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Frictional stick-slip dynamics is studied experimentally in an elastic continuum by means of a
stretched latex membrane in contact with a translating glass rod. In contrast to other laboratory-scale
experiments, the characteristic stiffness length here is small compared to the size of the system but large
compared to the spatial resolution of the measurements. The internal displacement field u (s,¢) is mea-
sured in detail with imaging techniques, which are shown to be more sensitive than total-force measure-
ments. The magnitudes p of slipping events extend over a wide range and include both small localized
events and large spatially extended ones. The shape of the distribution P (u) depends somewhat on the
measurement threshold and also varies with the parameters describing the frictional interaction, which
are affected by wear. The frictional force increases with velocity and an instability is due to waves of de-
tachment. The temporal statistics of slipping events are also discussed. The experimental results are
compared qualitatively to simplified models of earthquake faults.

PACS number(s): 05.45.+b, 91.30.Dk, 05.40.+j

I. INTRODUCTION

Spatially extended nonlinear systems often exhibit
complex spatiotemporal dynamics [1]. Because of its pos-
sible relevance to earthquake dynamics, the phenomenon
of interfacial stick-slip friction has been the focus of
several recent theoretical and experimental studies. A
particularly intriguing feature of earthquakes is the fact
that no single scale generally dominates and the distribu-
tion of sizes (seismic moments) follows an empirical
power law when averaged over many faults [2,3]. This
scale-invariant feature motivated Bak, Tang, and Wiesen-
feld [4] to propose that earthquake faulting is a physical
realization of the concept of self-organized criticality.
Systems that are self-organized exhibit fluctuations on all
scales without tuning of a parameter.

Subsequently, Carlson and Langer [5] investigated nu-
merically the question of whether power-law distributions
could be a property of the very simple Burridge-Knopoff
(BK) [6] model of a single fault. This discrete determinis-
tic model is based on a one-dimensional chain of elastical-
ly coupled blocks that interact frictionally with a plane
surface and are also coupled to a pulling plate by a
second set of elastic elements. The model is dynamically
unstable because of an assumed velocity-dependent fric-
tion law ¢(v) that decreases with increasing slipping ve-
locity. Its behavior was studied in an extensive series of
numerical simulations [7-11]. Many aspects of the com-
plex behavior of earthquakes have analogues in the mod-
el, including power-law size distributions of slipping
events plus larger characteristic events that can be rough-
ly periodic in time. The time distributions of events were
also investigated in order to address the problem of earth-
quake prediction within the framework of a simple mod-
el. These simulations have received wide attention be-
cause they show that dynamical complexity can result
from stick-slip dynamics without introducing the spatial
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inhomogeneities and fractal fault patterns that are
characteristic of natural seismic phenomena [12].

This same model has received further attention recent-
ly. de Sousa Vieira, Vasconcelos, and Nagel [13] studied
the role of the characteristic velocity in the velocity-
dependent friction law. They documented a continuous
transition as a function of this parameter from behavior
dominated by brief stick-slip events to another regime
dominated by continuous global slipping. Schmittbuhl,
Vilotte, and Roux [14] studied the response of the model
to changes in the system size and the loading rate. They
found both chaotic motion and propagating wave solu-
tions depending on these parameters. Many other models
of slipping on faults have been proposed, including
discrete cellular automata [15,16] and lattice models [17],
as well as continuum elastic models aimed at more realis-
tic descriptions of geophysical materials [18,19].

There have also been quite a few experimental studies
of the dynamics of slipping. For example, Tullis and
Weeks [20] have investigated the frictional properties of
granite sliding on granite at high normal forces; their re-
sults can be described by a friction law which depends
both on the duration of contact and on the sliding veloci-
ty. Gu and Wong [21] found that wear caused by cumu-
lative slip led to a transition from unstable stick-slip to
stable sliding in a variety of materials relevant to seismol-
ogy. Their observations, including transient period dou-
bling and other nonlinear phenomena, can be described
by a one-dimensional spring-slider system with a friction
law similar to that used by Tullis and Weeks. Feder and
Feder [22] studied an effectively two-dimensional system
of elastic elements pulled across a rough surface (carpet
on sandpaper). They measured the statistics of slipping
events as manifested in the total force and compared the
observations to what might be expected in a self-
organized critical system. These various studies have
shown evidence of spatiotemporal complexity in stick-slip
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processes. However, one significant missing feature has
been the capability of fully resolving the dynamics as a
function of both space and time.

In this paper, we describe an experimental study of the
stick-slip dynamics of a continuous elastic medium in
which the time-dependent displacement field is fully
resolved. The experiment is based on the interaction of a
stretched rectangular membrane with a clean cylindrical
glass rod. The rod is aligned parallel to the long side of
the membrane, pressed against it with an adjustable nor-
mal force, and translated slowly and precisely under com-
puter control. An array of closely spaced parallel lines is
ruled on the membrane. The time-dependent displace-
ment and velocity fields are then measured by digital im-
age processing. (The total applied shear force is also
monitored.) The slipping events are characterized by
their magnitude, the logarithm of the total integrated dis-
placement, and also by the length of the slipping region.
We observe complex dynamics, including a wide range of
event sizes, and we discuss the results in the context of
theoretical models. We also consider several difficulties
that affect any experimental study of these phenomena:
the finite sensitivity of the measurement process and the
presence of spatial inhomogeneities in the surface friction
of real materials.

II. EXPERIMENTAL METHODS

The critical problem in designing a suitable laboratory
system for studies of stick-slip dynamics in an elastic
medium is the need to generate displacements large
enough for optical imaging. Most materials are simply
too stiff for laboratory-scale measurements. However, a
latex membrane has sufficiently small elastic constants to
provide suitable displacements. We use a thin latex mem-
brane of thickness 0.25 mm and length L =25 cm; its
elastic shear modulus  is approximately 5000 kdyn/cm?,
and its density p is 0.865 g/cm’. The membrane is
stretched uniformly between two parallel aluminum
plates [curved upward at the ends as shown in Fig. 1(a) to
minimize end effects]. The separation w is adjustable
over the range 2—4 cm. The membrane is pressed against

FIG. 1. Apparatus used to study stick-slip frictional dynam-
ics of an elastic latex membrane. (a) Stretched membrane in
contact with glass rod that is translated at constant speed v. (b)
Side view showing distention of the membrane due to the (vari-
able) applied normal force. (c) Top view showing lines ruled on
the membrane to allow the time-dependent displacement field to
be measured.

a long cylindrical glass rod (1.1 cm diameter) oriented
parallel to the long axis of the membrane, with adjustable
normal force. The rod distends it as shown in the end
view of Fig. 1(b). The rod is translated smoothly at a
constant speed (typically 0.155 mm/s) using a microstep-
ping motor in order to generate stress within the mem-
brane.

We regard the system as being nearly one dimensional,
so that it can be characterized by the time-dependent dis-
placement field u (s,t) (relative to equilibrium) of points
at position s along the center line. We determine this
field at closely spaced points by ruling a set of 100 paral-
lel lines 2 mm apart on the free surface of the membrane,
perpendicular to its axis [Fig. 1(c)]. The positions of the
midpoints of the lines are determined by image process-
ing methods. We take advantage of the sharp change in
intensity across the two edges of each line, interpolate to
locate the edge positions accurately, and average the two
edges to obtain the position of each line center. We are
able to locate the midpoints u;(z) of the lines with a pre-
cision of approximately +0.025 mm and time resolution
of 0.13 s. This precision is approximately a factor of 10
smaller than the pixel size of the imaging system.

The total frictional force F(t) experienced by the rod
can also be measured using a strain gauge. The precision
of these measurements is typically about £0.5%. Since
stick-slip dynamics is often associated with a frictional
force that declines with increasing velocity, we determine
the velocity dependence of the frictional force quantita-
tively. It is necessary to use a separate narrower cell of
width w =1 cm and length L =7.5 cm for this purpose to
avoid instability. We determine the friction coefficient
w=F/F,, where F is the frictional force and F, is the
normal force, by stepping the velocity from rest to a con-
stant speed. An example of the resulting transient is
shown in Fig. 2. The initial level p=pu, corresponds to
the steady-state static friction of the membrane after a
previous translation in the same direction. At time A4
(see figure) the rod is stepped to a velocity v =0.310
mm/s. The force rises smoothly to a new steady-state
value before the motion is stopped at time B. A sys-
tematic test over a range of applied loads and velocities
shows that the steady-state friction is always greater than
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FIG. 2. Increase in the friction coefficient u above the static
value pu, following a step change in velocity (at time A) from
v=0to 0.31 mm/s. A narrow cell is used to suppress the stick-
slip instability; the applied normal force is F, =40.5 kdyn. The
rod is stopped at B.
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static friction, and is generally an increasing function of
velocity. However, instability can occur (in a wider cell)
even without velocity weakening as a consequence of
waves of detachment known as Schallamach waves [23];
this phenomenon is described in Sec. III. At the posi-
tions where detachment or loss of intimate contact takes
place, the frictional force is quite low and instability re-
sults.

It is possible to make a qualitative connection between
the elastic properties of this experimental system and a
continuum version of the BK model. In the numerical
studies of Refs. [5,7—11] the relevant elastic parameter is
the stiffness length &, which for earthquakes was suggest-
ed to be of the order of a few kilometers. We estimate the
stiffness length for our system to be approximately 1 cm
(see Sec. IV), which is much shorter than the system size,
as it must be for a meaningful study of spatiotemporal
dynamics. We also estimate the shortest slipping time as
the ratio of the stiffness length to the speed ¢ =V u/p of
shear waves. For our system ¢ =2500 cm/s; therefore the
slipping time (neglecting friction) is about 40 us. Since
our acquisition rate is typically 8 Hz, it is apparent that
the dynamical phenomena we observe are those on longer
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time scales and we do not resolve the temporal structure
of the fastest events.

III. EXPERIMENTAL RESULTS
A. Complex spatiotemporal dynamics

We find that the membrane system produces complex
spatiotemporal dynamics. An example is shown in Fig.
3(a) for a membrane whose maximum frictional force per
unit length is f ., =2.7 kdyn/cm. (This quantity is the
maximum frictional force per unit length at any time dur-
ing the run, averaged over the membrane.) The solid
curves are the measured displacements u,(¢) (with time
shown on the vertical axis) for i=1,6,11,16,. ..; these
points are separated initially by 10 mm when the mem-
brane is unstressed. Half the total length of the mem-
brane is shown. For ease in visualization we have
amplified the displacements of individual curves by a fac-
tor of 20 as indicated by the scale at the top of the plot.
The rod is translating to the right at speed v=0.155
mm/s. Several distinct types of behavior are evident in
Fig. 3(a). (i) Regions of increasing stress appear as lines

FIG. 3. (a) Displacements u;(¢) of points
separated initially by 10 mm (lower scale); in-
dividual displacements have been amplified by
a factor of 20 (upper scale). Detected slipping
events are indicated by horizontal hash marks.
(b) Cumulative displacement in the rod’s frame
of reference. Displacements at a given time
are connected by a solid line. (c) and (d) Same
as (a) and (b), later in the same run. The max-
imum frictional force per unit length is
Smax =2.72 kdyn/cm, the width of the cell is
w =3.8 cm, and the normal force per unit
length is f, =396 dyn/cm.
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that are slanted slightly to the right of vertical. (ii) Sud-
den large slipping events [where Su;(t)<0] appear as
steps at the same time for each curve u;(¢). (iii) Smaller
more numerous localized slipping events are also evident,
especially when the diagram is magnified. In addition,
one can see regions of stable creep (smooth motion of the
membrane relative to the rod); these are indicated by the
smooth vertical lines. The transient that occurs during
the initial loading cycle is not shown in Fig. 3(a); the time
origin is arbitrary.

Slipping events are detected by searching the digitized
record [including the intervening data not shown in Fig.
3(a)], for contiguous regions of motion in space and time.
The detected events during a 40-s interval are shown by
horizontal hash marks in Fig. 3(a); for extended events,
these appear as horizontal lines. A total of 694 events
were found in the entire run of 830 s.

To eliminate most spurious events due to measurement
noise, we have used a time step Ar=0.27 s, which is
larger than our minimum value, and require that the lo-
cal displacement of the membrane relative to the rod
exceed a threshold of 0.07 mm in this time. This choice
implies a minimum average slipping speed of 0.26 mm/s
for event detection. This value, which is about twice the
pulling speed, excludes slow relative creep; most of the
larger events are considerably faster than this. As a fur-
ther precaution, we exclude events that occupy only a
single point on the measured (s,#) grid. (We discuss
below the effect of changing the threshold for event
detection.)

The optical measurement method is quite sensitive in
comparison to measurements of the total force F(t);
many of the localized events detected optically are too
small to detect in F(f). A comparison between these
quantities is given in Fig. 4. The upper curve is the dis-
placement #;(¢) for a single point on the membrane and
the lower curve is the corresponding force F(¢). The lo-
cal displacement curve reveals considerable structure that
is not visible in F(2).

An alternate view of stick-slip dynamics is shown in
Fig. 3(b), where the cumulative displacement
U, (t)=vt—u,(t) in the rod’s frame of reference is shown
as a function of position and time. Here each curve con-
nects all the measured points 7/ at a given time. The large
slipping events are the white regions, and the regions of
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FIG. 4. Displacement u;(¢) of a single point on the mem-
brane (upper curve) and total force F(¢) (lower curve). The
former is more sensitive to small-scale events.

sticking are the locations where there is no forward
motion and several lines are superimposed. This repre-
sentation shows the full spatial resolution of the data.
The largest events (which move from right to left) pro-
duce a substantial fraction of the total displacement, as
does the phenomenon of stable creep, indicated by re-
gions of closely spaced parallel lines.

The stick-slip events that span only part of the system
are evidently spatially inhomogeneous. Later in the same
run the regions of small-scale slip have expanded to in-
clude a larger portion of the membrane, as shown in Figs.
3(c) and 3(d). These changes occur because the surface
properties of the membrane evolve over time as a result
of wear. The differences in surface properties between re-
gions of creep and regions undergoing local stick-slip can
also be seen from the increased slopes of the positions
u;(t) in regions of stick-slip immediately following a large
slipping event [Figs. 3(a) and 3(c)]. This observation sug-
gests that the frictional force is larger in regions of stick-
slip.

Though some regions may be temporarily displaced
more than others from their unstressed positions,
compressive stresses adjust the rates of the various pro-
cesses so that over time the displacements of different
parts of the membrane do not become very far out of
step. Therefore the lines in Figs. 3(b) and 3(d) remain
roughly horizontal.

B. Event distributions

There are many ways to characterize the dynamics sta-
tistically [2]. One is to plot the distribution of event mag-
nitudes. We define the “moment” M by analogy to earth-
quake modes as the integrated displacement over the
space-time region containing the event. [For an event last-
ing one time step, the moment is simply the area of the
event in Figs. 3(b) and 3(d).] The magnitude is then
defined as p= log;oM. The probability distribution P(u)
is shown in Fig. 5 for the run of Fig. 3 on a semiloga-
rithmic scale, for three different choices of the measure-
ment threshold that is applied to discriminate against in-
strumental noise. (The bold line corresponds to the
threshold of 0.07 mm mentioned in Sec. IT A; this value is
used for further analysis.) For earthquakes, this function
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FIG. 5. Distribution P(u) of slipping event magnitudes for
the run of Fig. 3, for several choices of the measurement thresh-
old for slip detection (see legend). A threshold of 0.07 mm (bold
line) is used for further analysis.
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is of the form P(u)= A exp(—bpu), and the related mo-
ment distribution P(M) is a power law ~M "1 In-
creasing the threshold eliminates some (mainly small)
events; the sharp decline in P (u) for small u is complete-
ly determined by the choice of threshold. For the dashed
case (M =0.05 mm), the threshold is too small, and it is
clear from examining figures similar to those in Fig. 3
that measurement noise then causes separate events to be
blended together, distorting the distribution. The other
two cases shown in Fig. 5 have similar distributions (ex-
cept at small u). However, the statistics are not precise
enough to reliably test the hypothesis of power-law be-
havior and the exponent of a fitted power law would de-
pend on the choice of threshold. There is also significant
variability from run to run.

Another useful way to characterize the data is to con-
sider the distribution of slip lengths P(l/w) as shown in
Fig. 6. We normalize slip lengths / by the width w of the
membrane. The sharp peak at //w=~3.5 corresponds to
events spanning our observation area, roughly half the
length of the membrane. Note that (omitting the peak
containing the largest events) P(//w) falls off approxi-
mately exponentially with a decay length comparable to
w.

How are the lengths | /w of slipping events related to
their moments M? We show this connection in Fig. 7 for
each event in the run of Fig. 3. The solid line is a lower
bound determined by the chosen measurement threshold
of 0.07 mm (at each spatial location along the event). For
events shorter than //w=~1.3(I =50 mm), the smallest
moments are right at the threshold, so we could be miss-
ing some of these events. (Recall that we have chosen a
very conservative threshold to ensure that very few spuri-
ous events are detected.) Most of the detected longer
events are well above the measurement threshold. This
implies that the displacement at each point during slip
typically increases with the length of the event. Many of
the longest events span the entire system (L =250 mm).
Since the measurement area is smaller than this, the mo-
ments and lengths of the longest events in the diagram
are generally underestimated.

After a prolonged period of use, wear causes the max-
imum frictional force to rise significantly. Behavior typi-

100.0 g T
= A
£ 10.0 ¢ E
g o 8 ‘ua
£ . :
1.0 Foge i
2 e
l
0.1 == :
0.1 1

Slip Length I/'w

FIG. 7. Log-log plot of the moment M vs the slip length [ /w.
The solid line, which rises linearly with //w, is determined by
the selected measurement threshold of 0.07 mm at each mea-
sured point.

kdyn/cm) is shown in Fig. 8. System-wide slipping
events now dominate the motion of the membrane. After
each large slip the membrane adheres to the rod uniform-
ly, as can be seen by the constant slopes of the lines in
Fig. 8(a) during loading. Small-scale slips are infrequent
and creep is virtually nonexistent. The absence of creep
is apparent from the densely packed regions in Fig. 8(b)
in which the lines do not advance along the rod, in con-
trast to the regular parallel pattern seen in Fig. 3(b) or
3(d). The positions of the relatively infrequent small-
scale slips are not correlated.

The qualitative behavior of the system varies widely
with the frictional properties of the membrane, and this
variability is manifested in the shape of the event magni-
tude distribution. Distributions for two typical runs are
shown in Fig. 9. The lower curve corresponds to the run
shown in Fig. 8 (larger f,,.). The peak at large magni-
tudes reflects the dominance of the large events. On the
other hand, when f_,, is reduced so that the smaller
events are more prominent, the distribution of magni-
tudes is often similar to the example shown in the upper
curve, which is roughly a power law with slope b = 1.

Several other parameters can be varied. For example,
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FIG. 6. Distribution P(//w) of slip lengths for the run of
Fig. 3. Slips of all sizes are seen up to the size of the system.
The peak in slip lengths above / /w =3.5 includes all slips larger
than the field of view.

FIG. 8 (a) Displacement field u;(¢#) and (b) cumulative dis-
placement field #,(¢) when the frictional force f,,, is larger
than that of Fig. 3 by a factor of 1.7. Here most of the displace-
ment occurs in large events; small-scale slips are infrequent, and
the membrane adheres to the rod most of the time. The main
cause of the increased friction is wear.
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FIG. 9. Distribution P(u) of slipping event magnitudes for
two runs with different f,,,. Vertical scales are offset as indi-
cated by the arrows. The maximum friction for the upper curve
(fmax =2.5 kdyn/cm), which has prominent small events and a
slope b =1, is about half that for the lower curve (f .. =4.7
kdyn/cm). The lower distribution is dominated by large events.

the transverse prestretch of the membrane was approxi-
mately 5%:; the behavior was not qualitatively affected by
modest changes in this parameter. The results are also
only weakly dependent on the normal force because the
microscopic contact area does not vary strongly with
pressure. However, increasing the normal force substan-
tially (about a factor of 10 above typical values) tends to
suppress the small events. Finally, the width w of the
membrane is an important parameter. The instability is
eliminated by reducing w substantially.

C. Temporal distributions of events

We have also investigated the temporal distribution of
slipping events quantitatively for run showing a wide
range of event sizes. The distribution of intervals be-
tween large events has a broad peak; this indicates ap-
proximate periodicity. The large events are usually nu-
cleated at one end of the membrane; the reasons for this
periodic nucleation at the end are unclear. Periodicity is
a general property of Schallamach waves in rubber fric-
tion and is responsible, for example, for the squealing of
tires during skidding.

The effects of the large events on the time distribution
of small events can be seen in Fig. 10(a). Starting with a
large event, the distribution of time intervals to the next
event of any size often shows a gap (typically about 5 s)
before rising strongly. This behavior is related to the
quiescent intervals visible at times in Fig. 3(a), though
Fig. 10 comes from a different run. A similar property
has also been found for the BK model [10]. We would
like to point out, however, that quiescence is not always
observed. It is more likely to be seen in cases where the
stress drop due to the major events is a large fraction of
the total stress.

The distribution of intervals between adjacent small
events, shown in Fig. 10(b), can be roughly approximated
as exponential over several orders of magnitude; this
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FIG. 10. (a) Distribution of times of events of any size follow-
ing a large event. This drop in activity is often seen following
large drops in stress. (b) Time-interval distribution between ad-
jacent small events within a loading period. The roughly ex-
ponential falloff implies that these events are not strongly corre-
lated in time. Data are for the run giving the upper distribution
in Fig. 9.

would be consistent with Poisson statistics. The small
events are not strongly correlated in time, though some
spatial clustering is present.

D. Wear: inhomogeneity
and evolution of the frictional coefficient

Ideally, the event distributions would be stationary in
time and independent of spatial position. However, this
situation is not easily achieved. An example of the spa-
tial and temporal distribution of the event centers is
shown in Fig. 11. It is evident both that the events tend
to occur preferentially in certain regions and that there is
some evolution in the predominant event locations over
the course of the run. Events that span the entire obser-
vation region are not shown in this figure. These results
imply that the frictional properties of the membrane vary
somewhat in space and time. The spatial variations are
most likely due to nonuniform wear of the material, a
phenomenon that is typical for solid surfaces in contact.

This evolution due to wear is manifested in the time
dependence of the steady-state frictional coefficient u,,
measured as described in Sec. II. The velocity depen-
dence of this quantity is shown in Fig. 12. Note first that
the frictional force is never lower than its static value and
generally increases with the pulling speed. (Normally,
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FIG. 11. Locations of identified event centers in space and
time for the run of Fig. 3. Regions preferentially undergoing
stick-slip motion evolve in time due to wear.

the pulling speed is 0.155 mm/s, which is in the lower
part of the range shown in Fig. 12.) Second, the frictional
force at a given speed v increases slowly with time over a
few hours of continuous sliding, an effect that has been
previously noted for rubber [24]. Finally, the curves
shown in Fig. 12 can be further reduced by surface treat-
ments such as roughening of the rod or chlorination of
the membrane.

The frictional force per unit length f is not solely a
function of velocity, in contrast to the simplifications
made in many numerical studies. We have observed that
the largest events are actually propagating waves of de-
tachment [23]. During slipping events, the membrane
loses intimate contact with the rod; this leads to a sharp
decline in f which is not primarily a function of velocity.
It is likely that the detachment mechanism drives even
the smallest slipping events. Therefore one might regard
the frictional force as having two branches; the velocity
dependence is similar to that shown in Fig. 12 only when
intimate contact is maintained, as for the narrow cell
used to measure f without instability.
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FIG. 12. Velocity dependence of the friction coefficient of la-
tex rubber on glass, sampled after various periods of continuous
moving contact. We plot the difference between the dynamic
(stick-slip) and static friction coefficients, pt, —u,. The friction-
al force increases with velocity and also increases slowly with
time.

IV. DISCUSSION AND CONCLUSION

We have studied the spatiotemporal dynamics of the
slipping membrane system in some detail, using optical
imaging methods to resolve the displacement field as a
function of space and time. The spatial sensitivity is
about 0.025 mm, which is small compared to all of the
natural lengths in the problem. The local optical mea-
surements are shown to be more sensitive than measure-
ments of the total frictional force. Our central observa-
tion is that slipping events on a wide range of scales are
usually found.

We have also pointed out two particular difficulties in
evaluating the results. First, the smallest events are com-
parable to our measurement resolution. Therefore the
event statistics are influenced to some extent by the
choice of threshold used to discriminate against noise.
However, we believe that the measured magnitude distri-
butions are at least qualitatively correct. We do not gen-
erally find robust scaling behavior.

A second difficulty is that wear causes nonuniformities
to develop in the frictional properties of the membrane.
This nonuniformity is visible in the spatial distributions
of event locations. In other cases (for example, Fig. 8),
events appear to nucleate relatively homogeneously, ex-
cept for the largest ones. Though the heterogeneity that
is sometimes present is a nuisance, we do not believe that
it is responsible for the observed dynamical complexity.
The magnitude distribution P(u) and other statistical
properties are sensitive to the interfacial conditions, espe-
cially the maximum frictional force f,,. The behavior
may also depend on the length L of the membrane, but
we have not yet resolved this issue experimentally.
Length dependence is seen in some simulations [14,16].

The experiments were stimulated by numerical studies
of the Burridge-Knopoff model. It is worthwhile to ex-
amine the extent to which the experimental system is
analogous to the BK model. We provisionally assume
that the experimental system is effectively one dimension-
al and consider the dynamics only on time scales long
compared to that of the fundamental longitudinal mode
of the membrane. A continuum equation was presented
by Carlson and Langer [7] which described the essential
features of the BK model. The evolution of the nondi-
mensional displacement field U (s,7) along the fault at po-
sition s and time 7 is given by

2 .
U=§2§asv(2]—U+¢(2av—2aU), (1

where 7 is the time, made nondimensional by a charac-
teristic slipping time. The displacement field U is mea-
sured in units of a characteristic slipping distance. The
coefficient of the second derivative is a dimensional
stiffness length £. The velocity dependent frictional force
is ¢ and v is the loading speed. The first term on the
right-hand side of Eq. (1) is related to the compressional
stiffness; it tends to smooth out local fluctuations in the
displacement field. The linear term is a restoring force
which tends to keep displacements finite. The friction
law is assumed to weaken on a velocity scale a”!. The
model contains both scale-invariant localized events and
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large delocalized events; the characteristic moment (in-
tegrated displacement) separating these two classes of
events is determined roughly by the ratio £/a. Thus the
stiffness length is an important elastic parameter.

The dynamics of the stretched membrane system may
be examined by considering a small patch of membrane
of width dw that is in contact with the rod. It is assumed
to be uniformly compressed or extended, and to experi-
ence shear forces from the part of the membrane that is
not in contact with the rod. The longitudinal strain is as-
sumed to decrease linearly to zero at the edges of the
membrane. The shear forces are determined by the shear
modulus of the latex material. Since we do not treat the
dynamics in the direction out of the plane of the mem-
brane, the compressional forces acting on the patch are
determined by an effective bulk modulus K  that is equal
to . (The ordinary bulk modulus is much larger and is
not relevant in a configuration where the thickness is un-
constrained.) It is straightforward to show that the dy-
namics of the system are given by Eq. (1), but with a
different frictional force. The stiffness length £ is given
by £=Vwdw. Although the various approximations
made in the derivation (for example, one dimensionality)
are severe, it seems very unlikely that the stiffness length
could be larger than w.

Our system thus contains the essential elastic proper-
ties of the BK model. However, the source of the insta-
bility is fundamentally different. As shown in Sec. III,
the measured frictional force is not velocity weakening;
instability is produced instead by a detachment process in
which intimate contact is lost locally. The existence of
stable creep is further evidence of the fact that the fric-
tion law is otherwise velocity strengthening. Therefore
we do not attempt a detailed comparison between the

model and the experiments.

Some of the features of the model are seen in these ex-
periments. They include broad distributions of event
sizes whose characteristics depend on the friction law, as
well as large scale delocalized events that are distinct
from the smaller ones. The moments of these events tend
to grow faster than linearly with event length. This ob-
servation indicates that the stress drop increases with
event length. The large events are nearly periodic and ac-
count for the bulk of the stress release [e.g., Fig. 8(b)].
Quiescence often occurs after these large stress drops.
Some of the larger slipping events do not extend over the
entire system. Therefore it is probable that we would ob-
serve a cutoff in the distribution of the largest events in a
longer cell; such a cutoff is also observed in the BK mod-
el. However, the system-wide events seen in our experi-
ments are nucleated primarily at the boundary and hence
may have a different origin from the large-scale events
seen in the model [9].

Our experiment is essentially one dimensional for
scales larger than w, but may well be two dimensional on
smaller scales. We hope eventually to study the effects of
dimensionality and to utilize a circular geometry to test
for end effects. Further study of the friction law would
also enhance our understanding.
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