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Reaction-diffusion lattice gas: Theory and computer results
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We report on the study of nonequilibrium ordering in the reaction-diffusion lattice gas. It is a kinetic
model that relaxes towards steady states under the simultaneous competition of a thermally activated
creation-annihilation (reaction) process at temperature T, and a diffusion process driven by a heat bath
at temperature T'W T. The phase diagram as one varies T and T', the system dimension d, the relative
a priori probabilities for the two processes, and their dynamical rates is investigated. We compare
mean-field theory, new Monte Carlo data, and known exact results for some limiting cases. In particu-
lar, no evidence of Landau critical behavior is found numerically when d =2 for Metropolis rates but
Qnsager critical points and a variety of first-order phase transitions.

PACS number(s): 64.60.—i, 05.50.+q, 05.70.Ln, 75.10.Hk

I. MODEL

We report on the study of ordering in a nonequilibrium
lattice gas whose configuration, s= Is„=+1;xeZ ],
where the lattice dimension is either d = 1 or 2, evolves in
time owing to the combination of two processes. Name-
ly, s changes stochastically owing to both creation-
annihilation (referred to as reaction ) processes activated
by a heat bath at temperature T, and diffusion processes
consisting of nearest-neighbor (NN) exchanges driven by
a heat bath at temperature T' instead. The two processes
are independent in continuous time, with p the a priori
probability of exchanges per bond and (1—p) that of re-
actions per site. Let us denote by Lz the GIauber opera-
tor [1] that produces stochastic changes of s„ to —s„with
probability per unit time (rate) c(s;x), and by Lx the
Kawasaki operator [2] that induces stochastic inter-
changes of the occupation variables at NN sites x and y
with rate c(s;x,y). The probability of s at time t, p(s;t),
is governed by the (Markovian) master equation

where P=p(m), m =% '(d jdP)lnZ(p), and
Z(p) =g,exp[ H(s)/k& T'+pg—„s„]. Here H (s)
represents the (configurational) energy, which we assume
hereafter to be

H(s) = —J g s„s„
NN

(1.3)

dp(s;t) =[pLx+(1—p)Lo]p(s;t) .
dt

The transition rates c(s;x) and c (s;x, y) satisfy detailed
balance with respect to different temperatures. This has
two main, well-known consequences. On the one hand,
Lx.p,q(s; m ) =0, with

p,q(s;m)=Z(P) 'exp H(s)lkti T'+p g—s„, (1.2)

for simplicity. On the other hand, LGp, q(s) =0, with

p, (s)= +exp[ —H(s)lkeT] 'exp[ —H(s)lkeT] .
S

(1.4)

Consequently, (1.1) has two limiting cases that are a
canonical reference for the (nonequilibrium) situations of
interest here. Namely, the system reduces to the Glauber
or kinetic Ising model (which has a nonconserved order
parameter) [1] for either p =0 or c (s;x,y) =—0. Then, in-
dependently of c (s;x), the asymptotic solution of (1.1) is
the Gibbs state (1.4) for temperature T and energy H(s).
It is known to undergo (in the infinite-volume limit that is
considered throughout the paper, except for Monte Carlo
computations) a second-order phase transition at temper-
ature Tc ~ 0, where equality holds for d = l. On the oth-
er hand, one recovers the (kinetic) Kawasaki lattice-gas
model (which corresponds to the Ising model with a con-
served order parameter) [2] for either p =1 or c(s;x)=0.
Independently of c(s;x,y), (1.1) leads to the Gibbs state
(1.2) at temperature T' with a fixed value m for the order
parameter. A critical point exists at Tz ~0 when m =0,
and first-order phase transitions arise when m %0.

The situation is very different otherwise: The steady
state p„(s), defined as the limit of p(s; t) in (1.1) as t ~ ca,
is away from equilibrium in general ~ This is similar to
having s acted on by some external non-Hamiltonian
agent. In fact, p„(s) cannot be described, in general, by a
Hamiltonian with suitable properties, e.g. , one that is
short ranged and plays in the expression for p„(s) the
role played by H(s) in (1.2) or (1.4) [3]. This implies, in
particular, that p„(s) may depend, even qualitatively, on
the specific form assumed for the reaction and diffusion
rates. Under those nonequilibrium conditions, the system
may exhibit ordering phenomena. The latter may be
denoted as nonequi/ibrium phase transitions, given that
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some (nonrigorous) similarity exists with an equilibrium
situation in which thermodynamic instabilities occur. It
is reasonable to expect a dependence of steady states and
phase transitions on the values of the model parameters,
namely, d, p, J, T, T', c(s;x), and c(s;x,y). Thus, none-
quilibrium phase transitions (and associated critical be-
havior) are expected to be more varied than for equilibri-
um states, given the singular simplicity of the latter.

The preceding discussion suggests a theoretical interest
to investigate the implications of (1.1)—(1.4) as a well-
defined model in nonequilibrium statistical mechanics,
where a general formalism such as the powerful Gibbs
ensemble theory is lacking. In addition, reaction-
diffusion systems have a practical interest in physics,
chemistry, and biology, for example [4]. Consequently,
some limiting cases of the generalized model defined
above have been analyzed in detail in recent years (Refs.
[4—15], and references therein). Further interest ensues
from the fact that it has been shown rigorously to have a
macroscopic, hydrodynamiclike description within the
limit T'= co and p —+1 [5—7]. For instance, the order pa-
rameter m (r, i):—(s„) satisfies the reaction di+usio-n
equation Bm(r, t)/Bt =

—,'V m(r, t)+F[m(r, t)] for the
most random and microscopically fastest diffusion pro-
cess (if time and space are appropriately rescaled in the
model); here reR, F [m I

= —2(s„c(s;x)), and the
averages are taken with respect to a Bernoulli state with
uniform m. This equation may then be used to study
[5,9] (nonequilibrium) homogeneous steady states, i.e.,
solutions of FI m] =0, for example. It has confirmed, in
particular, the existence of phase transitions with no
equilibrium counterpart, e.g. , in a one-dimensional sys-
tem for some realizations of c(s,x).

For completeness, Sec. VI contains a description of
phase transitions and critical phenomena in the reaction-
diffusion lattice gas as obtained from both previous exact,
mean-field and Monte Carlo (MC) studies [4—15], and
our findings in the present paper. The case with 0 &p & 1

and/or finite T' has been studied so far only partially by
mean-field [g] and/or MC methods [10,14]. Consequent-
ly, a detailed investigation for general choices of the
relevant parameters, including the consideration of fur-
ther reaction and diffusion rates, is desirable. As a
matter of fact, the case of finite T' is the most general
and interesting one for practical purposes. We discuss in
this paper the main results from a systematic study in
that direction. Namely, we report in Sec. II Mc data for
d =2 that allow definite conclusions concerning phase di-
agrams and critical behavior. Section III describes the
main equations and results from a kinetic mean-field
theory. It is applied in Sec. IV to study steady states for
d = 1, T, T'@[0,~ ], varying values of p, and rather arbi-
trary functions for c(s;x) and c(s;x,y); moreover, our
equations are for both signs of J in (1.3). Section V is de-
voted to the mean-field study of a square lattice. A com-
parison between analytical and computer-simulation re-
sults is made throughout the paper.

II. COMPUTER SIMULATION RESULTS FOR d =2
We analyze in this section a series of computer simula-

tions that notably extend the data reported before for

m N'( x s„),= (2.1)

where ( ) represents the MC average over
configurations, the energy,

e = —(2JN) '(H ), (2.2)

the squared mean fluctuations of m and e,

C=N '((H) —(H )), (2.3)

(2.4)

and the short-ranged order parameter [17]

o =(N++N (N+ ) ), (2.5)

where N+, N++, and N are the number of the three
different NN pairs, i.e., particle-hole, particle-particle,
and hole-hole, that may occur in the system, respectively.
We have checked that o. is in practice indistinguishable
from ( N++ N ) ( N+ ), as one may expect. It
may be shown that the critical behavior of o. is then
characterized by the familiar exponents a and P; namely,
one gets

o. =o. + 2 e' —8e ~, (2.6)

where A and B are both positive constants, @=1 —T/Tc,
Tc is the critical temperature, and o., is nonsingular.
The study of o. is convenient because it behaves more
simply and smoothly than more standard quantities. In
particular, o. has a simple scaling behavior with N and,
according to (2.6) and further evidence [17,18], it is ex-
pected to exhibit in general either a well-define peak at
Tc or else a monotonic variation around Tc, the latter
corresponds to the classical values g= —,

' and a =0.

d =2 [14]. The basic Monte Carlo step is as follows.
After a site x is chosen at random, either s„ is exchanged
(with probability p) with one of its NN s„using the rate
c(s;x,y) =min[1, exp( 5—H/kiiT')], or s„ is changed to
—s„(with probability 1 —p) according to the rate
c(s;x)=min[ l, exp( 5H—/k~T)I. Here 5H is the
change of (1.3) associated to the attempted transition.
The motivation for assuming in this section that both
diffusion and reaction processes are governed by the
Metropolis algorithm [16] is that it turns out in practice
most efficient when trying to simulate stabilized conden-
sation disturbed by diffusion. The choice of rates
inQuences, in general, the steady state, but it is more easi-
ly evaluated in our analytical treatments below.

We have considered square lattices with L—:N sites,
periodic boundary conditions, and attractive (J)0) NN
interactions. Most results are for either L =64 or 128;
relatively long evolutions, typically between 5X10 and
10 MC steps (per lattice site), were performed to assure
confident statistics. This amounts to a notable addition
to the data reported in Ref. [14], e.g. , a finite-size scaling
analysis with L ranging from 8 to 128 is employed in the
investigation of critical behavior here.

In steady conditions, we have monitored the order pa-
rameter or magnetization,
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type I was reported for p (0.83 when r'= ao [9]. The
facts that the data for e and m can be mapped onto a sin-
gle curve by simply representing them versus
T/Tc(p, T'), and that such a common curve agrees (ex-
cept for finite-size effects) with the Onsager solution, are
noteworthy. Moreover, as depicted by Fig. 3(a) for exam-
ple, the cases ~') 1 and ~' & 1 are not equivalent; in fact,
there is no reason why ~'=1 should have any special
significance. The general agreement between the none-
quilibrium C and X and the corresponding curves at equi-
librium tends to get worse the further one departs from
~'=1, however; it is evident for both ~'&) 1 and ~' &&1.

Such a departure from a common behavior in some oc-
casions seems related to the breakdown of the
fluctuation-dissipation relations.

Summ. ing up, type I resembles in many respects the
(equilibrium) case for the Glauber and Kawasaki models,
but nonequilibrium features are enhanced as ~ is in-
creased; large values of p, say p &0.85, and small values
of v', say ~'&1, also tend to induce strong, qualitative
departures from equilibrium behavior; cf. below.
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FIG. 2. Short-ranged order parameter (2.5). (a) The same
cases and symbols as in Fig. 1(a); the inset amplifies the case
~'=10. The solid line represents the exact equilibrium result
corresponding to cr =—'[(1+e) —4m ](1—e) [17]. (b) Data
for different phase points at p =0.95 as one approaches the tri-
critical point {~'=5.35); namely, for ~'=4, 5, 5.2, and 6 from
top to bottom.

FIG. 3. Several sections, as indicated, of the phase diagram
that follows from the MC analysis of the two-dimensional sys-
tem, with both reaction and diffusion rates implemented by the
Metropolis algorithm, assuming temperatures T and T', respec-
tively. The nature of the phase transition occurring at the sam-
pled phase points is represented by using circles, squares, and
triangles, respectively, for types I, II, and II' (cf. Sec. II). Error
bars are indicated. The solid lines represent lines of critical
points; the dashed lines correspond to discontinuous phase tran-
sitions; both are obtained as cubic (spline) fits to the data. Note
that a perspective is simulated in the graphs, trying to suggest
the phase diagram surface.
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0.60 0.80 0.85 0.90 0.95

0.10 1.008,I 1.000,I 0.992,I 0.96S,II' 0.915,II'
0.25 0.922,II'
0.30 0.995,I
0.50
0.70 1.002,I
0.75
1 1.005,I
2.5
3 1.006,I
4
5 0.992,I
5.2
5.5
6
7

10

0.942,II'

0.957,II'
1.000,I
1.030,I

1.005,I

0.993,I
0.975,I
0.971,I
0.970,II
0.965,II
0.955,II
0.935,II
0.90,II

0.985,II
0.981,I 0.970,I 0.965,II 0.95S,II
0.96,I 0.94,I 0.92,II II 0.855,II

TABLE I. MC estimations for transition temperatures as a
function of T' and p for d =2, corresponding to the graphs in
Fig. 3, and type of behavior at each phase point, as described in
the main text. Temperatures are in units of the Onsager critical
temperature. Error bars are always smaller than +0.01. The
case T'= ~ corresponds to the exact results in Ref. [9].

0.8 2.0

0.6 1.5

is also remarkable. It suggests a discontinuity, but its
shape more resembles the equilibrium case than type EE.
Moreover, o. is much larger than for types I and II; i.e., a
larger degree of local order is also evident by direct in-
spection of particle configurations [14]. The fact that the
evolutions for type II' are extremely slow produces in
practice a more noisy data than usual for C and X [cf. in-
set for Fig. 1(c)].

The rich behavior of the system is illustrated by the
case p =0.95 in Fig. 3 and Table I. In fact, although the
transition temperature (which exhibits a well-defined
maximum at v'=2. 5) never differs by more than 10%
from the Onsager value, the phase transition changes
there from type II' to type I, and then to type II, as ~' is
increased from zero. The changes between types are
smooth in our finite system (as suggested, for example, by
the values in Table I), but one should probably expect the
existence of two tricritical points for the infinite-volume
system. If they are denoted by T, (p) and Tz(p), respec-
tively, the data indicate T, (0.95)=0.8, Ti(0.9))0.1,

Type II is characterized by well-defined discontinuities
in e, m, C, and X at some reaction temperature that is a
function of p and T' (cf. Table I). This is illustrated by
the squares in Figs. 1, 2(a), and 3. The parameter cr has
no peak, but monotonically decreases with increasing re-
action temperature, and shows a clear discontinuity at
the transition temperature. Figure 2(a) reveals also that
cr is notably smaller than for type I. This kind of behav-
ior, which is the rule for p ~0.85 when z'& 7, resembles
an equilibrium first-order phase transition. It is rein-
forced by the fact that the system evolves near the transi-
tion via metastable states that typically decay to the
steady state in a time of order 10 to 10 MC steps. The
existence of metastable states is illustrated in Fig. 4. The
direct inspection of configurations suggests the presence
of coexisting phases; no systematic MC analysis of this
was performed, but it is suggested also by mean-field
theory, cf. Sec. V. Type II behavior has also been report™
ed in Ref. [9]when r' = ~ for p )0.83.

The situation also resembles a discontinuous phase
transition for p =0.95 and ~' & 1, but it has some qualita-
tive differences with type II. In particular, the MC
analysis is hampered now by the systematic presence of
very slow evolutions, in addition to long-lived metastable
states that last 5X10 MC steps or more. We shall
denote this as type II behavior. It is identified by trian-
gles in Figs. 1 —3, which reveal the following. As for type
II, a discontinuity in m exists [cf. Fig. 1(b)], while the
discontinuities in e [Fig. 1(a)] and C [Fig. 1(c)] are much
weaker, and the structure of X [Fig. 1(d)] near the transi-
tion temperature (which depends on p and T'; cf. Table I)
is much more pronounced. The behavior of o in Fig 2(a)

0.8 2.0

0.6

0.2 0.5

0.0

1.0 2.0

0.8

0.6
—1.0

0.2

50000 100000 150000
t (LJ nits of MCsteps)

'~:" ' '0.5

0.0
200000

FICs. 4. Typical MC time evolutions for the magnetization
(the curve with larger fluctuations) and short-range order pa-
rameter (the curve in which fluctuations have a relatively small-
er amplitude) for a type II phase transition near the transition
point. The data correspond to p =0.95 and reaction tempera-
tures T/T&=0. 964, 0.968, and 0.973, respectively, from top to
bottom. Thus, the top case is inside the error bars for the corre-
sponding transition temperature, and the temperature
differences are around 0.5%%uo between two consecutive cases.
Note the metastability revealed by the second case. The energy
behaves similar to m here.
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Ti(p ~0.85)=0, Tq(0. 95)=5.35+0.05, Tq(0. 85)(7,
and T2(p (0.85)= ~. The simplest picture emerges for

p =0.6, where only type I has been detected for
0&~'~ ~. The critical temperature in this case de-
creases a little bit faster than linearly with increasing ~'.
The fact that the transition is always of second order for
small p, while it becomes of first order (the type of discon-
tinuities changing with r ) for larger p, is consistent with
the reported existence of a tricritical point at
p =p, =0.83 when r'= ~ [9,10].

The critical behavior is a specific question. The follow-
ing has been stated concerning the various second-order
phase transitions in the system: (1) when p &p, and the
diffusion temperature is infinite, they seem characterized
by Onsager critical exponents [10], as for p =0, in agree-
ment with some theoretical arguments [19]; (2) the situa-
tion is less clear-cut as p ~p, [14];and (3) the critical be-
havior for type I when ~' is finite is roughly consistent
with the Onsager case [14]. We have investigated sys-
tematically the critical indexes, including m' ~-versus-1
plots (Fig. 5) and standard [20] finite-size scaling analysis
(Figs. 6 and 7), trying to reach more definite conclusion.
The main conclusion is that critical behavior is indistin-
guishable indeed from the equilibrium one. It is true
even near tricritical points separating type I from type II,
i.e., as p ~p, . This is illustrated by Figs. 5 —7, and it also
follows from the detailed study of cr [cf. Fig. 2(b)]. The
much more limited data reported earlier[14] apparently
suggested a changeover of p from the Onsager value —,

' to
the Landau classical one —,', in agreement with some ex-
pectations. It was based on the observation that o. ap-
parently had a tendency towards a monotonic variation
as p ~p, . In particular, a gradual smoothing of the peak
that, as indicated above, corresponds to nonclassical criti-
cal behavior was observed. We may conclude with

1.70
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P
0.90 ip

I3

0.50
0.0

I

3.5

0.0 '

0.00
I I

0.07
i/L
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(1 —W/t, ) i
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FIG. 6. Standard finite-size scaling plots {assuming P= —,
' and

v=1) of the magnetization data for p =0.95 and z'=5. 2. The
symbols in the main graph correspond to I.=8 (circles), 16
(squares), 32 (triangles), 64 (rhomboids), and 128 (asterisks).

confidence, however, that it was only an artifact related
to finite-size effects and, more decisively, to the relatively
small magnitude of o near p, ; cf. Fig. 2(b).

Finally, we have monitored the spatial relaxation of
site-site correlation functions at high temperature. They
decay exponentially at large distances, as expected for a
nonconserved magnetization [21], in agreement also with
some analytical computations [10]. This behavior is illus-
trated by Fig. 8 and, in particular, by the inset therein.
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FIG. 5. Plot of m '~s versus T/Tc for p=
2 and p= —,

' (as in-
dicated). The data correspond to an extrapolation to the infinite
lattice with p =0.95 and ~'=4 (circles) and 5.2 (squares); the
latter is within 3% of the tricritical point (~ =S.35).

FIG. 7. Log-log plot of the magnetization versus
1 —T/T&(T', p) for p =0.9S and z'=4 (circles), 5 (triangles),
and 5.2 (squares). The solid line corresponds to the Onsager
solution.
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0.95

0.70

0.45

0.20

approximations are typically believed to be more relevant
or nonequilibrium than for equilibrium phenomena. In
act, the case p ~ 1 (with T' = ~ ) has a mean-field na-

ture, as mentioned above, and it is concluded here that
classical behavior occurs in other circumstances as well.
The method is also convenient because it involves an ex-
plicit description of time evolution, steady states and sta-
bility conditions, and one may consider different values
for any of the relevant model parameters. In particular,
one may apply the method to any choice of transition
rates. It is interesting to consider a generalized rate for
transitions from s to s', given as

c(s'ls)= f(5H) 5II:[II(s ) H(s)](kg&) (3.1)

—0.05
0.0 5.0

) I I

10.0 15.0 20.0

where 0= T or T' for reaction or diffusion, respectively,
and f (X) is arbitrary, except that the detailed balance
condition,

FIG. 8. SSite-site correlation functions for p =0.95 d
~'=0. 1 1

p= . an
( ong dashes), 1 (solid line), and 10 (short dashes), and

for the Ising model (dotted line), when the reaction temperature
g ) g( T,p). The inset is a semilogarithmic plot of

the absolute values of the same data.

III. THK ANALYTICAL METHOD,
AND SOME GENERAL RESULTS

Our main approach in Secs. 3 —5 is a field theory for ki-
netic lattice systems [22]. Namely, (1.1) is reduced to a
few equations for the time evolution of mean local quanti-
ties by neglecting long-wavelength fluctuations and re-
stricting correlations to those between a small number of
sites. A small, compact domain of sites, say D, which al-
ows for the involved dynamical process is considered.

The correlations between the particles in D and those in
the rest of the system are suppressed. With this aim, one
neglects fluctuations at the surface of D in such a way
that the resulting description is a first-order mean-field
one. The method generalizes the (equilibrium) theories of
Bethe and Peierls to a class of kinetic phenomena. The
minimum size of D that allows for thr e competition be-
tween reaction and diffusion consists of two NN sites (the
interior of D, denoted I) surrounded by its respective NN
sites outside I (the surface of D, denoted S); the number
o sites that belong to S is 2(2d —1). On the other hand,
the only correlations that are allowed to first order are
pair (NN) ones between I and S. Consequently, the (ap-
proximate) description of the configuration at any time
only requires the consideration of the particle density,
denoted n =N+ /N, and of t—he density of (NN) particle-
particle pairs, z=X++/d¹ It is helpful, however, to
refer also to v=tV /N = 1 —n, w =N /dX = 1+z

2n, and 2u—=N-=N+ /dN =2(n —z). The magnetization
(2.1 is m =m =n —v, and the energy (2.2) is e =1—4u. A
higher-order approximation would involve both a larger
size for D, further correlations, and, consequently, more
variables.

Our approach is similar to the one used before to study
the limiting case T'= oo with Metropolis rates [8). It is
convenient in the present situation, given that mean-field

c (s'
i
s ) /c (s i

s') =exp( —5H), (3.2)

2

(s„s2) + 2d 1
p(+ is, ) 'p (

—
isj )

(3.3)

Here p sis')=p(s, s')/p(s') is a conditional probability,
p s is the probability that the occupation variable at a
given site equals s, so that p(+)=1—p( —)=n, dp —n, and
p s, s') is the probability that a given NN pair has occu-
pation variables (s,s'), i.e., p(+, +)=z, p( —,—)=tu,
and (+ —) =p, —=p ( —,+ ) = u. The equations governing n
and z to first order follow when one recognizes that dy-
namics consists of a competition of: (A) interchanges at
temperature T' with probability pg(5H), and (B) reac-
tions at temperature T with probability (1—p) (5H).
Letet us consider separately the action of A and B. B the
p

'
p y of the master equation, the variation withhiloso h

an . yt e

time of a( = n or z) that is induced by the action of (only
mechanism B is

da
dt

2d —1

5ag& (s i,s2, i &, i 2 )P(5H ),
$1&$p=+1 /&&lp=0

(3.4)

where 5a represents the change of a caused by the inver-

is assumed to hold for simplicity. We refer below to the
rates introduced to deal with different problems by
Metropolis et al. [16],f (X)=min[ l, e ] b Ka k'

[ ], f ) = [ +e ];by van Beijeren and Schulmann
',=e; and by De Masi, Ferrari, and Le-

bowitz [5], f (X)=e (' ) [cosh( J/ks 0) ]
" Th

specific notation c(s;x)=P(X) and c(s;x,y)=g(X) for
f ( ) is used hereafter to differentiate the two elementary
processes.

The configurations of the minimum cluster D (as
defined above) are characterized by the occupation vari-
ables at the two interior sites (to be denoted s. , j=1,2),
and by the number i ( ~ 2d —1) of (surface) sites that are
nearest neighbors of j and have occupation variables that
equal +1. The associated probabilities are

QD(si, s2&/ i, i2 )
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du 2d

g 5aQD(s„i)P(5H),dt, +1,.
(3.5)

where

sion of s, ; the fact that the method involves spatial
homogeneity, which implies the same action on s2 as on
si, has been used. The sum over i2 in (3.4) only aff'ects

the probability (3.3); thus,

respectively, when the competition of A and 8 is con-
sidered.

The properties of the stationary state, where dn /dt =0
and dz/dt =0, may be obtained as follows. For the reali-
zations of P(X) mentioned above, Eqs. (3.10) and (3.11)
reduce to two polynomials in g=exp( —2J /k' T). The
common stationary solution (n, z) to them may be unsta-
ble, however. A necessary condition for stability is

2d
QD(si t ) = . p(si )p (+ Isi)'p( Is, ) (3.6)

BF &0,
Bn ss

(3.12)

Equations (3.5) and (3.6) are precisely what one would
have obtained by considering mechanism B and the cor-
responding minimum cluster, i.e., only one interior site
(and its NN surface sites). It follows from (3.5) that

2d 2d

dt
=F(n z;T)= g . v'

2d i

2d —1
V

z 2d l

n 2d —1

X P(d i )—, (3.7)

2d 2d
v'

i =-0

2d l

2d —1

(2d —i)z
2d —1n

X P(d i), — (3.8)

for a =—z [5z = is, (4d ——1) ']. Next, consider the ac-
tion of mechanism A on the original minimum cluster D,
i.e., the interchange s, ~+s2 at the interior sites. This
leaves r constant, but changes z and H by
s i (i2 i i )(4d ——1 ) and 4Js i (i i

—i 2 ) jk& T', respective-
ly, for s1= —s2. Consequently, one gets under the same
philosophy that

(4d —1) =K(n, z; T')dz
dt

2j —1 2d —1

l2
(i2 i,)—

i 2d —1 —i 2d —i +i
Z 1W 2V 1 2

X
(n )2d —i f(i, i 2 ), —

(3.9)

where a sum over s, has been performed. Finally, one
obtains

dn = (1 p)F (n, z; T), — (3.10)

where P[s, (i —d)] =P[4Js, (—i d)/kii T—], for a=n
(5n = —s, ), and

(4d —1) =6 (n, z; T)
dz
dt

where SS stands for stationary state. Consequently, there
is a limit of metastability (or spinodal line) located at
(BF/Bn)ss=0. Given that (3.12) is not sufficient, we
eventually need to solve certain ambiguities below by in-
tegrating Eqs. (3.10) and (3.11) for several initial condi-
tions (no, zo) and monitoring the actual time evolution.

Consider P(X), f(X), and (p, T') given. For T high
enough, the stationary state is completely disordered, so
that it may be characterized by m =0 ( n =

—,
' ); conse-

quently, n =v, z =w, and F( —,',z; T)=0. Thus, the only
condition to obtain the stationary state at high T is

(1 —p)G ( —,', z; T)+pK( ,', z; T') =—0, (3.13)

which determines z for given T, and stability requires
(dF/Bn )„&&2,&0. The breakdown of the latter marks
the onset of a phase transition. A second-order transition
corresponds to a critical temperature, say
Tc:—T, =T, (p, T'), where T, locates the spinodal line,
which is the solution of (dF/dn )„,&2, =0, where z fol-
lows from (3.13). Then, the only solution that is locally
stable for T ) Tc is m =0, and stable solutions m&0 ex-
ist for T & T&. When the transition is of first order, T1 is
the lower limit of local stability for the m =0 solution.
The latter is unstable for T (T„but m %0 solutions may
exist for T) T1 that are locally stable. Consequently,
one defines the upper limit of local stability (for m&0
solutions), say T2 = T2(p, T'), as the solution of
(dF/dn )„&i&z,=0, where (n, z) is the stationary solution
of Eqs. (3.10) and (3.11). Summing up, m =0 is the only
stable solution for T & T2, while two stationary, locally
stable solutions exist for T1 & T & T2, which correspond
to ordered and disordered states, respectively. The time
integration of (3.10) and (3.11) leads to one of the two
solutions, depending on the initial condition chosen. The
method gives no information on which one of them is glo-
bally stable, bu locates a region of metastable behavior be-
tween T, and T2.

Some specific information for any d may be obtained
analytically now. The (mean-field) equilibrium results
follow when p =0, 1. For p =0, (3.13) reduces to
6(—,',z;T)=0, which leads to (2z) ' —l=g when de-
tailed balance, P(X)=g P( —X), is used. After combin-
ing with (r)F/Bn )„,&2, =0, one gets z =d [2(2d—1)] ', consequently,

(4d —1) =(1—p)6(n, z; T)+pK(n, z; T'), (3.11)
dz

Tc =2J/keln[d (d —1) '], (3.14)

where F ( T), G ( T), and K ( T') are defined by (3.7) —(3.9), which is the Bethe critical temperature. Moreover, Eqs.
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(3.10) and (3.11) reproduce the ordered states of the Bethe
theory for T&T~. On the other hand, p =1 implies
K ( n, z; T') =0 and n =const, which may be seen to imply
v =g ztv. That is, the energy is where

=pg( —1)(1—p) (4.1)

e = [A+ g(2m —1)](A+ g)

A=[1—m (1—g )]'~
(3.15)

a =—I for P(X)=e tin'x

—:4(1+I ) for P(X)=e " ' cosh(PJ), (4.2)

which corresponds to the Bethe-Peierls solution for given
m and T'. Note that (3.15) is independent of transition
rates, as expected for equilibrium states, and of system di-
mension, which is a feature of the pair approximation.
Note also that making T = T' leads to the equilibrium
solutions found above for p =0. Namely, p =0 implies
v =g zw, which vanishes the diffusion term K(n, z; T)
(with T' replaced by T).

More interesting is the limit p~1. According to Eqs.
(3.10) and (3.11), the time scale for variations of m
(equivalently, n) induced by the reaction process is of or-
der (1—p) ', which diverges as p~ 1. Contrary to such
a slow relaxation of m, the energy e (equivalently, z)
changes very rapidly within that limit due to the (fast)
diffusion process, whose time scale is of the order of uni-
ty. More explicitly, the slow variation of I allows for the
diffusion process to stabilize the system at temperature T'
before any significant change of m occurs. This produces
at each time a condition of Iocal equi/ibrium at tempera-
ture T' that is described by (3.15), i.e., v =g zw, in the
present approximation. The stationary states follow from
the conditions F ( n, z; T)=0 and K ( n, z; T') =0. That is,
they are also local equilibrium states (3.15) with no
dependence on the diffusion rate P(X). Then,
Ti = Ti(p ~1,T') follows from

and I =—exp( —2J/kit TC). Figure 9 illustrates the solu-
tions of (4.1) for the second choice of a in (4.2) and two
different diffusion rates, namely the Metropolis and
Kawasaki ones.

Two important facts are revealed in Fig. 9. On the one
hand, the form of P becomes irrelevant for the limiting
cases, T'=0, ao and p =0, 1, and it induces only minor
quantitative changes otherwise. On the other hand, the
present mean-field treatment for T'= ~ leads to the tran-
sition points obtained previously by the Monte Carlo
method [10]. This agreement deserves a comment, how-
ever. The computer simulation of a chain with 10" sites
suggested the existence of first-order transitions for
p &0.5, and perhaps also for any p &0 (i.e., the one-
dimensional system revealed a tendency towards phase
segregation that only becomes quite clear in the MC ex-
periments for p &0.5), while the transitions implied by
(4.1) are always of second order. One is inclined to be-
lieve that the apparent MC discontinuities are not real.
In fact, the system typically undergoes a very slow mono-
tonic decay during the MC relaxation, rather than evolv-
ing through actual metastable states (as one would expect
in a first-order transition), and it is exactly known that
the transition is of second order for p~1. Nevertheless,

r

2dX; 0 [i —1 —(2d i)g)P(d —i—) =0,
i=0

(3.16)
T'=oo

which has a strong dependence on both P and d, as dis-
cussed below. Note that one gets z =[2(1+/)] ' for
m =0.

IV. THE QNE-DIMENSIONAL SYSTEM

We first note that (3.9) leads to
K(n, z;T')=P( —1)v(v /zan)(nv) fo—r d =1. It im-
plies, in particular, that the existence of a transition does
not depend on the diffusion rate. Different realizations of
P only modify the relative speed of the diffusion process,
i.e., they produce a difFerent effective value for p, accord-
ing to the last term in Eq. (3.11). On the other hand, we
get from (3.13) and (t)F/t)n )„,z2, =0 the following in-
formation: (1) A critical point exists at TC=O for any
value of p and T' if P(X)= ( 1+e ) '. (2) The zero- T
critical point washes out for P(X)=mtn [ 1,e I, unless
at least one of the two conditions T'=0 or p =0 holds;
otherwise, only m =+1 solutions occur for T=O. (3)
When either p(X)=e " ' [cosh(pJ)] or
P(X)=e " ', a surface of critical points exists,
Tc = Tc(p, T'), which is the solution of

T' =Te"/4

FIG. 9. Phase diagram for a one-dimensional system evolv-
ing by reaction rates ala De Masi. The horizontal line corre-
sponds to the equilibrium zero-T critical point, where p & 1 is a
trivial parameter. The rightmost vertical line represents a line
of critical points for p —+1 and any T') T. The solid and dashed
curves correspond, respectively, to diffusion rates ala Metropo-
lis and ala Kawasaki for different values of T, as indicated.
The symbols represent Monte Carlo data [10] whose error bars
(which are consistent with having a phase transition only for
p )0.5) are also shown. Tc ——2J(k~ln3) ' is the exact critical
temperature for p~1, T'= oo.
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we still trust the MC evidence [10]of long-range order (in
particular, the lattice was large enough so that crucial
finite-size efFects should be absent). Summing up, we be-
lieve that the system is described accurately by our
mean-field solution, at least for p + 0.5. This seems
confirmed by Fig. 10, describing a qualitative agreement
between mean-field and MC results for m and for C as
defined in (2.1) and (2.3), respectively, at least for p ~ 0.5.
Two more facts support our conclusion: (1) The present
mean-field theory reproduces well the fact, revealed by
both exact and MC results, that the one-dimensional sys-
tem has no phase transition at finite T for Metropolis and
Kawasaki reaction rates, for instance; (2) Eq. (4.1)
reduces, for p~1, to I =g(1+2/) ', which equals the
corresponding exact solution for arbitrary T' [10].

The reason for the agreement between mean-field and
exact theories is that our method of solution is indepen-
dent of the size of the involved cluster D for d =1, so
that the only approximation is our restriction to pair
correlations, which are actually the only ones when local
equilibrium sets in for p ~1. The latter assertion follows
from the next argument. Assuming homogeneity (which
is implicit in the method), the exact equation for the mag-
netization when d =1 and p~1 is

(a)

d(s„) = —2 g s„p(5H )p,q(s; m ); (4.3)

cf. Eq. (1.2). Summing here over s —sD, where sD is any
configuration of D that involves s„and its two nearest
neighbors, one gets

d(s„) =——2 g s„QD(sD )p(5H ), (4.4)x D D
D

where one has, for d = 1, that

QD(sD)= g p, (s;m)=p(s„)p(s„, ~s„)p(s„+)~s„) .
S SD

(4.5)

Now, the result (4.4) and (4.5) may be organized as in
(3.5), i.e.,

d(s„) = —2 g g s„QD(s„,i)P[s„(i —1)],
0

(4.6)

where Qn(s„, i ) is defined in (3.6). When one takes
n =

—,'(1+(s„)) here, it follows (3.7), which (together
with U =g zto) is the solution of our method, i.e., the
latter produces indeed the exact solution for p —+1. This
argument also suggests that one might expect the same
result to be valid, at least approximately, for a range of p
values smaller than unity. It is clear, however, that, lack-
ing more general exact results, additional MC data is
needed to conclude more definitely about the problems
suggested here.

V. THK TWO-DIMENSIONAL SYSTEM

0.2
T/Tc

Conditions (3.12) and (BF/Bn)„,&z, =0 lead, respec-
tively, to

P( —2)(l"—u )+2/( —l)u(t —u )

=6p(1 —p) 'zu(u —g)[1—2(1 —g)z]a (5.1)

P( —2 )[(3z —2)I" + 3u z] —2P( —1 )

X [6B zI +9 (1—6z)]—60(0)Q (1—3z)=0 .

Here

a=—g( —3)(u +g u +P)
+P( —2)4zu (u +g )+g( —1)5u z

(5.2)

(5.3)

0.0

FIG. 10. (a) Order parameter defined in (2.1), and (b) the en-

ergy fluctuations defined in (2.3), both for d = 1, T'= ~, and re-
action rates ala De Masi. The solid lines are the mean-field re-
sult for difFerent values of p, as indicated. The symbols corre-
spond to MC data [10] (squares for p =0.75, circles are for

p =0.10); the dashed lines are a guide to the eye.

contains any dependence on the diffusion rate;
u —= (2z) ' —1, and I —= exp( 2J Ikey T, ). —

Equations (5.1) and (5.2) transform into two polynomi-
als of I for the above choices of P. In particular, they
are polynomials of second order in I for the Metropolis
reaction rate, and one may convince oneself that they
reduce to the system of equations studied by Dickman [8]
when T'= 0c. For p =0, (5.2) leads to I =u, which pro-
duces the Bethe critical temperature I =—,

' when used in

Eq. (5.1), independently of the rates, as expected. For
p ~ 1, (5.2) leads to g= u, which produces



REACTION-DIFFUSION LATTICE GGAS: THEORY AND. . .

4( —2)PS"—g. —(I+4/)I ]—P( —1)4[3/ I +g (g —2 ]

+P(0)6( (1 —2()=0 (5 4)

n used in (5.1). Equation (5.4), which corresponds to
(3.16) for d =2, gives T& =T& or i
particular, one as oh for the Metropolis rate that

g(6+20/+ 19$ —4g )' —6gr'=
1+4/

(5.5)

latter

m '(dmldt)=(5+10m +m )I +4(3—2m —4m I
—(1+2m —3m ),

whose solutions are of the form

(5.6)

m* if T& T&

m= m*, 0 if T(T&T2
0 if T&T2.

(5.7)

Here T, and T2 are, respective y,1 the solution of
I —3I +71 2

—1=0; I 2=exp( —2J/
k T ). A transition temperature may be de ne asB 2

T =—' T +T2).
ral conditions may beThe situation under more general con i

'

e. . both first- and second-order transitions,

for a iven rate. A systematic study
e =e(T) forma roceed by computing m =m(T) and e =e

f T' ~(X), and ttj(X), as described inselected choices of p, T, z, an
'mple-Sec. III. The ensuing picture when bo h 'mp e-en both rates are imp e-

mented by the Metropolis algorithm may be summarized

(1) T&(p, T') exists for any pair of valu p,alues, T suc
hat the system exhibits m %0 solutions for T (T, .t a e

etr around the Bethe(2) A sort of essential asymmetry a
Namel the critical valuecritical temperature T~ exists. ~ am y,

of z is always larger than —, for any p yn (onl ) when T'(Tc,
We interpret this as an evidence

~&in fact, the only one that is allowed by our met o a
inhomogeneous solutions wit m =

in uce hasetendency o ef th difFusion mechanism to induce p ase
segregation.

to three qualitatively(3) One may distinguish up to t ree qu

which reduces to the known solution
'

n I ~=0.081 for
—OO,

ition T'= ~, the limit p~1 reproduces
the known exact solutions, as descri e or

libriumis that T'= ~ induces local equi i rium,
where most correlations are suppresse, w ic

d ofn our method indepen ent opa ir approximation exact an ou o
D Thus the only actual restriction

'
in our description is

t e im licit assumption about homog
'

y.eneit . In particu-
ar w

' f second order when the reac-ar we obtain a transition o secon
n rate is implemente y ei

~ ~ ~

poin is
of first order when the reactiontively. The transition is o rs

f thrate is Metropolis, however. The m qain e uation or e
case is

0.4
0

T /~, '
FIG. 11. Phase diagram for the two-d'o-dimensional system as

implied by tthe theory in ec.y
'

S V The solid lines represent
T T'). The transition isT {,T'); the dashed lines represent T2 p, . e

WT d of second order otherwise.of first order w
&

ohen T 2, an o
'

ical tern erature.T —=2J{ ~n is ek l 2) ' '
the equilibrium Bethe critica empC

d t system evolving by Metrop olisThe ma' g pin ra hcorrespon s o a
'ff t alues of p: curves 1,reaction and diffusion rat es and i eren va u

1 . The=0.5 =0.95, and p~1, respective y.2, and 3 are for p = . , p =
onds to a Kawasakiinset, ex i i ing'b't' the same behavior, correspon s to a

diffusion rate.

vior for ~1 (cf. curves 3 in thedifferent types of behavior or p

.574T (II) transitions are of first or er or
74T (III) while second-order transi ionT )25

T' (T, the situation is more su t e an
neous (as describedNamely, the solutions are inhomogeneou

~
T') and the following facts are observed

for very small values of T', say for T & . C. i
f both m and e with T are rather strong nearvariations o o m

T ( T'), though the latter are typical y an or er
ii The numerical treat-tude smaller than the former. ii

~ ~ ~ ~

ment of Eqs. . an. (3 12) d (3.13) for different initial condt-

0.6
0

T /T, '
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nd diffusion rates are of the Kawasaki type. eboth reaction an i us
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for (X)=[1+e~j ', and curve 3 is for P(X)=min I,e
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0.25
0

FIG. 13. Probability of NN++ paris, z, at critical tempera-
ture T = T& {T') for different values of p {curves 1, 2, and 3 are
for p =0.5, p =0.95, and p —+1, respectively) when reaction and
diffusion rates are implemented by the Metropolis algorithm.
This illustrates the asymmetry around T'=Tc, which is dis-
cussed in the main text.

written for d =2 in the form (3.1) (consequently, it can-
not be included in our analysis); it has an effect on dy-
namics that is close to the one by the Kawasaki rate,
however. (iii) When p ~ 1, the short-range order is deter-
mined by diffusion at temperature T', and one may dis-
tinguish two cases: the behavior is equilibriumlike of
type I for any T'& Tc/10, approximately, while it is of
type III (as for Metropolis rates above) when T' ~ Tc/10.
(iv) The behavior is always equilibriumlike of type I for
any p (1.

The investigation of different realizations for P(X) is
also interesting. The inset in Fig. 11 illustrates the case
of Metropolis reaction and Kawasaki diffusion rates
(which is to be compared with the main graph). We ob-
tain the same qualitative behavior as in the main graph of
Fig. 12 when both rates are of the Kawasaki type. A
main conclusion here is that, independently of p, different
choices for the diffusion rate only seem to induce minor
quantitative changes, unlike the case for the reaction
rate.

VI. DISCUSSIQN

tions reveals very slow relaxations. This is apparently
due to the existence of a full phase segregation, which
makes the system rather insensible to attempted changes
s„—+ —s„at low T'. The behavior III, where Tc( T') ~0
as T' —+0, is the one that manifests itself as type II' in a
MC experiment; cf. Sec. II. In any case (i.e., for I, II, or
III), z and o =—,'zwv depend on T' but are independent
of T, given that any short-range order is dominated by
the diffusion process when p ~1.

(4) The behavior for p =0.95 (cf. curve 2 in the main
graph of Fig. 11) is qualitatively similar to the one for
p —+1, except for the following facts: (i) The tricritical
point separating cases I and II is located now at
T'=2. 622Tc. (ii) There is no indication of a behavior
such as III (which is still evident in our equations for
p =0.999 and T'=0.05T ),cand there is some decreasing
of Tc(T'), but not a tendency towards zero, as T' +0. —
Both z and cr depend on T; e.g., o (T) has a monotonic
decreases with T and presents a discontinuity for case II.

(5) As p is further decreased, the region corresponding
to case I tends to occupy a larger range of T' values (e.g. ,
the tricritical point for p =

—,
' occurs at 8.152T&, and no

first-order transition occurs for p (0.364), and T, (T')
decreases monotonically with T'; cf. curve I in the main
graph of Fig. 11.

In general, the steady state is observed to depend quali-
tatively on P(X). This is evident in the inset of Fig. 12,
where the three curves correspond to different relations
of P(X); the main graph of Fig. 12 illustrates the phase
diagram for varying values of p when the reaction rate is
implemented by the Kawasaki algorithm. The main re-
sults for this case may be summarized as follows: (i) The
transitions are always of second order, with Tc = T, (T')
increasing monotonically with T'. (ii) The situation for
T = ~ is qualitatively similar to the one described in a
MC experiment [15] for a Glauber reaction rate; in par-
ticular, Tc increases monotonically with p. The Glauber
rate, which was originally defined for d =1, cannot be

The reaction di+usio-n lattice gas, whose kinetics con-
sist of a competition between creation-annihilation (reac
tion) and diffusion processes at two different tempera-
tures, is one of the most interesting microscopic models
at hand in which nonequilibrium situations occur. In ad-
dition to the fact that macroscopic, hydrodynamiclike
equations have been derived rigorously for it [5—7], it ex-
hibits a variety of ordering phenomena as one modifies
the system parameters, and models some actual situations
in nature [4]. The Monte Carlo (MC) simulation and
mean-field analysis reported in the present paper add up
to a series of recent exact, mean-field, and MC results (cf.
Refs. [4—15], and references therein). A brief description
of the emerging picture concerning nonequilibrium phase
transitions follows; eventually, some specific questions are
discussed.

The influence on system properties of the reaction and
diffusion processes (which are governed by rates
(1 —p)$(X) and pg(X), where X represents the corre-
sponding energy cost, [H(s') —H(s)]/ksII, with A=T
or T', respectively) is uneven. Exact [10] and mean-field
theory reveal that different realizations of P(X) induce
the same qualitative behavior with some minor quantita-
tive differences, e.g. , different eQectiue values for p. In
any case, P(X) is irrelevant for T'=0, ~, as expected.
The choice of P(X) has a decisive inffuence on the nature
of the stationary state, however. In particular, the one-
dimensional system has long-range order below
Tc(p, T') )0 only for a certain family of reaction
rates that includes P(X)= 1 —as„[s„,+s„+,]
+a s„ is, +i, a=tanh(J/k&T) [5]. This family has in
common that rates favor low-energy states rather atypi-
cally, in which the Metropolis algorithm is excluded.
The latter and other choices induce a zero-T critical
point instead, if any; e.g. , the zero-T critical point is
washed out expect if either T'=0 or p =0 occurs, and
only m =+1 solutions arise otherwise, in the Metropolis
case. It also follows that correlations for d =1 decay ex-
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ponentially with distance, in agreement with some expec-
tations [21];cf. Ref. [10]also.

The present mean-field approach suggests that the
phase transition that occurs for d =1 at Tc(p, T') )0 is
of second order, in agreement with exact results for a
completely random and fast diffusion (i.e., T'= oo and
p ~1). In addition, the latter predicts classical behavior
for the order parameter, namely m =a '(2a —1)'~ )0
for a) ac =

—,'. This is essentially similar to the result ob-
tained for a generalization [10]of the Glauber rates [1] to
d =2; thus, one may argue that the effect of the atypical
rates mentioned in the preceding paragraph, as compared
to the Glauber ones, is to produce an effective increase to
d + 1 of the actual dimension of the system. It is suggest-
ed by mean-field theory that long-range order occurs at
finite T' for any p )0. Previous MC simulations for
T'= ~ indicated that the transition may occur for p ~

—,
'

only, and apparent discontinuities were observed (cf.
Figs. 9 and 10); the computer study of the one-
dimensional case is relatively difficult, however, and the
latter observation may be an artifact due to very slow re-
laxations. It would be interesting to perform further nu-
merical studies of this and related cases, in particular, to
compare our equations in Sec. IV with MC data for
d = 1, trying to conclude more definitely about the nature
of the phase transition as one varies p, its relation to the
classical one occurring for p —+1, and the possible ex-
istence of discontinuities and/or a tricritical point.

As expected, mean-field theory is an accurate descrip-
tion of many properties of the reaction-diffusion lattice
gas. The following situation is revealed by mean-field
theory for p —+1, in agreement with exact results. Reac-
tion induces a slow relaxation of m, whose time scale is of
order (1—p), while diffusion produces very rapid
changes of the energy, whose time scale is of order p
Consequently, a condition of local equilibrium (where
most correlations are suppressed) at temperature T' sets
in. On the other hand, the mean-field method is naturally
independent of the size of the involved cluster D as long
as d = 1, so that the only approximation that is implicat-
ed is a restriction to pair correlations that are exact at lo-
cal equilibrium. We thus get for d =1 perfect agreement
with the exact solution for arbitrary T' [10]. Such an
agreement occurs also for d =2 when T'= ~, which in-
duces local equilibrium as well.

The two-dimensional system is rather we11 understood
now. The analytical and MC studies describe a phase
transition whose nature may vary, depending both on
P(X) and p, from second to first order as T' is increased.
For example, the following types of behavior arise in MC
experiments when both reaction and diffusion mecha-
nisms are implemented by the Metropolis algorithm: For
p =0.95, the transition is of second order insofar as
Tc & T' & 5.35TC (where Tc is the Onsager critical tem-
perature), the transition is standard of first order when
T') 5.35TC, and it has weak discontinuities and some
peculiarities, such as very long-lived metastable states

and very slow evolutions, when T' & 0.8T&,' i.e., the tem-
perature of the (fast) diffusion process is crucial. The
speed of the diffusion process is also crucial: the regions
in which two phases coexist tend to disappear as p is de-
creased, and only continuous transitions occur for
p &0.83. The mean-field description (which agrees with
the exact solution for p~ 1 and T'= ~ [8] only) reveals
the same qualitative picture; the third mentioned class of
behavior shows up then as a second-order phase transi-
tion with inhomogeneous states as p~l (but not for
p &1), however. Further studies of the coexistence of
phases that is suggested by both MC and mean-field re-
sults would be interesting. On the other hand, a diffusion
Kawasaki rate does not modify qualitatively the steady
state (within a mean-field description), while the use of
the same rate for the reaction mechanism induces an im-
portant change: no standard first-order phase transitions
exist anymore, but second-order ones with Tc an increas-
ing function of both p and T' do exist.

A finite-size study of the MC data for Metropolis rates
reveals that the critical behavior is always indistinguish-
able from the equilibrium, Onsager one. It is consistent
with exact results for T'=~ and p —+1, indicating a
phase transition of first order when P(X) is of the
Metropolis type, and of second order otherwise. The
latter is classical (e.g. , P= —,

' ), however, given that T'= oo

and, more effectively, p~1 induce mean-field behavior.
(Mean-field behavior has been shown to be a consequence
of infinite-range diffusion for any p & 1 [13]as well. ) The
limit p —+1 is singular, however: a relatively slower pro-
cess with T'= ~ induces for Metropolis rates the ex-
istence of a tricritical point at p =0.83, so that the phase
transition is of first order for p )0.83 only. No similar
systematic study seems to exist in the literature for other
choices of P(X), except some limited (MC) data suggest-
ing that no first-order transition occurs for Glauber rates
when p &1 [15], in agreement with the exact result for
@~1 [9,10]. It would be interesting to conclude with
confidence about possible changes of the second-order
phase transitions as one decreases p from the fast
diffusion limit, given that one might expect there a
changeover from classical to equilibrium critical behav-
ior. It would also be interesting to study the derivation of
macroscopic equations and transport coefficients for finite
T' following the previous trends for T'= ~ [5]. Finally,
it may be remarked that the complex behavior of the
reaction-diffusion lattice gas does not seem to fit the sim-
ple picture in Ref. [19] for some nonequilibrium lattice
systems.
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