete our discussion of the di-
lute Bose gas in two and three dimensions. In the next
section we apply the above theory to spin-polarized atom-
ic hydrogen and calculate various observables, which
may be relevant to future experiments.

III. SPIN-POLARIZED ATOMIC HYDROGEN

We consider a gas of doubly spin-polarized atomic hy-
drogen (the atoms are in the so-called

I
b ) state of the ls

hyperfine manifold [9]) adsorbed on a superfluid helium
film, with an adsorption energy c, of approximately 1 K.
The interaction between the adsorbed atoms is in a very
good approximation given by the weighted average of the
volume triplet potential, using the square of the wave
function for the motion perpendicular to the surface as a
weighting factor [21]. The two-dimensional scattering
length found in this manner is 2.40ao [19].

In Fig. 4(a) we show the critical density of the
Kosteriitz-Thouless transition in a temperature interval
that covers the experimentally most relevant range of
temperatures. As expected, the critical density changes
almost linearly with temperature. The deviations from
this linear behavior are more clearly displayed if we plot
the critical degeneracy parameter versus temperature.
This is shown in Fig. 4(b). Note that the ln[ln(A /a )]
behavior, predicted by Fisher and Hohenberg [13],is only
found at temperatures much lower than presented here.
(The diluteness parameter ln[ln(A /a ] is about five at
1 X 10 K.) We also calculate the superfluid density as
a function of temperature for a surface coverage of
1 X 10' cm and give the result in Fig. 5. The
superAuid density clearly shows the universal jurnp at the
critical temperature. Moreover, the behavior near T, is

1/2

n, (T) —n, (T, ) I+g 1—T
(30)

TQT T.

FICz. 3. Proportionality constant co as a function of tempera-
ture. (See text for more details. )

and in agreement with Nelson and Kosterlitz, who find
this square-root cusp from a numerical integration of the
renormalization-group equations [6]. The value of the
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superAuid density at the critical temperature is typically
about 75% of the total density, which implies that replac-
ing the superfluid density by the total density in the
Nelson-Kosterlitz criterion gives a rather poor estimate
for the critical temperature.

In the experiments proposed the adsorbed gas is in
contact with a three-dimensional atomic hydrogen gas
that is also doubly spin polarized. Therefore we consider
this situation and determine the adsorption isotherm in
the following manner. In thermal equilibrium we have

p3 p2 ca with p3 and p2 the chemical potentials of the
volume and surface gases, respectively. For the three-
dimensional gas we use @3=A'+8m.n3ah' /m, where p' is
obtained from Eq. (18) and we take the value 1.34ao for
the scattering length of the triplet potential [22]. Below
the critical density of the Kosterlitz-Thouless transition,
the two-dimensional chemical potential is also obtained
from Eqs. (17) and (18). However, above this density we
must use p~=p'+2n2T (0,0,0;0) together with Eqs.
(25) and (28). The results of this procedure are shown in
Fig. 6 for temperatures of 50, 100, and 200 mK.

The most prominent feature of the isotherms is the

1.5

1.0

0.5

0.0
0 25 50 75 100

T (mK)
FIG. 5. SuperAuid density vs temperature for a surface cov-

erage of adsorbed hydrogen atoms of 1 X 10"cm

discontinuity in the two-dimensional density as the phase
transition takes place. Indeed, the increase in the density
is approximately a factor of 3. The importance of this
effect for the experimental observation of the Kosterlitz-
Thouless transition was already pointed out by Svistunov
et al. [10]. However, the effect is even larger than antici-
pated by these authors: They find an increase in the den-
sity by a factor that is always smaller than 2, which fol-
lows from the fact that they simply use p2=p'+2n2Vo
below and p2=n2Vo above the critical density of the
Kosterlitz-Thouless transition, respectively. In our ap-
proach we take the renormalization of the interaction
into account, which for temperatures not too low is more
effective in the superAuid phase. This leads to a smaller
interaction strength in the superAuid phase as compared
to the normal phase and at 100 mK to an increase in den-
sity by a factor of more than 3. At higher temperatures
the magnitude of the effect is reduced due to the
enhanced quasiparticle contribution to the chemical po-
tential.

Finally, we deduce from these isotherms the critical
three-dimensional density as a function of temperature.
The results are given in Fig. 7. In these figures the criti-

6

2 10"

0
10' 10' 10' 10'

lpt2
ro" 1p15 y p20

FIG. 4. Two-dimensional criticality condition for the
Kosterlitz-Thouless transition in spin-polarized atomic hydro-
gen. (a) Critical density n, as a function of temperature. {b)
Critical degeneracy parameter n, A as a function of tempera-
ture.

n, (cm')

FIG. 6. Adsorption isotherms for atomic hydrogen on
superAuid helium. The temperatures are (1) T=50 mK, (2)
T= 100 mK, and (3) T=200 mK, respectively.
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formulated a theory that is based on the T-matrix ap-
proximation an on yd 1 requires that the condition

~ ~

ln na(1/ ))&I instead of the much stronger condition
In[In(1/na')]» I, is satisfied. In addition, this y
can give an accura e et d scription of the critical region of
the gas and, in particular, of the universal jump and t e
square-root cusp in the superfluid density.

We have applied this theory to spin-polarized atomic
hydrogen and have calculated various thermodynamica
properties relevant to experiment, such as the superfluid
density, the isotherms of the adsorbed surface gas in con-

ith a buff'er volume, and the critical densities of the
two- and three-dimensional gases. The latter a g
importance for experiments aim' gim

' '
in at the achievement of

the Kosterlitz-Thouless transition, because two-body re-

limit the lifetime of the atomic gases. However, oncesses imi e i
anal sisthe basis of our results in combination with t e y

'

of Ref. [10], it seems that successful experiments are
feasible and may be expected in the next few years.
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APPENDIX
10' 10' 10' 10'

T (K)
FIG. 7. Three-dimensional criticality cond' '

ndition for the
Kosterlitz-Thouless transition in spin-polarized atomic hydro-

en. (a) Critical density n, as a function of temperature.

ture In both figures the dashed line corresponds to the condi-
tion for the onset of Bose-Einstein condensation.

cal densi y or1 d 't f r Bose-Einstein condensation is also shown.
rl in the temperature range of interes, eClear y, in e

s lace beforeKosterlitz-Thouless transition always takes p a
condensation in the bufFer volume can occur, which
a posteriori justifies our use of Eqs. ~ an o
late the chemical potential p3. Of course, a discussion of
the condensed regime is possible in prin 'p'

ci le and should
make use o q.f E . (26) to determine the condensate density
and subsequently the chemical potential. However, we
do not consi er is c'd th' ase here since it is not re evant to
experiments aiming a e act the achievement of the Kosterlitz-
Thouless transition in spin-polarized atomic hydrogen.

The Hugenholtz-Pines theorem [20] can be derived m
the following manner. The eff'ective ac

'
action of the Bose

gas a ter in egra ionf t t' n over all Fourier modes with momen-
ta and frequencies unequal to zero is

co I (2ni

S,ir[fp, go] =A'PV g go
n=1

(A 1)

(n!)
(A2)

Exp ail 111g e0 th ff'ective action around an ar itrary
solution of Eq. (A2) by means of Pp ii p

+ap p/&hPV gives for the quadratic Part

S' '[a*,a ]=Siiao pao o+Si2(ao oao o+ao o o o

where I ' "' denotes the 2n-point vertex function [15,16]
'

h all 2n —1 momentum and frequency arguments
equal to zero. The free energy of the systen1 acquires a
minimum in a s a iont t'onary point of the eff'ective action, i.e.,

~ ~ ~

a solution o ff 0—f 5S /6vl'*=0. A possible solution, which
corresponds to the symmetric phase, is always itjp=
However, at temperatures low enoug ah a second solution
is possible and obeys

IV. CONCLUSIONS with

We have studied the dilute Bose gas in two dimensions
and have shown that Popov's one-loop theory is unab e to
describe a realistic weakly interacting Bose gas, suc as

h d dsorbed on superfluid helium, at ex-
we haveperimentally obtainable temperatures. Therefore we ave

oo n!
(n —1)!n =1

I(2n)
)n

—1

n! „,r (2n)
S = '

(no)"12=
2i(n —2)t (ni)n =2

(A4)
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From the definition of the normal and anomalous self-
energies we know, on the other hand, that
S» ——A'X»(0, 0)—p and S,2

=—))tX,z(0, 0)/2 [cf. Eq. (20)].
Therefore the Hugenholtz-Pines theorem is provided in
all orders of perturbation theory if we show that
S» —2S,2 =0. Substituting Eq. (A4) this means that

2S f (2)+ ~ n („)n—) P(2n)
11 12 ~

) 2 0
2 (n!)

should be equal to zero, which is clearly the case due to
the stationarity condition (A2) for the solution—(n )1/2
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