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The dispersion relation of the long-wavelength fluctuations of an interface exhibited by the Cahn-
Hilliard equation is studied analytically and numerically. The expected asymptotic dispersion relation
to- k is demonstrated. Further, using a well-defined microscopic length scale g, the dispersion relation
is numerically found to have a nearly universal form oi/k ' = (1/g)Q{ kg) for a wide variety of potentials.
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I. INTRODUCTION

The asymptotic-growth law of the average pattern size
L in the spinodal decomposition process of binary alloys
(critical quench case) seems to be given by L -t' . Ac-
tual experimental results [1] and computational studies
[2,3] both strongly suggest that this is the universal
asymptotic relation. Analytic derivations for this law
have been proposed, but unfortunately they are not well
controlled mathematically [4].

In the present report, we give a well-controlled result
about the dispersion relation of the waves on the inter-
face in d-dimensional (d ~ 2) space, and then empirically
demonstrate extensive universality found for this disper-
sion relation. We will demonstrate that the spectrum of
the linearized Cahn-Billiard operator around its kink
solution has an eigenvalue co=f (k) which is continuous
with respect to k and limk ohio/k exists and is a nonzero
constant. In this limit the essential spectrum of the
linearized operator and the Nambu-Goldstone mode of
the interface (i.e., the zero eigenvalue of the operator) are
not separated. Thus some care is required in applying
perturbation theory to the eigenvalue problem. We justi-
fy Jasnow and Zia's study [6] of the same problem which
assumed that the essential spectrum is totally harmless.

Next, a numerical result for the dispersion relation for
a wide range of ~k and for a wide variety of potentials is
given with the aid of a formula for the eigenvalue which
explicitly separates the

~
k

~
factor. Empirically, we find

that there is a universal form to the dispersion relation
independent of the potential, and that it is close to but
distinct from the form found for an analytic solution to a
special potential by Jasnow and Zia. We also compute
for comparison the dispersion relation for a less singular
potential which is also exact up to the determination of
the root of a transcendental equation. The result is indis-
tinguishable from the numerically obtained universal
form.

If we may assume that there is only one representative
length scale other than the thickness of the interface (i.e.,

the microscopic correlation length), then these results im-

ply that the t' asymptotic law is exact, and that the
universality in the dispersion relation implies the univer-
sality of the form factor stressed in [5].

In Sec. II, the long-wavelength asymptotic dispersion
relation is demonstrated for the Cahn-Billiard equation.
Despite the essential spectrum of the linearized operator,
perturbational approach is justified. In Sec. III, an exten-
sive universality in the dispersion relation is demonstrat-
ed. Section IV is for concluding remarks.

II. LONG-WAVELENGTH DISPERSION RELATION

=6 [
—P+f —(t), +ah)()ir'j], (2.1)

where z would become the coordinate perpendicular to
the interface, A~~ is the Laplacian in the subspace perpen-
dicular to the z axis, and aE[0, 1]. When a=1, the
equation is the standard Cahn-Billiard equation. The
kink solution centered around the origin perpendicular to

Perhaps the most appealing analytical argument for
the —,'-power law growth is based on the kinetics of the in-
terface [7]. The dimensional analysis of the equation of
motion for the evolution of interfaces gives the —,

' power
law [8]. However, no one has been able to give a
mathematically well-controlled derivation of the interface
equation from the Cahn-Hilliard equation [9]. The
difficulties are well documented in [10]. If we may as-
sume as in the dimensional analysis that there is only one
relevant length scale as mentioned above, then the rela-
tion between the block copolymer equilibrium lamellar
thickness and the spinodal asymptotic growth law can
also be established [11]. Furthermore, if we assume the
universality, then we can devise an exactly solvable model
for the block copolymers, which implies the exact 3

power law [12]. The same idea was also used in [6] to get
a ~k~ dispersion exactly (under the above-mentioned im-
plicit assumption).

We start with the following equation:
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the z axis is given by go=tanh(z/&2). Setting
g=ito+ui, (z)exp[ik. r], where r denotes the coordinates
perpendicular to the z axis, we linearize (2.1) around $0,

Bui, (z)

at
= —D&L&(a)ui, (z), (2.2)

where D& —= —8, +k (Do:——8, ), L&(a):Lo—+ak,
and Lo= —8, +f (z) with f (z) =2—3/cosh (z//2)
[henceforth we write lkl as k; k is a (d —1)-dimensional
vector]. The boundary condition is that ui, (z) and
B,ui, (z) both vanish at infinity. The spectrum of Lo is
well known [13]: it consists of two eigenvalues zero and
—,
' and the remaining essential part well separated from
zero. We denote the normalized eigenfunction of Lo cor-
responding to zero by uo. We consider, for simplicity, all
the operators in the intersection of X2 and the domain of
8, on the real axis (denoted by 2)), which is dense in X2
(henceforth X implies the set of all the functions f on
the real axis such that I f~~ is integrable). Furtherinore,
we may regard all the operators closed or closable.

We wish to ultimately study the spectrum of the linear-
ized Cahn-Hilliard equation,

ui, Di, LI, (1—)ui, , (2.3)

particularly the eigenvalue branch connected to A, I, o=0.
We will henceforth use A,:—co to describe the dispersion
relation. However, one cannot simply assume that the
above continuous branch exists or that even if it does, it
is attainable as a perturbation of the operator DOL0. In
fact, a difhculty does appear at k =0. Physically, the in-
terface in the conserved system cannot move freely using
the Goldstone mode as it could in the nonconserved
countepart represented by the linearized operator L&.
Thus, at k =0, the system can only satisfy conservation if
it "ripples" transversely to the interface. Such states
would likely be members of the essential spectrum. At
k%0, a perturbation local to the interface of a form like
the Goldstone mode is possible, since conservation is tak-
en care of by the fluctuation along the interface.

We consider the spectrum of D&L&(a). The existence
of an eigenvalue might follow from that for Li, (a), or
might be inferred from the variational formulation as
done by Jasnow and Zia. However, notice that the varia-
tional formulation can be used to get the eigenvalue only
when we know there is one. Before demonstrating the
dispersion relation, we will show that the lower limit of
the spectrum is indeed an eigenvalue.

Notice that Dt, u=0 implies u =0 in our problem, so
that GI, —=DI, is a strictly positive bounded self-adjoint
operator as can be seen from the explicit form of its ker-
nel as an integral operator,

(2.6)

If the dimension of the set of all such g is finite, then this
p must be an eigenvalue of D&L&(a) (at this point we
cannot assert that it is the smallest one). If it is infinite,
then p must not be smaller than the lower limit of the
essential spectrum of D&Li, (a). [The proof is akin to that
for theorem XIII.1 (min-max principle) in Reed and
Simon [16],with the aid of the fact that L& —pG& is self-
adjoint and non-negative, so its square root exists. ]
Using uo(z) ~ $0(z) we may see for k (1 that
p~k (uo)/(u„(z), f dz'exp(lz —z'l)uo(z')).

The essential spectrum of D&LI, (a) is identical to that
of the operator Di, ( —8, +2+ak ), since the coefficients
to the deferential operators have the same limit as
z~+co (see proposition 26.2 in Collet and Eckmann
[14]). Hence the essential spectrum of D&L&(a) lies out-
side the disk of radius 2k around the origin for any k
and a ()0). Consequently, for sufficiently small k )0, p
obtained above cannot be the lower limit of the essential
spectrum. Hence D&L&(a) has an eigenvalue, which is
positive, and is bounded by p, from above. In particular,
it cannot be larger than of order k .

We have demonstrated that the eigenvalue problem

Ai u =Di Li (a)u (2.7)

is meaningful. Using the fact that L&(a) is self-adjoint,
and L&(a)uo=ak uo, we can solve (2.7) as

Z, =2ak'
+ oof dz uo(z)ul, ~(z)

I dz f dz'u (z)e " ' ' u„(z')

(2.&)

[A,Gi, —Li, (a)] ' unbounded are again the same. Since
II[~—DaLi, (a) l 'll —IIGi, II II~Gi —L~(a)ll
Suppose p, &S, then there exists a sequence Iv„] such
that Ilv„ II

= 1 and [pG& —L&(a) ]v„=u„converges to
zero. This implies that [p —D&LI, (a)]v„also converges
to zero. Since G& and pGI, —Li, (a) are one-to-one,
[p Di,—L&(a)] inust also be one-to-one. The existence of
such a sequence implies that [p D& L—

& (a ) ]
' is not a

bounded operator. Hence p must be in a„„soSC:o„,.
Consider the following variational formula:

p = inf& (2.5)
k

Since Li, (a) is nonnegative definite, and Gi, is positive
definite, p )0. For Ve) 0 there exists g such that

—k( —'(

2k
(2 4)

The set of the eigenvalues of D&L&(a) and the set of A,

which makes A, Gi, —Li, (a) not one-to-one are obviously
identical thanks to the uniqueness of the solution to
G„u =0. The essential spectrum o.„,of D&LI, (a) and the
set S of A, which makes XGI, —Ll, (a) one-to-one but

where uI, is the corresponding eigenfunction of
DI,L&(a). Incidentally, it should be noted that the con-
tribution to the dispersion of the overall Laplacian (i.e.,
the Laplacian needed to impose the conservation law) in
the Cahn-Hilliard equation is k and not k . Using the
variational principle above, we can show that the eigen-
function of the lowest eigenvalue of DI, L&(a), which is
not self-adjoint, does not have any node; the proof is
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(n) k
(Dk Lk" +" Dk Lk"') — Di, — (2.9)

analogous to that given in Courant-Hilbert [17] Chap. 6,
Sec. 6.

We wish to demonstrate that actually kk depends on
k continuously, and the k ~0 limit of the square-
bracketed quantity in (2.8) exists and equal to that value
at k =0. We wish to use a perturbative approach to this
end starting from the k =0 case. There is, however, one
obstacle for our approach: zero is not only an eigenvalue
but a1so the lower limit of the essential spectrum of
D0L p. We can avoid this di%culty, noting the following.
L0u =0 implies DkL0u =0, so zero is an eigenvalue of
the operator DkLO in 2) for any k (and a). Thus zero is
an isolated point spectrum of DI, LO for kAO. We choose
DkL0 as the unperturbed starting point.

We wish to get DkLi, (1) perturbatively from DkLo,
but the a priori estimate of the perturbation we can get is
of order k, so we cannot ignore the essential spectrum
whose lower limit is -2k . To avoid this difficult we
decompose the perturbation into sufficiently small pertur-
bations, so that we may use the stability theory of the
spectrum with a simple a priori estimate of the magnitude
of the perturbation. For some a=1/N we find the ex-
istence of an eigenvalue of Dk Lk ( 1 IN) proportional to
k /N. Hence, for small k, the perturbed spectrum is still
well inside a disk, of radius, say, k and we may continue
to perturbed the operator further. Our demonstration
below of the dispersion relation is well controlled with
the one assumption that no other point spectrum that we
consider comes near the disk of radius k centered at the
origin for any a H [0, 1].

Define Lk"=Lk(1IN) and Lk"+"=LI',"'+k IN The
perturbation

g(&)g (i)—D L(i)g (&)
k ~k k k ~k (2.10)

Using the previous obtained estimate for
5(DkLk", DkLO) (ck IN, we set N large enough to satis-

fy the inequality 6 6. Fixing that X, we may now safely
perturb DkLD (Sec. IV, theorem 3.16 in Kato [15]). More
importantly, by the same theorem, the eigenprojections
P'" to the eigenspace of A.&" converges in the L norm

(p & 1) to Po, which selects the eigenspace belonging to
the zero eigenvalue of DkL0 as X~~ or k ~0 since the
bound on the gap is proportional to k /N.

Corresponding to (2.8), we have

2k 3

k
f dz uo(z)P"'uo(z)

f dz f dz'uo(z)e "' ' P"'uo(z')

(2.11)

eigenvalue deep inside the essential spectrum.
For I and the operator DkLk(a) there is a 5(a) (& 0)

for which any gap between this operator and its per-
turbed version smaller than 5(a) ensures that the original
spectrum and the perturbed spectrum are separated into
like parts by I (Sec. IV, theorem 3.16 in Kato [15]). 5(a)
can be computed as min&~r( —,')[1+llR(g)ll ]

' (1
+k ) ', where R(g) is the resolvent [DkLk(a) g]—
Since resolvent are continuous functions of closed opera-
tors (Chap. IV, theorem 3.15 in Kato [15]),5(a ) is a con-
tinuous function of a. Suppose for given k, which is
sufficiently small and fixed, 5(a) )0 for a (ao, and
5(ao)=0. Choose an arbitrary small positive number E.
There is 5 (&0) such that 5(a)) 5 for all non-negative
a &a0—e. Consider

can be demonstrated to be DkLkn' bounded, for any
N)n)o thatis IIDkull, (bllD. L'"'ull, +~llull, »s a
constant freely adjustable to any value b & 0 and a is a
function of b. Fixing b & 1, we may find a bound
for the gap (Chap. IV, theorem 2.14 in Kato [15]),
between Dk Lk" +" and Dk Lk"', S(Dk Lk" + ' ', Dk Lk" ')
((1 bk IN) '—(a +b )'~ k IN, which is bounded by
a positive number proportional to k /X. a and b & 1 can
be found and set independent of n, X, or k. Note that
Lk —=Lo(0)—

Let 1" be a circle of radius ck centered about zero,
where c is say —,'. The disk whose boundary given by this
circle is called Vl. Our standing hypothesis is that there
is some neighborhood of the disk 'M into which no eigen-
value of the operator DkLk(a) moves from outside for
any a&(0, 1]. This appears to be true empirically. If this
is not the case, we cannot successfully use the argument
below without additional estimates on the behavior of the

We know that the square bracketed quantity is bounded
from above by a number M independent of k for
sufficiently small k, since the eigenvalue is the one bound-
ed by the variational estimate for any a. Hence the per-
turbed eigenvalue is sti11 well inside the disk 'M.

The rest is taken care of by a mathematical induction.
We consider

g(n)g (n) D L ng (n)
k ~k k k k (2.12)

For n we may assume that A'k"'=n&2k I3N+o(k ).
The gap [15] between DkL&"+'~ and DkLk"' can be
bounded identically to the n =0 case. The eigenvalue
A. 'kn) We are intereSted in fOr DkLk"' iS Of Order k . HenCe
it is far away from the essential spectrum of DkLk. Since
Lk +'uo = [(n + 1)k IN]uo, we arrive at a formula analo-
gous to (2.11),

( +i) 2(n +1)k
k

dz u (z)P'"+"u„'"'(z)

dz f dz'u (z)e kl~ —
~'IP~~+ "u ~"~(z')

0 k

(2.13)
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(n+iiwhere I""+"is the eigenprojection for A, k which con-
verges in the X norm to P'"' in the k zero limit. The
quantity in the square brackets is bounded from above as
before, by a number M independent of k and n.

Up to N'= [N(ao —e)] we can use the same estimates
needed in the above stepwise procedure. In this way we
demonstrate that the eigenvalue close to zero of DkLk(a
is -k up to ao —e for any e () 0). That is,
lim pA k is still bounded from above by 2Mk .

0
Hence the norm of the resolvent is bounded from above
on I by a number M' of a up to ao. However, 5(ao) =0,
so the resolvent cannot be bounded on I. This violates
the continuity of the resolvent. Hence actually ap must
be larger than 1. We may continue our argument up to
+=1 for small enough k.

In this way we arrive at

dz uo(z)
oo +o(l)+ oo 2

Zgp Z

(2.14)k k

III. EMPIRICAL UNIVERSALITY

oo

Hence we may conclude that Xk ——&2k /3 in the small3

k limit for the (normalized) Cahn-Hilliard equation. As
is seen in the next section, the formula implies ~k j~&

where g is the correlation length (interface thickness) of
the system as expected dimension analytically. Since g is
for our problem a cutoff length scale, so the exponent 3
instead of 4 may be said to be due to the anomalous di-
mension [18].

Notice that the above argument does not use the de-
tailed shape of the potential function in the standard
Cahn-Hilliard equation. Of course, up depends on the
detail, but the existence of a finite limit of the square
bracketed quantity in (2.13) in the k ~0 limit does not.

We can easily construct the linear operator correspond-
ing to Eq. (2.2). The corresponding eigenvalue problem is

(3.4)

(2) p= —itj+g

(&) v= —0+0'+0'
—q if ql(0. 8

4P —sgn(g)4 otherwise,

(3.5)

(3.6)

(3.7)

—q if lql(0. 95

19$—sgn(g)19 otherwise, (3.8)

~kuk DkLk [P)uk

where Lk[p]= D( ——8, +k )+p'(go), $0 being the kink
solution. Note that uo ~ go.

One may numerically compute the eigenvalues and
eigenfunctions for DkLk [p] by discretizing the operators
over a large, finite domain and solving the resulting ma-

difficulttrix eigenproblem. In general, however, it is very i cu
to see the small k behavior of the dispersion relation due
to the k behavior. Numerical inaccuracy will swamp
any result at small k. However, to use (3.2), only modest-
1 accurate eigenfunctions are necessary. n ac,t most of
the dispersion-relation behavior should arise from
knowledge of uo(z) since we believe that
uk(z)=uo(z)+o(k) in norm, with llukll~= 1 for any k.
This is empirically checked below.

We numerically determine the eigenfunctions as func-
tions of k for various systems with various local free ener-
gies. We graph in Fig. 1, for qualitative comparison, the

~ ~

various free energies we consider including t e piecewise
double parabolic potential used by Jasnow and Zia. It is
easiersier to represent the chemical potential p=5F/6 . We

elllist the various potentials (A) —(D) we will study, as we
as the piecewise parabolic (PP) potential,

We have established the form of the isolated point
s ectrum A.k, for small k and the corresponding eigen-spec rum k,
function uk(z) in X&A%2 for sufficiently sma . e11 k. The
formula for the dispersion relation can be written as

(3.9)(PP) p=g —sgn(g) .
~ ~

We compute results for the above with D =1. Addition-
ally we compute the (C) potential with D =0.5 and 2. In
Fig. 2, we show the various numerically determined kink

A, k =k R (k),
where R (k) is defined by

(3.1)

dzupzuk z
R(k) —2 I+ dz dz'uo z)e uk z

(3.2)

=6[ DA+ p(g) ) . —
at

(3.3)

with uk(z) being the eigenfunction with the smallest
modulus eigenvalue of Dk Lk. The formula is numerically
very convenient. As noted at the end of Sec. II, the for-
mula can be justified for any potential function (or the
chemical potential formula p) which gives physically
realistic interface.

In order to investigate the dependence of the disper-
sion relation to the details of the free-energy functional,
we study

/
/

/
/

/

FIG. 1. A comparative plot of the different 1oca1 free-energy
functions used to generate the different potentials discusse .
The line style of the curves are labeled with the letter code o
the corresponding potential described in the text where PP
denotes the piecewise parabolic potentia .

' l.
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CD
N
G$

E
o
C
N

-3

FIG. 2. Equilibrium wall profiles generated by the difterent
potentials studied numerically. The line style of the curves are
labeled with the letter code of the corresponding potential de-
scribed in the text. The (C) potential was studied with three
diA'erent D: 1, —,', and 2. All the other potentials were studied

with D =1.

or equilibrium wall solutions, normalized in the case of
potential (B) so that g ranges from +1 to —1 for com-
parison. Note that although the (A) —(D) systems have
identical initially unstable wavelengths, their wall widths
vary over a wide range. We note in passing that the wall
profiles nearly collapse onto each other by empirically re-
scaling the z coordinate by dividing by a g, ;„„&, the
width of the wall from /=+0. 9g,„.

We calculate the dispersion-relation factor R (k) from
the eigenfunctions for each potential. For the tt poten-
tial (A), we may calculate various quantities explicitly.
The unnormalized uo= 1 —tanh (z/V2). Thus we may
find R (0)=+2/3 as already mentioned.

We expect uk(z)=uo(z)+o(k) and this appears to be
confirmed for potential ( A) from the numerically deter-
mined eigenfunctions by Fig. 3. In this figure, we com-

pute the %2 distance of uk from uo where the various uk
are normalized so that the X2 norm is a fixed constant. It
is curious that the distance rises as k until roughly
k-0. 3. In Fig. 4, we see that the numerically deter-
mined eigenfunctions uk vary somewhat over the range of
k E [0,2]. However, the form of the eigenfunction does
not seem radically diA'erent.

We replot the eigenfunctions, which must be non-
negative as mentioned before, in Fig. 5 on a linear-log
plot. While we dismiss the behavior beyond ~z ) 8, due
to the finite size of the computational domain, we see that
for small k, the eigenfunctions deviate from uo(z) in the
large z tails. These tails rise until they appear to hit a
maximum deviation at about k-0.4 at which point the
eigenfunctions appear to relax to a fixed high k form
which is outlined by the k =3.8 eigenfunction. Thus this
explains the odd behavior of the Xz distance. We note
that the behavior of the eigenfunctions is consistent with
the observation that the order parameter tends to
overshoot the bulk equilibrium value in the region within
a curved domain wall.

The general numerical procedure was to use an adap-
tive general purpose ordinary differential equation solver
to get the kink solution. Boundary conditions were fixed
to be of the bulk equilibrium values. About 1000 mesh
points were used over a range of zH[ —10, 10]. This
solution was then interpolated onto a fixed mesh size ar-
ray before used in a 384 X 384 matrix eigenvalue problem.
The discretized Laplacian operator was of the 1:—2:1
form. Although the computations were done on a finite
domain, we found that cutting down the range of z to
zH[ —5, 5] or using —,

' the number of grid points were
generally unobservable.

In the large k limit, we see that
e " ' ' —2k '5(z —z'), giving Xk =k . Since uo HXz,
we may calculate the small k behavior of R (k) by ex-
panding e ' ' —1 —k~z —z'~. . .. Integrating numeri-
cally, we get

10
0.8

10

0i 10
C&

I

10

0.6
U
CD
N
G$

E
o 04

0.2

10
0.01

I

0.1 10

0.0
-6 -4

FIG. 3. Plot of the L2 distance between uo and uk as deter-
mined numerically over a variety of k. Each of the uI, were nor-
malized such that ~~uk~~~=c, where c is a fixed common con-
stant. Note that the norm decreases as 0 (k ).

FIG. 4. A plot of numerically determined eigenfunctions for
the itj potential ( A), vs various k. The solid dark curve, which
is the thinnest and tallest peak, is k =0. The dark dashed curve
is for k =3.8 and represents the general form of eigenfunctions
for large k. Each uk is X, normalized to a common constant.
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010 Recall that the we may define uII(z) ~ B,go(z). We note
that

~= I+"dzD[a, y,(z)]' (3.12)

Q)
N
m 10
E
O

10'

10

10
-10 -8 -6 -4 -2 0 2 4 6 8 10

I dz j dz'uII(z) ~z
—z'~ uo(z') = 11.2, (3.10)

so that R (k)=&2/3(1+11.2k/g). Figure 6 shows
R (k) numerically calculated for the (A) or f potential
and the small k estimate. The small k estimate works
well for k &0.4 which corresponds to the point where we
saw that the eigenfunctions started to relax toward a high
k form in Fig. 5.

We computed R (k) for each system listed above. If we
normalized each R (k) by dividing by R (0) and then res-
caled k to kg, „;„„I,all the R (k) curves nearly collapse.
In fact, we may define a precise length scale as follows:

J''"dzu, (z)
'

(3.11)
2 dz uo(z)

FIG. 5. A linear-logarithmic plot of numerically determined
eigenfunctions for the potential ( 3) for various k. The dashed-
dotted curve represents the eigenfunction for k =0.4. Note that
it appears to be the maximally distorted eigenfunction. For
k )0.4, the eigenfunctions appear to relax toward a high-k form
typified by the k =3.8 eigenfunction which is plotted as a
dashed curve.

ay= J'+"dz a, l(,(z), (3.13)

( —a,'+k')[ —a,'+k'+f (z)]=Al( (3.14)

by dividing through by k and rescaling zk =z' and get

(
—Q2, + I) —t), , + I+ f(z'/k ) t/i=QQ .

1 (3.15)

However, f (z) decays exponentially or faster to a con-

3.0

where tr is the surface free energy (surface tension) of the
planar interface and Ag is the miscibility gap between the
two bulk phases. Hence the length scale g= 2I D(b f—) /o.
This is easily computed solely from the equilibrium wall
profile. If we use this g, by plotting gR (k) vs kg, we find
that all the dispersion relations collapse as shown in Fig.
7. Defining Q(kg):—gR (k), we find a nearly universal
form co/k =g 'Q(kg) as stated at the beginning.

Jasnow and Zia had computed the exactly solvable
dispersion relation for a double parabolic local free ener-
gy. After scaling, this relation also nearly follows numer-
ically determined relations. To see if this small difference
was an artifact of our procedures, we calculated the
dispersion relation analytically for potential (C). This is
exact up to determining the roots of a transcendental
equation numerically and is described in the Appendix.
All the dispersion relations calculated numerically and
exactly are shown in Fig. 7. The differences between the
Jasnow and Zia dispersion relation and those for the po-
tentials listed above persist, but are very small and at
large k, and may be solely due to the singular nature of
the double parabolic local free energy they used.

For small k, we note that one may write

2.5 2.5

2.0 2.0

1.5

1.0

1.0 =

0.5

C (o)——— Exact (PP)
Exact (C)

0.0
0.0 0.5

I

1.0 1.5 2.0 2.5

0 0 r

0.0
I

0.5
I

1.0
I

1.5
I

2.0 2.5

FICx. 6. A plot of the dispersion relation for the l( potential
{2), vs a plot of the small k estimate to the dispersion relation
and the large k behavior of A,k

——k .

FIG. 7. A plot of the numerically calculated dispersion rela-
tions for the various potentials described in the text as well as
the exact dispersion relation calculated by Jasnow and Zia for
the double parabolic free energy and the exact dispersion rela-
tion for potential (C) with D =1.
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stant, and in the limit k ~0, one may reinterpret

k k
f (z'/k )- —c'5(z'), (3.16)

APPENDIX: EXACT DISPERSION RELATIONS

Jasnow and Zia [6] found an exact solution to the
dispersion relation for the local free energy,

where c =lim, f (z) and c'= J dz [f(z) —c]. Thus
all problems have the same small k structure for
k ((1/g.

Hence, we suggest that there is a nearly universal form
for the dispersion relation for any bistable potential when
scaled by the above g. This dispersion relation provides
us with a comparative crossover law for the long but
pre-asymptotic growth of the length scale for computa-
tional simulations of spinodal decomposition. This cross-
over is relevant for computational simulations since it is
difficult for the domain-size length scale I (t) to be much
greater than g. We will consider this further in an anoth-
er paper.

IV. CONCLUDING REMARKS

We have demonstrated the asymptotic dispersion rela-
tion co-k around the kink solution of the Cahn-Hilliard
(or the conserved time-dependent Ginzburg-Landau
equation), and numerically exhibited an extensive univer-
sality in this dispersion-relation independent of the free-
energy functional describing the phase segregation.

The correction to the k behavior in the universal
dispersion curve (Fig. 7) starts immediately at k =0.
This explains why the true asymptotic power growth law
L -t' is not available in computational studies. At best
we can get L =5/-10(. However, the universal form
factor can be well obtained before we reach the true
asymptotic scaling law regime through a hardening pro-
cedure [3]. This is possibly due to the fact that the form
factor is largely localized in a small region about the peak
wave vector. The various structures which contribute to
the form factor see approximately the same preasymptot-
ic growth law, so that the global structure may not de-
pend strongly on the nonasymptoticity of the growth law.

The speed of coarsening may be compared with the
value of A, k for kg= l. From the universal curve we see
that A,

&&&
-—1.7/g . This implies that so long as there is

no numerical freezing, the potential which gives a steeper
interface profile is advantageous. To avoid freezing, it
appears we must have a potential whose unstable region
is wide, that is, the ratio i)'j, /itj, of the positive solution

g,~ to p(P) =0 (the equilibrium value of the order param-
eter) and that P, to p'(P)=0 (the spinodal value) is as
small as possible. A judicious choice of the potential can
accelerate the simulation considerably. The result will be
given elsewhere.
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—,'I~(p —M), p )0
U(&)= ',

—,'1~(/+M), p(0 .
(A 1)

We brieAy restate their solution to prepare for a more
complicated, but smoother potential. The "potential" in
the linearized equation is

f (z) =a —21~5(z) . (A2)

They sought the solution to the adjoint problem, which is
defined by

[Dk+f(z)]DkQ=QQ, (A3)

where Q=Dk P.
The conditions on 1( are that the first and second

derivatives are continuous at z =0. Taking (A3) and in-
tegrating both sides from +e to —e and taking the limit
@~0they find a third condition

a3ql;=2 (Dk)q(0) . (A4)

+Q( —2y +2y )+y (A5)

This represents the solution of Jasnow and Zia. The
physically relevant root is graphed in Fig. 6.

Now let us turn to the construction of a solution for a
less singular potential. We choose the following local
free energy:

—,
' ~0( p —M ), p )p,

U(y)= . —,'~, y'+C, (A6)

—,'i~0(/+M), (5 (—p, ,

where C and P, are defined so that U(P) is C'. The cor-
responding chemical potential p=dU/dP gives us P, by
the continuity of p,

M
1 +Ki. /K()

(A7)

The f (z) for the linearized equation is a square well of
height Ko and depth K; with walls at z, . z, is determined
by the point where the equilibrium solution $0(z, ) =P, .
One may construct the equilibri. um solution from

d.'40+1 (40)=o— (A8)

and find that z, =(1/Ir;)tan '(1/+a) where a=~;/xo.
One constructs the adjoint problem as before. Making

They found it convenient to rewrite I =q 0 and

y =k /(2q ). One may write down a solution to Eq. (A3)
for z )0 and z &0 and match the solutions at z =0 using
the above three conditions. From symmetry, and the ar-
bitrary normalization of g, one can eliminate undeter-
mined coefficients in favor of an equation for A,

O=Q" —0 (2+2y —y )+0 (1+2y —2y2 —2y3)
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the substitution I =q 0, y =~, /2q and we arrive at

lb=exp[ —[(y+ I)+(0+y )'~ ]'~ z']

+8 exp [
—[(y + 1)—(0+y )'~ ]'~ z'I

for Iz'~ )z,
'

(A10)

g=C coshI —[(1—ay)+(II+y )' ]' z']
+D cosI —[ —(1—ay )+(0+y )'~ ]'~ z' j +E

( —c},, + I+2y)( —t), +1)lb=Gib for ~z'~ )z,
2y

(A9)

(
—8,.+1—a2y)( —8,.+1)/=01' for ~z'~ (z,

2y

We will define z,'=z, tc, /&2y. The explicit solution for
which $~0 as z ~+ cc can be written as

for ~z'~ (z,' The solution should satisfy continuity in g,
B,.lb, and B,tt. Applying the integration over z, —e to
z, +e, we see that 8, g should also be continuous. How-
ever, we need one additional constraint. Upon examining
(A10) one finds that there is a jump condition on 8, 1b at
+z, of the form

(Al 1)

Using this, one gets five transcendental equations with
five underdetermined quantities. After tedious reduction,
we arrive at a transcendental equation for 0 as a function
of y. This is solved numerically for a given set of y values
and plotted in Fig. 6 for ~; =1 and ~, =2. Note that M
does not play a role in the dispersion relation.
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