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We investigate the dynamics generated from iterated maps and analyze the motion in terms of the pro-
babilistic continuous-time random walk (CTRW) approach. Two different CTRW models are con-
sidered: (i) Particles jump between sites (turning points) or (ii) particles move at a constant velocity be-
tween sites and choose a new direction at random. For both models we study the mean-squared dis-
placement {r%(z)) and the propagator P(r,t), the probability to be at location r at time ¢ having started
at the origin at ¢t =0. Iterated maps are used to generate both dispersive and enhanced diffusion and the
results are analyzed using the CTRW framework and scaling arguments. For the case of dispersive
motion we discuss the problem of the stationary state and point out its relevance.

PACS number(s): 05.40.+j, 05.45.+b, 66.30.—h, 02.50.+s

I. INTRODUCTION

Diffusion processes are widespread and common in
many fields in physics, chemistry, and biology and have
therefore drawn the attention of both theorists and exper-
imentalists. The diffusion process that has been most fre-
quently encountered is the Brownian motion character-
ized by a mean-squared displacement that increases
linearly with time, (r%(¢)) ~t, and by a Gaussian propa-
gator P(r,t)~t~ 9%exp(—r?/2t), where d is the spatial
dimension in which Brownian particles diffuse.

Other laws of diffusion, slower and enhanced relative
to the Brownian motion, have been recently under active
investigations resulting in [1-6]

(FA)) ~t, a##1. (1)

Cases with a <1, known as the dispersive transport re-
gime, have been attributed to random walks in geometri-
cally disordered fractal structures or to temporal disor-
der, both having underlying scale-invariant properties,
spatial or temporal with no characteristic length or time
scales [1,2,7]. The a>1 regime, which corresponds to
enhanced diffusion, has been shown to originate from a
number of models dominated by processes slowly decay-
ing with time or with length [6,8,9]. One of these models,
which accounts for the possibility of enhanced diffusion
while still preserving a stochastic nature, is the Lévy walk
model. Lévy walks are based essentially on a
modification of the Lévy flights that display spatial scale
invariance [10—12]. It has been established that both
dispersive and enhanced motions have non-Gaussian
propagators [6,13,14].

Parallel to these random-walk studies there has been
considerable interest in nonlinear discrete maps, especial-
ly in the onset of chaotic behavior characterized by regu-
lar phases separated by intermittent bursts [15-18]. In-
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terestingly both dispersive (¢ <1) and enhanced (a>1)
diffusional behaviors have been recently observed in such
maps under intermittent chaos [17-20]. It has been
demonstrated [10,17,18,20,21] that one can relate the
map-generated anomalous diffusion to random walks in
continuous time. The mean-squared displacements ob-
tained directly from the maps have excellent agreements
with the random-walk analogous process in the dispersive
and enhanced limits.

In this paper we extend the study of the maps beyond
the mean-squared displacement and focus on the proba-
bility density P(r,t) to be at r at time ¢, given an initial
starting condition. We investigate these newly studied
probability densities in the framework of the continuous-
time random walks (CTRW) and confront our results
with the map-generated probability densities.

The paper is organized as follows. In Sec. IT we intro-
duce the CTRW framework, which is applied later on
two different diffusional limits. We define two ap-
proaches, the jump model and the velocity model, and
compare them formally. In Sec. IIT we discuss the deter-
ministic map of Geisel and Thomae [17], which leads to
dispersive transport and use the CTRW jump model pro-
posed in Ref. [17] to calculate the probability distribution
P(r,t). P(r,t)is then compared directly with the map re-
sults. In Sec. IV a variant of the map in Sec. III is
defined [18], this time leading to enhanced diffusion. The
CTRW formulation is used again, suggesting a Lévy walk
description of this map-generated motion. The jump
model and the velocity model are analyzed and related to
the map results. We end with a brief summary.

II. CONTINUOUS-TIME RANDOM-WALK MODELS

In this section we introduce the CTRW framework to
be used in describing the map dynamics. We study sto-
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chastic processes where particles can move either by
waiting at a particular location before moving instantane-
ously to the next one (jump model), or by moving at a
constant velocity between points of halt. We concentrate
on the one-dimensional approach (generalization to
higher dimensions is possible).

While the jump model has been extensively studied
[1-8], the case of continuous motion with a given veloci-
ty has only lately received some attention and has there-
fore been studied to a much lesser extent [22,23]. In the
constant velocity case one may distinguish between two
different models. These two models do not lead to
different characteristic behaviors and only differ in their
analytical description: (i) Extending the regular random-
walk approach, one may think of particles that move at a
constant velocity for a given time (or displacement), then
stop and choose a new direction and a new time of so-
journ at random according to given probabilities. We
call this the velocity model. (ii) If the particle proceeds its
motion in the same direction the observer may not distin-
guish whether the particle has stopped at all or has sim-
ply continued its motion until it stops and changes direc-
tion. This leads to the picture that the particle moves at
a constant velocity until it changes direction where the
time between turning points is chosen at random. Fol-
lowing Masoliver, Lindenberg, and Weiss [24], we call
this case the two-state model. In Fig. 1 we give a
schematic description of the jump model and of the two
cases of moving with a constant velocity between turning
points.

In the CTRW framework the random-walk process is
entirely specified by (r,t), the probability density to
move a distance r in time ¢ in a single motion event.
¥(r,t) can be either decoupled ¥(r,t)=1y(t)A(r), as com-
monly encountered in theories and applications of
CTRW [1-7], or coupled through some space-time an-
satz [10—12]. In the decoupled scheme, usually assumed
in the jump model, ¥(¢) determines whether the motion is
asymptotically regular or dispersive. The only require-
ment on A(r) is that its second moment is finite. In order

)
)

Jump model:

-2 A

Velocity model: iz r

Two—state model: " ‘ r
n=2

FIG. 1. Schematic representation of the three models of
motion discussed in Sec. II. » =1 and n =2 denote two con-
secutive motion events. In the jump model the particle waits
until it moves instantaneously to a new site. In the velocity
model the particle moves at a constant velocity to a new site
where it chooses a new direction at random, and in the two-
state model the particle moves at a constant velocity between
turning points where the intervals between turning points are
chosen at random.

to derive an enhanced diffusion behavior within the
CTRW formulation, one has to introduce coupled
memories [2,10]. Here we assume [8,10-12,25]

Wr,t)=p (rlOOA(r) , (2a)
p(rl)y=8(|r|—1), (2b)

where p (r|t) is the conditional probability to move a dis-
tance 7 in time ¢. In the model studied here p (r|¢) is the &
function that accounts for the time delay necessary for
the particle to move over the displacement r. For simpli-
city we introduce quantities given in units of length, time,
and velocity. This space-time coupling scheme can now
be introduced into the different models: jump, velocity,
and two-state. While in the jump model no information
is given on how the particle spends its time between
jumps, the velocity picture with the coupled ¥(r,?) of Eq.
(2) provides a clear physical origin for spending the time
between turning points by moving at constant velocity.
Alternatively, one may rewrite Eq. (2) as

Yr,)=18(|r| —0)y(1) . (3)

The two descriptions (2) and (3) are equivalent, i.e., the
two expressions yield the same 9(r,1) if A(x)=1¢(|x|).

In this paper we are mainly interested in the probabili-
ty density P(r,t) to be at location r at time z. We will cal-
culate P(r,t) in terms of ¥(r,t) for the three models dis-
cussed above. In order to obtain P(r,t) we define the
probabilities W(z) and W(r,¢) (note the difference between
the ¢ and ¥ notations). W(?), needed for the jump model,
is the probability for not leaving a position up to time ¢
[1,3]. This is related to ¥(r,t) by

\I/(t)=ft°°dt’fdr wirt') . 4)

Similarly, for the velocity model W(r,¢) denotes the prob-
ability to pass at location r at time ¢ in a single motion
event; thus we may write [23]

Vrn=p(rln [ “ar [ Cdrir,e . (5)

By inserting (2b) or (3) into (5), we find for the coupled
memory

W(r,1)=38(|r|—1) 1Tdr’7k(r’)
=48(lrl =) [ "aryier) . (6)

In order to derive recursive expressions for P(r,t), we
consider Q(r,t), the probability to arrive at r exactly at
time ¢ and to stop before randomly choosing a new direc-
tion. Irrespective of which model we choose, the follow-
ing recursive relation holds:

Q(r,z):fdr'fo’dt'Q(r—r',t—t')¢(r',t')+8<r)8(t> .

(7

The propagator P,;(r,t) for the jump model is then related
to Q(r,t) in the following way [1-3]:

Py(r0)= [ dr'Q(rt—t W) . (8)

Analogously, for the wvelocity model we assume that
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Py (r,t) is the probability to stop or pass at location r at
time ¢ and thus we have

Pyr)=[dr' [drQ(r—r',t =W t) . )

In the Fourier (» — k) and Laplace (¢t —u ) spaces Egs. (8)
and (9) simplify to

Py(k,u)=W(u)/[1—y(k,u)] (10)
and

Pylk,u)=Y(k,u)/[1—¢(k,u)], (11)

where we introduce for the Fourier and/or Laplace trans-
forms the convention that the arguments indicate in
which space the function is defined, e.g., P(k,u) is the
Fourier-Laplace transform of P(r,t). For convenience
we write the distribution ¥(#,¢) in Fourier-Laplace space
as

Pk, w)=L[¢, (k,u)+_(k,u)] (12)
with
'/’i(k,u)=2fowdt fo“’dre

and in complete analogy W(k,u) in terms of W, (k,u).

¥, (k,u) and V.. (k,u) may be related to the quantities
h and H. in the two-state model of Masoliver, Linden-
berg, and Weiss [24], where they correspond to probabili-
ties of being in a left- or a right-moving state. For com-
parison we give the propagator of the two-state model

V. (1+¢_)+¥_(1+¢,)
21—, 9¢-) ’

which differs from Py (k,u), Eq. (11). Obviously, the ve-

locity model and the two-state model are closely related

and in fact, there is a transformation so that for a given

waiting-time distribution ¥(7,¢) there is a corresponding

Yrs(7,2) such that Py(r,t) and Prg(r,t) are identical.

Con51der1ng for ¥, (r,t) the coupled memory approach
q. (3), we write for the transformation

Yrs(r ) =28(|r| = D[y () + L9hy ()X Py (1)
F 1Y (X P ()X (t)+ - -+ ],
(15)

—r(uiik)¢(r,t) (13)

Prs(k,u)= (14)

where X denotes the convolution integration. Using the
Laplace transformation Eq. (15) can be recast into

PYrs(r 1) =18l =)L Py (w) /[2— ()]} . (16)

In general, no explicit expression can be derived for the
transformation; however, for an exponential ¥(¢) or A(r)
the transformation turns out to be simple. In this partic-
ular case we have

W(r,t)=18(|r| —t)ae ~*=8(|r|—t)(a/2)e™ ", (17
which in Fourier-Laplace space leads to

Yi(k,u)=a/(a +uzxik),

Y, (k,u)=1/(a +u=xik) .

(18a)
(18b)

Inserting Egs. (18) into Egs. (10) and (11) gives
(@ +u)P+k?

P,(k,u)= (19)
S Y ) au +u+k?)
and
+u
P,(k, )Z——a— . 20
it u au +u?+k? 20

Making use of Eq. (16) we obtain for the two-state model
the following probability distribution:

Prs(r,)=18(|r| —1)(a /2)e ~(#/?" 1)

which deviates from Eq. (17) by a constant only. If we in-
sert Eq. (21) into Egs. (12)-(14) we recover Eq. (20).
This demonstrates that the velocity and the two-state
model are related through the transformation of the cor-
responding waiting-time distributions. For a given jump
rate the diffusion is faster by a factor of 2 in the velocity
than in the two-state model, which reflects the fact that
in the velocity model particles may continue their motion
in the same direction when they stop to chose randomly a
new direction.

Following the analysis in Ref. [24] we can relate the
Egs. (19) and (20) to partial differential equations. For
the jump model we derive:

a’pP, a’pP, op, 3*r; P,
+2a +a’——=a + ,  (22)
9%t %t ot *r  3rd’r
while for P, (r,t) we obtain the telegrapher’s equation
’P ar, P
Y fa—F=—"L. (23)
3%t at %r

A discussion of the partial differential equation approach
to anomalous diffusions as compared to the CTRW ap-
proach is given in Ref. [12]. In what follows we concen-
trate on two of the motion models only, the jump model
and the velocity model (as depicted in Fig. 1), for which
we calculate P,(r,t) and Py (r,t), respectively. The corre-
sponding mean-square displacements are most easily
presented in the Laplace space by

(r} (W) =—ViP; y(k,u)ly o , (24)

which, using Egs. (10) and (11), leads to
(r¥u))=—W(k,u)[1—¢(k,u)] 2 Vig(k,u)ly =0 (25)
and

(re(u))=—[1—P(k,u)) " 'VaW(k,u)l, =
—W(k,u)[ 1=k, u)) 2Viplk,u)l =g . (26)

An additional term appears in Eq. (26) when compared
with Eq. (25). This term accounts for the fact that the
particles move at a constant velocity and the diffusional
motion may thus be more efficient for the velocity model
than for the jump model.
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III. DISPERSIVE MOTION

We start by introducing the iterated map studied by
Geisel and Thomae [17], which has been shown to pro-
duce dispersive diffusion of the intermittent chaotic
motion. For this type of motion we use the CTRW jump
model in the description of the map results.

We denote the map by g (x) and write for the nth itera-
tion

Xp+1=8(x,) . @n
Assuming periodic and inversion symmetries we have

g(x +N)=g(x)+N, g(—x)=—g(x), (28)

where N is an integer and denotes the box number. With
the help of these two rules the definition of the map is re-
quired only for the reduced range 0<x <1. Following
the formulation in Refs. [26,27], one may decompose the
coordinate x of the trajectory into the box number N and
the position X within a box

X, =N, +X, . (29)

Thus the box number and the reduced coordinate X have
to be iterated individually:

(30a)
(30b)

X,+1—8(x,), 0<x<1,
Nn+1=§('¥n)+Nn ’

where g(x) is the reduced map for the reduced coordi-
nate X and g(X) is used to increment or decrement the
box number N.

For the displacement r (¢) after ¢ iterations, we have

r(t)=x,4+,—%, , (31)

with the initial coordinate x, chosen arbitrarily. Here we
are confronted with the problem of how to choose n as
the origin of the observation. Interestingly, this relates
the problem of determining the origin to that of the sta-
tionary states in CTRW and will be discussed at the end
of the section. The propagator P(r,t) is calculated ac-
cording to

P(r,t)={(8r—N,,,+N,)), (32)

where the average is taken over a set of initial iterations
{n}. In Eq. (32) P(r,t) is defined for integer values of r.

Geisel and Thomae [17] considered the following type
of map:

(1+e)x +ax?, 0=x<x,

gx)=13 l4x —1—2x]
2= e«

< <
2 1—2x, =*=

1
c 2 ?

which represents a combination of a nonlinear and piece-
wise linear branches. The quantity € in Eq. (33) is con-
sidered as a control parameter to prevent the iteration
process from remaining in laminar stage beyond the typi-
cal time of observation. The map in Eq. (33) has been
shown to generate dispersive motion, namely the mean-

squared displacement grows sublinearly with time [17].
For our purpose we restrict the map function to the
nonlinear branch and enlarge its range of validity, so that

gx)=(1+e€)x+ax*, 0<x<1i. (34)

We choose the constant to be a =2*(1—¢€/2). Actually,
we obtained better agreement between the simulation of
the iterative process and the CTRW approach when us-
ing the map in Eq. (34) compared to the one in Eq. (33).
Moreover, we prefer this representation because of its
close resemblance to the map we are going to use (in the
next section) for the enhanced motion. In Fig. 2 we
present the map g (x) over the range of three boxes. The
translational and mirror symmetries are evident from the
figure. In Fig. 3 we show the reduced map g(x), and in-
dicate the ranges of the branches from which the box
number N is incremented or decremented.

Already Geisel and Thomae [17] proposed the CTRW
approach as a description of the time evolution of the
mean-squared displacements. Following this proposal,
we assume a decoupled ¥(r,t) and consider the waiting-
time distribution as the probability distribution of the
particle to stay in a laminar stage. We adopt the notation
introduced in Ref. [17] and write for this distribution:

2(22—-1€+a)e€(2—‘1)t

0= , 35
P(1) (22 '4a /el Di—g /e/z=1 (35)

which for lime—0 is

Wt)=2a/[2° '+a(z—1)]/7D . (36)

Expressions (35) and (36) have a power-law dependence

for long times ¥(t)~t /1. For the purpose of our
analysis we use
W=y /[1+:]", 37

where we set Yy =1/(z —1). The Laplace transformation
can be calculated analytically:

N
[l
Q

ORI S

Y

|
-
o b----d

FIG. 2. Map g(x) for the dispersive motion Eq. (34) for
z =3. The discontinuities for x =~ % + N and the tangent contact
to the diagonal for |x — N| =0 should be noted.
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&(x)

0.5

0

0 1

FIG. 3. Reduced map g(x) for the dispersive motion Eq. (30)
for z =3. The lower and the upper halves of the central branch
are associated with an increment and a decrement of the cell
number N, respectively.

ryute*T'(—y,u), y#1,2,...

Plu)= 1 (38)

—ue“E(u), y=1,
where I'(a,x) denotes the incomplete y function and
E,(x) is the exponential integral. For small u values we
have the expansion

1—cu?, O<y<l1
W)~ {1+uln(u), y=1 (39)
1—fu—cu?, l<y<2,
where ¢=TI(l1—y) and the mean waiting time

T=(y—1)"!, respectively. The third regime 1<y <2
can be extended to cover also y >2 but with integer
powers of u smaller than y. Note that in the range
0 <y <1, which corresponds to z >2, ¥(¢) has no finite
moment and therefore the random-walk process has no
characteristic time that leads naturally to dispersive
diffusion [1]. Only in the range ¥ > 1, namely, 1<z <2,
does a characteristic time 7 exist.

For the space part of the probability distribution A(r)
we assume that there is a typical step length per iteration,
which we set to unity A(r)=18(|r|—1). The Fourier
transform then simply is

AMk)=cosk . (40)

Inserting Egs. (39) and (40) into Eq. (24), we obtain the
asymptotic expressions for the mean-squared displace-
ments

tY, O<y<l1
(r¥(t))~{t/Int , y=1 41)
t, 1<y,

which, as demonstrated in Ref. [17], agree well with the
mean-squared displacements obtained directly from the
iterated maps.

Here we go beyond the mean-squared displacement

calculations and analyze the corresponding propagators
(whose second moments are the mean-squared displace-
ments). We still stay with a decoupled memory and re-
strict our derivations to that of the jump model. Taking
the Fourier back transform of expression (10), we obtain
_1=9u) p~ e'kr
Py(ru) 27u fﬂfdk 1—(u)cosk ’ “42)

where we have made use of the relation
W(u)=[1—y(u)]/u. For integer r values the integration
yields

1/2
=1 |1=%w) Ir
Py(r,u) ” [1+¢(u) Vii(u), (43)
where
_—____1 — 22 172
Viu) 1/}(u){l [1—¢*(u)]'?} . (44)

We concentrate on the dispersive case with 0 <y <1 and
derive the asymptotic forms of P;(r,t), considering the
long-time (small u) behavior. First we present the auto-
correlation function, which we denote by
Py(t)=P(r =0,t), the probability distribution to stay at
the origin

1/2
~ 1| 1=¢(u) ~ 1/2,,v/2—1
Py(u) « |1+ vw) ~(c/2)"“u . (45)
Laplace inversion gives
Po(t)=ay/t"?, O<y<l1, (46)
with
a,=[T(1—y)/21"2/T(1—y/2) . 47

To obtain approximate forms for the r dependence of
P;(r,t) we consider the following approximation, which
holds for small u values:

1 | 1—¢(u)
P,(r,u)zg

72
Y exp[ |7l InV(u)]

~[D(1—y)/2]"2u?/> lexp[ — |r|(2cu”)'?] .
(48)

The relationship between r and u in the exponent indi-
cates that there is a scaling behavior. For small r we con-
sider a second-order expansion of (48):

Py(r,u)=Py(u)[ 1—(2cu” ) ?|r| +cu?r?], (49)
which under Laplace inversion gives
Py(r,t)=angt "7 —clrl/[T(1—y)t"]

+(c3 /202 /[T(1 =3y /2)e37 2] . (50)

Considering a second-order cumulant approximation for
Py(r,t), Eq. (50) can be recast into
P,(rt)=~ayt " %exp(—a,E—a,E?), (51)

where we introduced the scaling variable &=|r|/t7/2
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The constants are

a,=a;! (52a)
and
a,=al/2—T(1—y)T(1—y/2)/T(1-3y/2) . (52b)

For large r we follow the derivation by Weiss and co-
workers [13] using a steepest-descent approximation to
expression (48), which leads to the scaling form

Py(r,t)=byt 7/*EPexp(—b &) (53)
with
B=(y—1)/2—y), v=2/(2—7) (54)
and
_ 1 {[ra—=y)]'*k i B
T2 | si—y22f | T
=y [T(1—y) /2] %—1] . (55)

Obviously, Egs. (51) and (53) can be rewritten as
Py(r,t)~t"V2f(&), (56)

where f(£) is the scaling function

2
o 1ETNSE , for small &
f&)= Cbev (57
&Pe ", for large £ .
Recall here the scaling variable is £=|r|/t7/2. Higher-
order terms can also be calculated from the short- and
the long-range expressions of f(£). Figs. 4 and 5 demon-
strate the two £ regimes described in Egs. (56) and (57).
Shown is P(r,t) for y =1 (z =3) as a function of the scal-

0.8

B(rt)t™

0.6

0.2

0

0 1 2 I3 3

FIG. 4. Propagator P,(r,t) for the dispersive motion in the

jump model. The full lines denote the exact results obtained

from a numerical Laplace inversion of Eq. (43) for ¥ = and for

times ¢t =10% 10% and 10°. The scaling variable is £=r /174

The dashed lines denote the asymptotic approximations Egs.
(51) and (52) for small £ and for large &, respectively.

FIG. 5. Same as in Fig. 4 but on logarithmic vs linear scales.
Note the convergence of the curves with increasing time ¢ to the
limiting asymptotic form.

ing variable £. Full lines give exact results obtained from
a numerical Laplace inversion of Eq. (43) for various
times ¢. In Fig. 4 we clearly observe a cusp of P(r,t) at
the origin. In Fig. 5 the convergence of the curves to the
asymptotic form is obvious. The broken lines show the
two approximate limits in Eq. (57). Good agreement is
obeyed for both small and large &, respectively.

It has been shown that iterations of the map of the type
Eq. (33) lead to a laminar behavior where particles
remain for a large number of iterations almost at the
same location followed by a period during which the box
number changes. As mentioned above this raises the
questions of how to choose an iteration as the beginning
of observation. For a choice of any iteration, i.e., itera-
tion in the chaotic or laminar stage, we are in the
stationary-state condition that was studied in the CTRW
context [28,29]. It was pointed out that the very first step
of a process can give rise to some changes. This is in fact
the case for iterated maps and for their corresponding
CTRW’s. If one chooses an iteration during the chaotic
motion, then we believe that the injection into the lami-
nar phase samples the typical waiting-time distribution
and that in this way the first step follows the distribution,
which is identical for all consecutive steps. This is the sit-
uation encountered in usual CTRW analyses and does
not lead to the problem of the stationary state, as dis-
cussed below. For the criterion of an iteration step n to
be in the chaotic regime we consider the inequality
|x,+1,—x,|>1 and apply this criterion for the deter-
mination of the set {n} over which the average is calcu-
lated in Eq. (32).

The propagator obtained from the iterated map ac-
cording to this averaging is shown in Fig. 6 for various
times ¢. 10'° number of iterations were performed and
the parameter € was set to e=10"°% The resolution in
the histogram was chosen to be of unity. The conver-
gence to the limiting asymptotic form is apparent as it is
in Fig. 5 for the CTRW approach. The dashed line
denotes the theoretical curve taken from Fig. 5 but
rescaled by a factor of 1.08, a value considered as a free
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107*

0 1 2 3 4
3

FIG. 6. Propagator P(r,t) obtained from the iterated map
Eq. (34) for z =3, which corresponds to y = % Full lines denote
the map results for times ¢t =10, 10%, 10%, and 10*. The conver-
gence to the limiting form with increasing time is apparent.
The scaling variable is £=r/t'/*. The dashed line is the res-
caled theoretical result for ¢ = 10* taken from Fig. 5.

parameter to account for the different prefactors in Egs.
(36) and (38) and for an effective stepping length.

The problem of the stationary state was introduced by
Feller [28] and discussed later by Tunaley [29] and con-
cerns the question how the observations change when the
time origin of the observation differs from that of the ini-
tiation of the transport process. We adopt the equation
presented in Ref. [5] for a stationary condition

1—h(u)+Ak [h(u —(u)]
, (58
u[1—9(wA (k)] )
where 4 (¢) denotes the probability distribution of the first
step

h(u)=

P (k,u)=

W(u)/t . (59)

Apparently, we notice that only for a finite mean waiting
time expression (59) is relevant and therefore we concen-
trate on the regime 1<y <2 [see Eq. (39)]. To simplify
the Fourier back transformation we rewrite Eq. (58) as

h—gw] | [P —hw)]
u(w)[1— Pu)A(K)] ud(u)

P(k,u)=

(60)

Taking the Fourier back transform of Eq. (60) the second
term on the right-hand side (rhs) leads to a 8, contribu-
tion, which gives rise to a peak at the origin. The first
term can be evaluated according to Egs. (42)—(44). The
integration then yields

h(u)[1—1(u) ]1/2 V\rl( )+38, J&________
up(w)[1—(u)]? Y(u)

Pe(r,u)=

(61)

where V(u) is the quantity given in Eq. (44). Equation
(61) is still exact, and we apply it for the computation of
P®(r,t) using a numerical Laplace inversion procedure.

10

P(rt)t"

€=

FIG. 7. Stationary state propagator P®i(r,t) obtained from
the numerical Laplace inversion of Eq. (61) for y = 3. The times
chosen are as indicated. Note the convergence of the curves to
the asymptotic behavior of the regular diffusion except for the
peak at the origin which is due to the anomalous pausing-time
distribution of the first step.

To derive the long-time asymptotic forms one may insert
the small u approximations of ¥(u), Eq. (39), into Eq.
(59), which yields

h(u)=1+cu? ' /T=1-TQ2—yp)u?"'. (62)

For the propagator we thus have

- eik

PeYr,u)~ dk+8,T(2—y)u?"2, (63)

2 Y —ru+k2/2

where cosk in the denominator was expanded to second
order. The first term on the rhs indicates regular
diffusion, so that,

P(r,t)=~(T/2mt) Pexp(—r2F/2t)+8,t177 . (64)

In Fig. 7 we present the numerical results obtained from

1
eq
o (t)

107"

1072

1078

10-4 1 1 1 1 1

1 10 10? 10° 10* 10° 10°
t/x

FIG. 8. Stationary-state autocorrelation function Pg§i(z).

Full lines give the exact result obtained from a numerical La-
place inversion of Eq. (61) for various y values as indicated.
The dashed lines denote the predicted asymptotic slopes accord-
ing to Eq. (65).
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10

PU(r )t

1 L

107

1072 b

1073
-2 —-1 0 1 2

FIG. 9. Stationary-state propagator P®Y(r,t) obtained from
the iterated map Eq. (34) for z=1.8, which corresponds to
y =13 and for times t=10, 10%, 10°, and 10*. Note the conver-
gence of the curves to the asymptotic behavior of the regular
diffusion with increasing time except for the peak at the origin,
similarly as obtained from the CTRW approach Fig. 7. The
scaling variable is £=r/t!/2 In the insert the full line gives the
autocorrelation function P§(¢) (the decay at the origin). The
dashed line denotes the predicted asymptotic slope.

the numerical Laplace inversion of Eq. (61) for various
times t. The curves are plotted as a function of the scal-
ing variable £=r /t!/? resulting from the first term on the
rhs of Eq. (64). The second term dominates the behavior
at the origin.

In Fig. 8 we show the autocorrelation function P§i(z)
for several y values in the range 1 <y <2. In the reduced
range 1<y <3 the behavior of P§(¢) is governed by the
second term of the rhs of Eq. (64) while for ¥ > 2 the first
term dominates following

t'77, 1<y<3

PH(t)~ for large ¢ . (65)

£ <y
Figure 9 shows P®(r,t) obtained from the iterated map
Eq. (34) for z=1.8 corresponding to y=1.25 and for
various times . Here the average was taken over all n
values in Eq. (32) in contrast to the set {n} used in the
calculations presented in Fig. 6 and € was set to zero.
There is a good qualitative agreement with the results of
Fig. 7. The insert gives P{i(¢) as a function of time,
Whli%l for longer times follows the predicted decay of
t .
IV. ENHANCED DIFFUSION

In this section we study enhanced diffusion as obtained
from iterated maps. This time we analyze the results in
terms of the CTRW approach with coupled ¢(r,¢) and re-
late the subsequent derivations to previous works on
Leévy walks [10-12,14]. Here we return to a comparison
between the jump model and velocity model.

We again follow a map studied by Geisel, Nierwetberg,
and Zacherl, 18], which generates enhanced diffusion in
intermittent chaotic motion. This map is closely related

to that given in Eq. (34).
definition is

gx)=(1+e)x+ax*—1, 0=x=1, (66)

For the reduced range the

where a is set to a =2%(1—e€/2). In contrast to the map
in Eq. (34) the map in Eq. (66) is discontinuous at the cell
boundaries. Figs. 10 and 11 are analogous to Figs. 2 and
3 and show the map of Eq. (66) over three cells and a re-
duced map, respectively.

As pointed out in Ref. [18] the intermittent behavior of
the two maps in Egs. (34) and (66) is equivalent. Howev-
er, in Eq. (66) the laminar phase is associated with steps
of approximately a cell unit per iteration. Thus, one may
assume that during the laminar phase the particle moves
at a constant velocity. Guided by this assumption Geisel,
Nierwetberg, and Zacherl [18] calculated a velocity-
velocity correlation function using the probability distri-
bution for staying in a laminar phase. From this correla-
tion function they could derive asymptotic forms for the
mean-squared displacement. Here, in order to calculate
the propagator we apply the space-time coupled memory
function of Eq. (3) and write

(22"16+a)e€(z_1)'
[(22—1+a/€)e6(z—1)t_a/e]z/(z—l)

Pir,t)= 8(rl—1),

(67)

where the 8 function accounts for the motion in the lami-
nar phase. We note that apart from the 8 function corre-
lation the distribution ¥(r,¢) in Eq. (67) is similar to the
one in Eq. (35), which gave rise to dispersive motion.

For the purpose of applying the CTRW we make use of
our derivations in Refs. [14,25] where the Lévy walk con-

3 1 1
a(x) z=% |
o N A
1 po-mmmmmmm - LNy PR S S
O Sank SEELY EEERES Vomooomeeae
DT S AU A ]
-1 0 1 2

X

FIG. 10. Map g(x) for the enhanced diffusion Eq. (66) for
z =%. Note the discontinuities for x ~N and the tangent con-

tact x, .;=x,*1 for x =~N.



N 2=%
&(x)

N- N-1I

N->N+1

FIG. 11. Reduced map g(x) for the enhanced diffusion and
for z=3. The branches on the left and on the right are associ-
ated with a decrement and an increment of the cell number N,
respectively.

cept was considered within the framework of the jump
model with a coupled memory approach, which has a
spatial power-law dependence. Equation (67) shows a
temporal power-law dependence. However, as shown in
Sec. II there is no difference between the two ways of
describing (r,t), Egs. (2) and (3). We thus rewrite the
coupled memory as

Wr,)=148(rl=0)|rl7*, r#0, (68)

where we considered a discrete lattice with integer values
of r. The constant A accounts for the normalization
A~ '=¢(u), where ¢ denotes the Riemann zeta function.
Comparing Eqgs. (67) and (68) we relate the two ex-
ponents u and z to each other: u=z/(z —1).

Fig. 12 demonstrates the probability densities () and

1
1072
107
1078
1078 + .
1 10 102 108

r,t
FIG. 12. Stepping probability distributions obtained from
the iterated map, Eq. (66) for z=3 and z = % The full lines give
the waiting-time distribution ¥(¢) and the dashed lines denote
the corresponding stepping-length distribution 2y(r). The
dash-dotted lines give the theoretical slopes of 1.5 and 2.5 for
z =3 and z = 3, respectively.
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¥(r) obtained directly from the map Eq. (66). Asymptoti-
cally, the two distributions #(¢) and 2¢(r) fall on top of
each other, which supports the 6 function introduced in
Eq. (67) to account for the space-time coupling. To
guarantee that the first step of a motion event starts from
a chaotic phase we used the inequality |x, ,—x,| <1,
which differs from the criterion applied for the dispersive
motion by inverting the inequality from larger than ] to
smaller than 1.

For the Fourier-Laplace transform of ¥(r,¢) we choose
the form

Yk,u)=1[dl(g)+¢(7)], (69)
with ¢ =u +ik and §=u —ik and with
dlg)=A4 I e Ir k. (70)
r(>0)

To obtain an expansion for small values of g we consider
a decomposition by adding and subtracting terms:

(="

dg)=A4 Jrtle " "—1+rg— - — | (rq)"
7(>0) n:
+4 3 rt—q4d I plkg .
r(>0) r (>0)
TR D W (71)
nl q s

r(>0)

where n is the largest integer smaller than p—1 and, for
integer u, n =p—2. We now replace the sum in the first
term in Eq. (71) by an integral and obtain the Saalschiitz
form, for which we have [14]

1+c,g*™ ', 1<u<2
(@)=~ {1—c,g+c,qg" ', 2<u<3 (72)
1 Iz
l1—c g +cyq°+c,g* ", 3<u<4.

For integer subscripts the constants are
c;=8(u—j)/[j'6(n)] and otherwise ¢, =T(1—pun)/5(p).
¢, corresponds to the mean waiting time
ci=ft=&(u—1)/&(n). For p=2 we again replace the
first sum in (71) by an integral which by partial integra-
tion leads to

dlg)=1—¢q flwdrr_]e_"' , (73)

where we have introduced the lower integration limit of 1
to avoid divergence. We proceed in an analogous way for
©=3 and obtain to lowest order

1+gIng , p=2

1—c,g—q%ng , pu=3, 74)

d(gq)=
where ¢; is again the mean waiting time
¢, =7=¢&(2)/&(3). We now link W(k,u) from Eq. (5) to
¢(q) through

Wku)=(4/2) 3 (e T+e @) 3 j#*, (75
r(>0) j(zn

and by approximating the sums in Eq. (75) by integrals,
we obtain
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Wik,u)=1L [ “dr(e " +e ) (1— 4 ['dx x )
n n

1 1
~—[1—¢(g)]+—[1—¢(7)] , 76
g 18]+ 5o [1-6@)] 76)

where 7 denotes a lower bound cutoff. From expression
(76) we notice that

W(u)=‘l'(k=0,u)=%[l—¢(u)], (77)

which is the familiar relationship that ultimately relates
the expressions (10) and (11) for the jump and velocity
models.

To calculate the mean-squared displacement we make
use of Egs. (25) and (26) and find to leading order that

2, l<p<2

t2/Int , u=2
thTE, 2<pu<3 (78)
tin(¢) , p=3
t, 3<p.

(r}y()~

Interestingly, the two expressions (25) and (26) follow, to
leading order, the same behavior, which means that
quantitatively the diffusion may be faster in the velocity
model than in the jump model, but qualitatively both
models show the same behavior. The results of Eq. (78)
have been previously derived by Geisel, Nierwetberg, and
Zacherl [18].

We again extend the study and investigate the propaga-
tors P(r,t) for the enhanced regime. We follow our
derivations in Ref. [14] and begin with the regime
1<p <2, which exhibits ballistic-type motion. In the
jump model to lowest order in # and k we have

Py(k,u)=c ut"?/[c ,ut ' +ElklF '], 1<p<2, (79)

where ¢=c,cos[m(n—1)/2]. The Fourier-Laplace back
transformation leads to

bt NWe/r)H, r<t

Pirt)= |y ,, (80)

with
b=—cotlmu/2)/m .

This result differs from the expression in the velocity pic-
ture, where we obtain
n—24 =p—2

PV( k, u)=~ 'q*ji_% .
g +q
We do not investigate this form in detail. There is, how-
ever, an analytical expression of P, (7,¢) for u=2, which
may be taken as a representative form for the 1<u<2
range. For u=3 expression (81) simplifies to

(81)

PV(k’u)z(q_1/2+q_1/2)(q1/2+ql/2)—1
:(qq)‘l/zz(u2+k2)—l/2 , (82)
which, upon Fourier inversion, is

Py(r,u)=~1K,(ru), (83)

where K, is a modified Bessel function. The Laplace in-
version then gives

W2 —r)"12 ) p <y

Py(rno= g r>t

p=3. (84)
This expression shows that P, (r,t) is approximately con-
stant for small r and diverges when r approaches ¢.

Fig. 13 displays Py (r,t) obtained numerically in the
following way. First ¥(k,u), Eq. (69), and W(k,u), Eq.
(75) are computed using a fast Fourier procedure. Then
Py(r,t), Eq. (11), is calculated through a combined nu-
merical Fourier-Laplace inversion. For short times
t =100 an exact enumeration procedure is applied. The
results for p=2 are plotted for various times ¢. The
analytical form Eq. (84) is indicated by dashed lines.
Also shown is the propagator obtained from the iterated
map Eq. (66) for z=3. The parameter € was set to be
€=10"° and averages were taken over 10'° iterations.
The agreement between the velocity model and the map
curves is remarkable. In both cases the propagator is
plotted in the scaling representation.

Equations (82) to (84) should be contrasted with the
corresponding =2 form of the jump model

Pyk,u)=2/{u'[(u+ik)"*+(u —ik)'?]}, (85

whose asymptotic behavior is given in Eq. (80). Fig. 14
describes the behavior of P,(r,¢) for u=3 calculated in
the same way as Py(r,t). The difference between the
jump model and the velocity model is evident and pro-
nounced in this case. Here again the curves are plotted

in the scaling representation.

10
P(rt)t ;
1 F z=3 ;v'l.
-1
107! b w=15
10"2 L I ! 1
107* 1073 1072 107! 1

3

FIG. 13. Propagator P(r,t) in the ballistic-type regime. The
upper curves are the results of the iterated map Eq. (66) for
z=3 and for times ¢ =10, 10?, 103, 10*, and 10°. The lower
curves indicate the numerical results of Py(r,¢) for u=1.5 and
for the same sequence of times, shifted vertically by an order of
magnitude. The broken lines give the analytical asymptotic
form Eq. (84). The results are plotted in the scaling representa-
tion, the scaling variable being £=r/t.
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In the second regime 2 <u <3 we find that to leading
order the Fourier-Laplace form is the same for the jump
model and for the velocity model and is given by [14]

Py y(k,u)=(u+eclk|*" /e, (86)

where the constant is again ¢=c,cos[m(u—1)/2]. The
Laplace inversion gives the familiar expression

P; y(k,t)=exp(—et|k|*"1/c,), (87)

which describes the Lévy distribution. From the rela-
tionship between ¢ and k we expect a scaling behavior.
The Fourier inversion can be calculated individually for
the small and large r expansions [9,14]. The short-range
expansion gives a Gaussian, while the long-range expan-
sion leads to a power-law decay:

aotl/(l—y)exp[__al(r/tl/(,u—l))Z] ,

Py y(rt)= bt /IR VB sy for large 7 |
with
ag=T(u/p—1)/[m(c/c)V/* 1], (89a)
a,=T(3/u—1)/[20(1 /u—1)E/c; )+ 1], (89b)
b=1/[2&p—1)]. (89¢)

Figures 15 and 16 compare Py(r,t) and P,(r,t) in this in-
termediate regime. The same numerical procedure was
applied as in Figs. 13 and 14, but € was set to zero. In
Fig. 15 we monitor P (r,t) for the velocity model and the

1

P(rt)t?
107"k

1072 £

1073 |

- . . i

1072 1072 107! 1 10 10%

FIG. 15. Same as Fig. 13 but in the intermediate enhanced
diffusion regime. The upper curves are the results of the iterat-
ed map for z=23. The theoretical slope for large £ is indicated
by a broken line. The lower curves give Py (r,t) for u=2.5; the
broken lines give the analytical asymptotic forms Eq. (88). The
scaling variable is £=r/t?/>.

2
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B (rit)t
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107t b

-2 L L

10

107* 1073 107% 107! 1 10
¢
FIG. 14. Propagator of the jump model P,(r,t) in the
ballistic-type regime for =1.5 and for times ¢ =10, 10%, 10,
104, and 10°. The broken line indicates the theoretical asymp-
totic form, Eq. (80). The results are plotted in the scaling repre-
sentation, the scaling variables being §=r/t.

for small r

(88)

corresponding map-generated propagator for z=3. The
resemblance is very good. The propagator in the jump
model P,;(r,t) agrees with the propagator in the velocity
model P, (r,t) in the central part but deviates at the wing
part.

Collecting the results in the u range 1 <u <3 we can
introduce the following scaling function already used in
Figs. 13-16:

Pyy(nt)=f; (&) /T, E=Irl/T, (90)
with

1
Fj (r, ) t2/3
107!
1072 ¢ =25
107%
107% |
107% £
10-6 " . " st
107 100® 10 107! 1 10 10%

3
FIG. 16. Same as Fig. 14 but in the intermediate enhanced
diffusion regime for p=2.5. The broken lines indicate the
theoretical asymptotic form Eq. (88). The scaling variable is
E=r/t¥3
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t, I<upu<2
TT e D acp<3 . o1
[ v(E) denotes again the scaling functions, which for the
ballistic-type regime are

frE~E72, E<1, l<p<2, (92)
and f(£) , which we have analytically only for p=1, is
frE)=a"11-H""%, £<1, p=2. (93)

For the intermediate enhanced diffusion regime 2 =<pu <3
we find

exp(—a,£%), £<1

frv)~E7F, 1<&, r<t (94)
0, r>t.

These scaling features have been demonstrated in Figs.
13-16.

We also give the expressions for the regime 3 <u <4 of
regular motion. Here, to leading order, the Fourier-
Laplace form is given by [14]

P, ylk,u)=c,/(ciu+c,k?—ze|k[* 1), (95)

where again ¢=c,cos[m(u—1)/2]. The Laplace inver-
sion yields

P, y(k,t)=exp[ —t(c,k>—T|k|* 1) /c,] . (96)

In this expression ¢ and k are related to each other in two
different ways and therefore there is no unique scaling
through the whole range. For small r the [k|*~1 term
can be disregarded and one obtains a Gaussian while for
large r the |k|*~! term dominates and gives rise for a
power-law decay. We obtain

agt " %exp(—a,r?/t), for small r

Pry(rt)= bt /r* , for large r , o7
with
ay=[&(u—2)/mEu—1)1"2, (98a)
a,=Lpu—1)/[25(u—2)], (98b)
b=1/[26(u—1)] . (98¢)

Apparently, scaling is violated by the large r power-law
decay. Figs. 17 and 18 describe the propagators in the
regular regime. Again the velocity model is closer to the
map results Fig. 17 than the jump model Fig. 18.

We close this section by a remark on the scaling vari-
able £. In order to determine £ one may generally consid-
er the mean-squared displacement Eq. (1) to obtain a
length-time relationship and may then write

_ r r
§= (r2())y172 - JEVZ A 99

1
P(rt)t”2 [
1072 |
-4
10 3 =35
-6
10 E
L
1078 |
1072 107!

FIG. 17. Same as Fig. 13 but in the regular diffusion regime.
The upper curves are the results of the iterated map for z = 1.4.
The theoretical slope for large £ is indicated by a broken line.
The lower curves depict Py(r,t) for u=3.5. The broken lines
give the Gaussian behavior for £<1, Eq. (97), and the power
law bt /r#, t =10° for £> 1, respectively. The scaling variable is
E=r/t'2

In this paper we demonstrated that Eq. (99) is not obeyed
in all cases. While for the dispersive motion Eq. (99)
holds, as is seen from Egs. (41) and (57), in the intermedi-
ate enhanced diffusion regime 2 <u <3, expression (99) is
violated. Simply, from Eq. (78) we have
(rjy(r,t)) ~t*"#, which does not concur with the scal-
ing variable of Egs. (90) and (91) £=|r|/t/*~ V. In-
terestingly, this fact coincides with the observation that
the “rule of thumb” which relates the autocorrelation
function and the mean-squared displacement to each oth-
er,

1
<r2(t)>1/2 ’

is not obeyed in the same situation, i.e., for 2 <u <3 [14].

Po(t)~ (100)

E,(I‘,t)tl/z E

-2

107* |

107 E

-8

L

1072 107!

FIG. 18. Same as Fig. 14 but in the regular diffusion regime
for p=3.5. The broken lines indicate the theoretical asymptot-
ic forms Eq. (97). The scaling variable is £=r/t!/2. As in Fig.
17 the broken lines give the Gaussian behavior for £ <1, Eq.
(97), and the power law bt/r#, t =10° for £> 1, respectively.
The scaling variable is E=r/t!72,
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V. CONCLUSIONS

In summary we have introduced and analyzed
CTRW-based models that lead to anomalous diffusion.
We have distinguished between the jump model and the
velocity model and compared their corresponding prop-
erties. We have concentrated on the propagator P(r,t)
and we have confirmed previous findings on the mean-
squared displacement. When tested against maps that
generate anomalous behavior we find that (i) the jump
model provides a good description of the dispersive
motion obtained from the map in Eq. (34), and (ii) there is
an excellent agreement between the properties of
enhanced diffusion derived from the map in Eq. (66) and
the velocity model.

Continuous-time random walks offer an effective pro-
babilistic means to describe anomalous diffusion in deter-
ministic systems. Both the dispersive and the enhanced
cases emerge naturally either from the jump model or
from the Lévy walk velocity model.
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