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Water erosion as a fractal growth process
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The time evolution of river patterns and earth's relief is simulated on lattice by modeling the process
of water erosion. Starting from a randomly perturbed surface, the river pattern and earth's relief devel-

op simultaneously. The river pattern becomes stationary after all lakes have vanished. In the stationary
state the river pattern shows some fractal properties such as a power-law size distribution of the
drainage basin area and Horton's laws. The fractalities are shown to be not exactly self-similar but self-

aKne. A mean-field theory for the river pattern is discussed.
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I. INTRODUCTION

It is now widely known that there exist many fractal
geometries in nature [1—4]. Landscapes such as coast-
lines and river patterns are familiar examples to us, and
their fractalities are supported by numerical analyses of
the real topographical data [1,5,6].

The fractality of landscapes was pointed out by Man-
delbrot with the proposal of the concept of fractals [1].
He also proposed a model which creates the fractal sur-
faces, so-called Brownian surfaces, and the product is re-
garded as a model of earth's relief [1]. But the processes
of the landform creation in his model are far removed
from real processes of landform evolution, so the model
does not describe what creates the fractality on the land-
form nor how the fractal landform is evolved. The fact
that the fractals on the earth's relief exist over such an
extensive region implies that the fractals are probably
created by a kind of fractal growth process from nonfrac-
tal surfaces.

In recent years, knowledge about fractal growth has
been rapidly accumulating. The model of fractal growth
that has received the most attention may be that of La-
placian fractals, such as the diffusion-limited-aggregation
model [7] (DLA) or the dielectric-breakdown model [g]
(DBM). In the growth of Laplacian fractals, it is crucial
that the local growth of the cluster is governed by the to-
tal shape of the cluster. More concretely, the shape of
the cluster determines the Laplacian field surrounding
the cluster, and the local growth velocity or probability
of the cluster is proportional to the gradient of the Lapla-
cian field at the surface of the growth point. Thus, the
Laplacian field surrounding the cluster has the role of the
"medium" which transmits the information about sur-
rounding structures of the cluster to a local growth point.
With regard to the landform evolution process from the
point of view of a fractal growth phenomenon, it is an im-
portant problem whether there exists such a "medium"
or not.

There are many factors causing the changes of
landscapes —for example, tectonic movement, sedimenta-
tion, water erosion, weathering, and so on. Among those
factors, we give consideration here to the water-erosion
process.

In the water-erosion process, the local intensity of ero-
sion depends upon the area of the drainage basin through
the water on the surface. That is, if we neglect the effect
of underground water and evaporation, the quantity of
the water is determined by the amount of rainfall which
is gathered by the drainage basin, and the local erosion
speed is controlled by the quantity of water Aowing on
the point.

This situation of landform evolution by water erosion
is similar to that of Laplacian fractals in the sense that
the global structure in the system governs the local
growth. So, the water on the earth's relief is expected to
perform the role of a "medium" which conveys the infor-
mation about the drainage-basin area and governs the lo-
cal erosion intensity.

For many years, the formation of landscapes and the
geometrical structure of river patterns have been studied.
With regard to river patterns, various stochastic models
have been proposed to reproduce the statistical properties
of real river patterns, such as Horton's laws [9]. The
most famous examples of them may be Scheidegger's
river model [10] and the self-avoiding random-walk mod-
el originally proposed by Leopold and Langbein [11],
which is recently investigated in more detail by Meakin,
Feder, and Jt6ssang [12]. Scheidegger's river model is the
model for the river pattern on a slope of a two-
dimensional triangular lattice. The river pattern is ob-
tained by assigning two kinds of Aow vectors, right down
and left down, randomly to each lattice point. As shown
in this procedure, the resulting river patterns are static
and not based on erosional landform evolution, i.e., they
neglect the water on the earth's relief. Geomorphologists
have proposed some landform evolution models including
the efFect of water erosion. The models proposed by
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Roth, Siccardi, and Rosso [13] and Willgoose, Bras, and
Rodriguez-Iturbe [14] are the recent examples. In partic-
ular, the evolution rule of the latter is an elaborate one
based on the detailed geomorphological studies. Howev-
er, such a detailed algorithm is not suitable for numerical
calculation because the system size is limited by CPU
time. The system size is essential when we observe fractal
properties of the model; therefore, the model should be as
simple as possible. Moreover, if the fact that the local
growth is inAuenced by the surrounding structure is
essential for the fractal growth, the mechanisms of the lo-
cal growth can be drastically simplified. Kramer and
Marder proposed a kind of minimal model of erosion
process [15]. But, as we mention in Sec. II, the model in-
cludes the stochastic water Aow process. To treat the
water-erosion process as a fractal growth process, the
water-flow process which connects the local erosion and
surrounding structures is preferably deterministic.

Recently, the authors have proposed a kind of minimal
model of erosion and performed numerical simulations of
landform evolution in relatively large systems (512X 512)
[16]. It is found that the system reaches a fractal steady
state which is created automatically without any tuning
parameters, and in this sense, the model can be regarded
as a kind of self-organized criticality [17]. This paper is
devoted to an explanation of the details of our erosion
model.

We describe the model and show numerical results in
Secs. II and III. Statistical properties of the steady-state
river pattern are analyzed in Sec. IV where we confirm a
power-law drainage area distribution and Horton's laws.
We introduce a mean-field theory in Sec. V and give
theoretical supports for these results. Section VI is de-
voted to a discussion on the fractal dimensions of river
patterns and landforms. We show that river patterns
seem to posses self-afIinity rather than self-similarity. A
short summary is given in Sec. VII.

II. DESCRIPTION OF THE MODEL

height of the land; s(x,y), the water-fiow intensity; and
w(x, y ), the thickness of water accumulation. The height
of the water surface, h (x,y ), is defined as

h (x,y}=h(x,y)+w(x, y) .

Note that the water-fIow intensity does not contribute to
the height of the water surface since it is assumed to have
no thickness. The thickness of water accumulation is in-
troduced to realize the formation and vanishment of
lakes, and does not relate to the water-erosion process. A
site for which w(x, y ) is not zero is called a "lake" site.

For a given landform h (x,y ), the time evolution of the
system is performed by repeating the following pro-
cedures. The s(x,y ) and w(x, y ) on the surface are given
initially.

(I) Determination of water jhow dir-ection For .every
site (x,y), we find the site (x',y') which has the lowest
height of water surface in the six nearest neighbors.
When h (x,y))h„(x',y'), the water-fiow direction of
the site (x,y ) is determined as the direction to the site
(x',y'). However, if h„(x,y ) ~ h (x',y'), it becomes un-
natural to fiow out s(x,y ) to the site (x',y'). In this case,
w(x, y) is renewed by

w(x, y}=h (x',y') —h(x, y)+e
to raise the water surface, where e is a very small positive
number. On the other hand, it is quite natural to assume
that w(x, y) becomes zero when h(x, y)) h (x',y'). So
we make w(x, y ) zero at such a site. We can draw a glo-
bal water-Bow pattern which we call a river pattern when
the water-fjow directions for all sites are determined (Fig.
1).

(2) Water erosion. By the effect of water erosion,
h (x,y ) is decreased by

5h (x,y ) =F(J(x,y ) ) [h (x,y ) —h (x',y') I,
where J(x,y ) denotes the water power which is defined
as

We model the water-erosion process only by the water
from rainfall, that is, we neglect the eA'ect of under-
ground water, infiltration, evaporation, and weathering.
Therefore, the quantity of water on the land which is
given by the sum of the amount of rainfall, is conserved
in the water-How process. We assume the situation that
rain is falling on the land uniformly and constantly. The
land we use in the model has no geographical structure
and crustal movement, that is, it is uniform and static.
We also assume that the sand produced by erosion is
smoothly washed away by water How, so that the sedi-
mentation of sand is neglected. Because of this assump-
tion, the height of the land at each point decreases mono-
tonically and never increases.

Under these conditions, we model the processes such
as rainfall, water Aow, water erosion, and formation and
vanishment of lakes. The rules used in our system are lo-
cal and deterministic, so the randomness comes only
from the initial condition.

Our model is defined on a two-dimensional triangular
lattice. Every site (x,y) has three variables: h(x, y), the
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FIG. 1. The formation of river pattern. The arrows in the
left part sho~ the How directions.

J(x,y)—:s(x,y)[h (x,y) —h (x',y')) .

The function I' is a positive monotonically increasing
function which satisfies F(0)=0 and lim~ „F(J)(1.In
this paper we use F(J)=CJ'/( I+/'), where C and a are
positive constants.
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(3) Water Pow and rainfall. The s(x,y) is moved to
the site (x',y'). The new s(x,y ) is determined as the sum
of s from nearest neighbors and a constant so. This so
corresponds to the water from rainfall.

(4) Repeat the aboue procedures Pr. ocedures 1, 2, and 3
make one time step. These procedures are done on all
sites at the same time.

Procedure 1 is based on the intuitively natural fact that
the water on the surface Aows toward the lowest place.
The procedures about formation and vanishment of lakes
may look rather artificial, but they have a fairly impor-
tant role. If there is a global basin area in the system, the
lake water fills the area and erodes the lowest place of the
lake edge selectively and intensively, and from there, the
erosional landscapes evolve upward. Thus the lake water

I

has the role of transmitting the information about the lo-
cation of the drainage outlet or the direction that the wa-
ter on the surface should Aow to. To realize the above
situation of lake formation, we can take another ap-
proach by introducing the water-Qow intensity which has
thickness. But if we take this model, we have to abandon
the simultaneousness of the procedures to suppress the
vibration of water on the surface. Kramer and Marder
resolved the vibration by limiting the operating site to
one which is randomly chosen from the system [15], but
it is rather unphysical and unreasonable from the point of
view of the propagation of information.

III. TIME EVOI.UTION OI' THE SYSTEM

We use the initial landform such as

h (x,y ) =2000.0+ I uniform random fluctuation ranging [0,0. 1)I,

namely, it has a fIat surface perturbed by very slight
white noise. In the initial condition, there is no water on
the land, i.e., s(x,y)=0 and w(x, y)=0 for every site.
The parameters for F(J) used in this paper are C =0.5,
so=10, and a =0.5, 0.8, 1.0, 1.2, and 1.5. The left- and
right-side edges of the system are connected by the
periodic boundary condition. A high wall is built on the
top-side edge, while the height of the bottom-side edge is
zero and fixed, so all of the water in the system Rows out
from the bottom-side edge. We use a system of size
512X512 for the numerical results shown in this paper.
We mainly discuss the results from the case a = 1 in the
text, and the results from the cases of other a and
Scheidegger's river model for a comparison are collec-
tively shown in Table I.

Figure 2 shows an example of time evolution of a land-
form in the case a =1. As we can see from this series of
figures, the valleys grow from the bottom-side edge to the
top-side edge. The behavior of the erosion function F(J)
for small J depends on the value of a. It is interesting to

show the difference in landscapes for diferent a. Figure 3
shows a landform evolved in the case a =1.5. As can be
seen by comparing these figures, the valleys look nar-
rower and steeper for large a.

We plot the number density of lake sites and unstable
sites which change the Row direction in one time step in
Fig. 4. Initially, almost all sites are covered by lakes, and
the number of lake sites decreases monotonically with the
evolution of valleys, as seen in Fig. 2. About the time
that valleys spread over the whole surface, the number of
lake sites becomes zero. In this stage, the number of un-
stable Aows also becomes zero, namely, it becomes a kind
of steady state where all sites in the system do not change
their Aow directions. This steady state is very stable, so
once the system reaches this steady state, the river pat-
tern on the surface never changes while the erosion pro-
cess of land progresses. In the following, we use the term
steady state for a system which has had no lake sites and
no unstable sites in the past 50 time steps.

Figure 4 shows the case a =1. In the case of other a,

TABLE I. The numerical results of the simulation of size 512X512 for different values of parameter a. The results for
Scheidegger's river model are also shown for comparison. The values in the parentheses are the theoretical results [23].

Parameter a

Power-law exponent of
drainage-basin area
distribution, P
Bifurcation ratio Rz
Stream-length ratio RL
Fractal dimension of
the river patterns
from Horton's ratios D,
Fractal dimension of
the river patterns
from P, D&

Hack's exponent a

0.5

0.43

5.4
2.7

1.69

1.75

0.60

0.8

0.42

5.3
2.7

1.67

1.72

0.62

1.0

0.42

5.3
2.7

1.66

1.72

0.62

0.41

5.2
2.7

1.66

1.70

0.63

1.5

0.40

5.1

2.7

1.65

1.69

0.64

Scheideg ger's
model

0.36
( —,')
4.7
3.0

1.40

1.58
( —,')
0.68
(-, )

Error
range

0.01

0.4
0.1

0.02
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similar results are obtained, that is, the systems also
reach steady states where the river patterns are frozen.
However, they still take more time steps for larger a. An
example of a steady-state river pattern is displayed in Fig.
5. In the following sections, we focus our attention main-
ly on this steady-state river pattern.

In our model, the randomness of the resulting land-
form comes only from the initial condition, so we check
the sensitivity to the initial landform of our model. We
prepare two identical initial landforms h, (x,y ) and
h2(x, y), and put a noise ( =0.1) on a randomly chosen
site of hz(x, y). These two landforms are evolved and the

Humming distance

dH —= g ~h2(x, y ) —h &(x,y )~,

is calculated for every time step. Figure 6 shows a result
of the case a=1 in log-log scale. The points are on a
straight line ranging from 200 to 1000 time steps, while
they look irregular at the beginning. This result shows
that the Humming distance d~ expands as d&~t
namely, errors do not grow exponentially in our model,
indicating that the system is at the edge of chaos as in the
model of self-organized criticality [17].

(a)
FIG. 2. A series of contour map of landform evolution. A part (40X100) of the system of size 100X100 is illustrated. (a) Initial

condition. (b) At 300 time steps. (c) At 600 time steps. {d) At 1500 time steps.
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IV. STATISTICS OF STEADY-STATE
RIUER PATTERNS

In this section we study some statistical properties of
steady-state river patterns of our model.

A. Drainage-basin area distribution

The fractal branch geometries can be characterized by
the exponent of the power-law distribution of branch size
[18]. In our model, the branch size corresponds to the
drainage-basin area of the stream. Here, the drainage
basin area at the site (x,y ), n (x,y ) means the number of
sites which are upstream of the site (x,y ), and it is equal
to s(x,y )/so on the steady-state river pattern.

We plot the cumulative distribution of drainage-basin
area in log-log scale in Fig. 7. In the figure, P ( ~n)
means the probability that a certain randomly chosen site
has a drainage-basin area value larger than or equal to n.
The points are on a straight line in the range from s =10'
to 10; this result shows that the cumulative distribution
of basin size follows a power law P ( ~ n ) ~ n ~, P=0.42.
For n ) 10, the points deviate from the line because of
the finite-size effect of the system. To estimate the ex-
ponent of distribution in the infinite-size system, we plot
the exponents of the basin size distribution estimated
from systems of various sizes (Fig. 8). The points are
roughly on a line and the exponent of the cumulative
basin size distribution in the infinite-size system is es-
timated to converge at 13=0.42.

FIG. 2. (Continued).
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B. Horton's laws

Real river patterns are known to satisfy Horton's laws
[9]. In this section we check the validity of these laws for
the river pattern from our model. At first, we must deter-
mine the stream order on the river pattern.

Horton's stream order is defined as follows: The order
of all up ends of the stream are 1, and we trace streams
downward from these up ends. At a conAuence of
inAowing streams, the stream orders of these inAowing
streams are checked, and among them, we choose the
highest value of stream order, co,„. The order of
outAowing streams is given by this co „.If the orders of
the two streams are both co „, the order of the

100%
I 5 e 8 I 0 a S a a I8 0 a a s s I8 5 0 I \ 8 0 0 5 S E 0 5 0 5 0 4 \ a 0 ~ 0 s 5 0 ~ a \ \ 0 0 0 0 0 0 0 a a ~ ~ \ 0 s 0 5 \ 0 0 I0 0 5 0 0 8 ~ 0 s \ 0 0 1
'III

\
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FIG. 4. The number density of lake sites (dashed line) and
unstable sites (bold line). The number is shown as a percentage.

outAowing stream is defined as m, „+1. %'e also relabel
the order of the longer inAowing stream as co,„. Because
of this additional procedure, we can easily find the main
stream of the stream network (see Fig. 9). The tracing is
continued until it reaches the mouth of the river.

There is another definition of stream order —Strahler's
stream order. The difference between these two stream
orders is that Strahler's stream order does not determine
the main stream. That is, in the above procedure, at a
conAuence of streams when more than two inAowing
streams have the maximum order ~ „,we only fix the
stream order of outflowing stream as co „+1. The
difference between these two stream orders is illustrated
in Fig. 9.

Using Horton's stream order, we count the number of
co order streams, N„, and measure the averaged length of
co order streams, L„. Horton's laws insist that the ratios

N„/N~+i =R~, L„+)/L„=RL
are independent of co. The constants Rz and RL are
called the bifurcation ratio and the stream-length ratio,
respectively. These laws are known to be also valid in the
case when Strahler's stream order is used [19,20].

Using Horton's stream order, we plot N„and L in
semilog scale in Fig. 10. The points are clearly on
straight lines except the points for the highest order. The
highest-order stream seems to be influenced by the finite-
ness of the system. Taking the finite-size effect into ac-
count, we estimate R& =5.3 and RL =2.7 in the case
a = 1. These results seem to have comparatively large er-
rors because we can use only seven or eight points to esti-
mate these ratios (see Fig. 10).

The empirical ranges of these ratios estimated from
real systems are Rs =2—6 and R~ = 1.5 —3.5 [6]. The re-
sults of our model are in these ranges.

FIG. 3. A contour map of the landform for the case a =1.5.
Initial condition, system size, and the part presented are same as
in Fig. 2. It takes 6000 time steps.

V. MEAN-FIEI 0 THEORY

Here we present a theoretical approach for the statisti-
cal properties mentioned in Sec. IV.
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A. Drainage-basin area distribution

We choose one site at random from the steady-state
river pattern. Let pk be the probability that the number
of streams which Aow into the chosen site is k, and n;
(i = 1,2, . . . , k ) the drainage-basin area of the site which
has an inAowing stream to the chosen site. Since every
site in the steady-state system has one outAowing, the ex-
pectation of the number of streams which Aow into the
chosen site must be 1, so pk satisfies the following two
equations:

QPk=&
k

(2)

Note that k takes only 0, 1, 2, and 3 in the steady-state
river pattern on a triangular lattice. The drainage-basin
area for a site n is the sum of n; and the number of the
site itself =1, that is,

n =n/+n2+ ' ' +nk+1

(a)
FIG. 5. An example of a steady-state river pattern from the system of size 512 X 512: (a) An enlargement of the system. The part

of size 50X128 is illustrated. (b) The part of size 200X512. The thickness of the pattern is proportional to the logarithm of the
water-How intensity.
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FIG. 6. The time evolution of the Humming distance d~ of
the case a=1 in log-log scale. The straight part of the line
ranging from 200 to 1000 time steps shows that the errors grow
asd~~t

P(&n) FIG. 9. The stream orders determined in two difT'erent ways
for the same stream network: (a) Horton's stream order and (b)
Strahler's stream order. The fine lines, dashed lines, and bold
line show first-, second-, and third-order streams, respectively.
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FIG. 7. Cumulative distribution of the drainage-basin area

P( ~n) of the case a=1 in log-log scale. The line shows a
power law as P( ~ n ) ~ n
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FICi. 8. The finite-size eff'ect of exponent P, J'( ~ n ) ~ n

from the model of the case a =1. The system size is shown by
its inverse.

FIG. 10. Relations of stream order co and (a) the number of
stream branches X and (b) the averaged stream length L„ in
semilog scale. The river pattern from the case a = 1 is used.
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k n1+ n2+ + nk n

(4)

Instead of treating the distribution itself, we introduce
the characteristic function Z(p), the Laplace transform
of P(n ), which is defined as

By treating the nearest-neighbor sites as mean-field sites,
the distribution of n, P(n ) follows the equation

P(n, )P(n2) . P(nl, ) .

a stream of order co is given by

W =S /S.
Here we consider the situation that the maximum num-
ber of inflowing streams at a confluence is 2, while it is 3
in our simulation. In the case that the number of
inflowing streams is 2, the stream order of outflowing
stream co is determined as follows in terms of the stream
orders of inflowing streams m1 and co2.

max f01, c02 c01 co2

Z(p) = g e ~"P(n ) .
n =1 co, + 1 (co, =co2)

(12)

We obtain the equation for Z(p) by transforming both
sides of Eq. (4):

Z(p)=e gpkZ(p)" . (6)

The asymptotic behavior of P(n ) for n ~ ~ corresponds
to that of Z(p) for p~0. To explore this behavior, we
expand Z(p) around p =0. By definition Z(p) = 1; we can
put Z(p) as

Z(p)—:1+Z(p), ~Z(p)i &&1 .

Substituting Eq. (7) into Eq. (6) and using Eqs. (1) and (2),
we find that

Z(p)~p' ',
so Z(p) is obtained as

k=2

co 1
1

co=co, with probability p2 W g W
1 i =1

co 12

co=co2 with probability p2 W g W"2 .j=1
co=co, +1 with probability p2 8'„

1

Thus we obtain the equations for 8 „as

Also taking into account the cases of k=0 and 1, we
have five cases of cu, the order of outflowing streams of
the chosen site, with probabilities given as follows:

k =0, co = 1 with probability po

k =1, co=co1 with probability pic'
1

Z(p)=1+constXp'~ + (9) 8'1 =Po+P18 1,

P( n)~n (10)

which shows that the mean-field exponent P is 0.5. It is
easy to show that if we omit the steady-state condition,
Eq. (2), then the distribution of n always has an exponen-
tial decay. That is, the steady-state condition that every
site has one outflowing stream automatically makes the
system critical.

B. Horton's laws

Equation (9) indicates that the distribution of n, P(n ) is
proportional to n for large n. The cumulative distri-
bution of n becomes

co 1

W =p, W' +2pz W g W +pz W
j=1

(14)

Using Eqs. (1) and (2) of the case k =0, 1, and 2, we find
8 1=—,

' and 8' =2 . So the site-number ratio Rz is in-

dependent of ~ and is estimated as

Rs
co+ 1

Next we consider the averaged stream length of an co

order stream. The probability that a stream starting with
order ~ remains to be of the same order in l sites is given
as

Our first task is to calculate the site-number ratio. Let
S„be the number of sites which belong to the co order
stream. We use Strahler's stream order here. The site-
number ratio Rz is defined as R& =—S„/S„+1. Using the
total site number of the system S=+„S and S„, the
probability 8' that a chosen site in the system belongs to

pi+p2 g W, pz 1 —g W, (pzW„, )
j=1

The expectation of l, L is then calculated as

(16)

I.„=pl p, +p2 g W
l —1

co 1

p~ 1 —g W (p2W, )
j=1

l Ip, +p2(1 —2' ) I' 'I 1 —(1 —2' ) }2 '" "=Ipz(1+2' )} 2
1=1

(17)
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Therefore, we get the stream-length ratio RL for large co

(18)

The number of streams of order ~ in the system is
given by X =5„/I, so the bifurcation ratio
RI, =X„/X + ] is calculated from R& and RL as

5„ I.
RsRL=4%+I 5+I I.„ (19)

Summarizing these results, the mean-field Horton's ratios
are R~=4 and RI =2.

VI. ABOUT FRACTAI. DIMENSIONS

A. For the river patterns

Intuitively, Horton's laws can be recognized as
representing the fractality of river networks. La Barbera
and Rosso propose an equation which relates the fractal
dimension of a river network to Rs and RL [6].An iden-
tical equation is also derived by Hinrichsen et al. [21] in
a diferent manner. The fractal dimension is given by

The fractal structures are usually characterized by
fractal dimensions. As shown in the above sections, the
river patterns in our model have the fractal property de-
scribed by the power-law distribution of the drainage-
basin area. In addition, there is another fractal geometry
in the product of our model —the earth's surface. In this
section we discuss these fractal properties in terms of
fractal dimensions.

D, = lnR&/lnRL .

Applying this formula with Rz =5.3 and RL =2.7 for
our river pattern, we have D, = l. 66 for a = 1 (see Table I
for other cases). One of the authors (H.T.) also proposes
another equation to calculate the fractal dimension of the
branching geometry using P, the power-law exponent of
the branch-size distribution [18]. The equation is

Dp= 1 j(1—P) .

Substituting the power-law exponent of the drainage-
basin area distribution from our simulation, P=0.42, into
this equation, we obtain the value of D& = 1.72 in the case
a = 1 (see Table I again for other cases).

These values of the fractal dimension of our river net-
work are significantly smaller than 2, which is the fractal
dimension of the space-filling geometries on the two-
dimensional space. In our model, all of the lattice points
in the system belong to the steady-state river pattern, and
in the real system, if there is no stagnancy region of wa-
ter, the rainwater falling on the land Aows smoothly to
join the river stream wherever the water falls in the sys-
tem. So the fractal dimension of the river pattern must
be 2 [5], and here a question arises as to why the above
fractal dimensions of our river pattern are not 2.

In Fig. 11 we draw the branches of the steady-state
river pattern having diff'erent drainage-basin areas creat-
ed in the system of size 512X512. By this figure, we no-
tice the fact that the total shape of the river branches is
dependent on their drainage-basin area. More concrete-
ly, they have more elongated shape as they have larger
drainage-basin area [22], so the self-similarity of the river
pattern is broken and we have to treat the river patterns
as self-affine objects. In general, the self-a%ne geometries

FIG. 11. The river network branches of different branch sizes from the steady-state river pattern. The drainage-basin shape is
more elongated as they have larger basin area. (a) n =748, (b) n =3257, and {c)n = 11 020.
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FIG. 12. The relation between drainage basin area n, and
main stream length L„ in log-log scale for the case a =1. The

line shows the relation as L ~ n

cannot be characterized by a fractal dimension and as we
observe the system by a larger scale, we get a smaller
empirical value of fractal dimension [3]. So the fractal di-
mension smaller than 2 is probably caused by this self-
affine property of the river networks.

The self-affine properties of drainage-basin shape imply
the relationship between n, the drainage-basin area of a
river, and L, its main stream length, which deviates from
the usual relation n ~L . Hack performed the detailed
investigation of the real river networks and found the re-
lation to be L ~ n, a =0.6 [22]. We check the validity of
Hack's law in our model.

We again assign the stream order of our river patterns
using Horton's method. An coo order stream is followed
by co & coo order streams making a branch, and this coo or-
der stream can be regarded as the main stream of the
branch. In this way, we define the set of branches and
plot their coo order stream length L„versus the branch

0
size n in log-log scale. As shown in Fig. 12, the points
are on a straight line, and we estimate the value of
a =0.60—0.64 (Table I).

Mandelbrot interpreted Hack's law that an individual
river stream should be a fractal of dimension 2a= 1.2 as-
suming the self-similarity of the drainage-basin shape [1].
However, in our model, the fractal dimension of the main
stream is confirmed to be very close to 1.0, so his specula-
tion is not valid for our model. The relation between L„

0

and n in Hack's law comes purely from the self-affine
property of the river basin shape.

B. For the contour lines

I ~ ~ ~ ~ 1 ~ I

22 2A 2t) p8

FIG. 13. The result of the box-counting method applied to
the contour line. The number of the box X vs the size of the
box r shown in log-log scale. The line used is 600.0 in height
from the model of a =1 right after the river pattern becomes
stationary.

a power-law scaling property of the contour lines. But
because of the convexity of the line, we cannot estimate
the value of the fractal dimension accurately. Moreover,
as we mentioned in Sec. VIA, the drainage-basin shape
on the landform in our model has self-affinity. So the
shape of the contour lines may also be infIuenced by this
self-a%nity, and then the fractal dimension cannot fully
characterize the contour lines. In our previous paper [16]
we made an attempt to estimate the fractal dimension of
the contour lines, but it may be less meaningful.

VII. SUMMARY

One of the most important characteristics of the fractal
geometries is their long-distance correlation. This
characteristic is thought to be the result of the growth
process under the inAuence of the surrounding structures.
In other words, the mechanism or the "medium" which
transmits the information about the surrounding struc-
tures to the local growth point is a crucial factor for the
fractal growth system. We found that the water on the
earth's surface plays the role of such a "medium. " As
shown in the above sections, our model automatically
creates stable fractal geometries both in river patterns
and earth's surfaces. This fact insists that the fractalities
on the earth's relief can be created by water erosion as a
fractal growth process, which is one of the most common
factors of changing landscapes.

As we can see from Fig. 2, the contour lines of land
surface in our model seem to have some fractal proper-
ties. We check this intuition by the box-counting
method. One of the results is shown in Fig. 13. The
points are on a slightly convex line which roughly shows
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