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Explosive instabilities of reaction-diffusion equations including pinch effects
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Particular solutions of reaction-diffusion equations for temperature are obtained for explosively unsta-
ble situations. As a result of the interplay between inertial, diffusion, pinch, and source processes, cer-
tain “bell-shaped” distributions may grow explosively in time while preserving the shape of the spatial
distribution. The effect of the pinch, which requires a density inhomogeneity, is found to diminish the
effect of diffusion, or inversely to support the inertial and source processes in creating the explosion. The
results may be described in terms of elliptic integrals or, more simply, by means of expansions in the spa-
tial coordinate. An application is the temperature evolution of a burning fusion plasma.
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Evolution equations of reaction-diffusion type play an
important role in several branches of modern science.
Applications are found in different fields of physics, such
as plasma physics [1], laser and semiconductor physics,
as well as in chemistry and biology. The reaction-
diffusion equations also form an area of active research in
mathematics [2-4]. From a fundamental point of view
interesting phenomena such as localized nonlinear struc-
tures [5], and self-formation of such structures [1,2,6—8]
have attracted considerable attention, as has the violation
of Painlevé criteria [2].

For physical applications, considerations of the effects
of boundaries and simultaneous effects of diffusion,
sources, and losses are important [1,9-11]. In plasma
physics it has been known for a long time that transport
in plasmas does not always obey a simple diffusion equa-
tion, where the flux is proportional to the gradient of the
quantity studied [12,13]. The total transport problem can
in general be formulated in terms of a diffusion matrix
where the diagonal terms are the usual diffusion
coefficients and the off-diagonal elements describe the
pinch effects [13].

Pinch effects in connection with drift-wave transport
seem to have been discussed for the first time by Coppi
and Spight [14] and by Antonsen, Coppi, and Englade
[15]. More general expressions for the pinch effects
caused by reactive drift modes are given in Nordman,
Weiland, and Jarmén [16]. The tendency of equilibration
of the density and temperature scale lengths, indicated by
coefficients of order 1 for the pinch terms, remains for the
generalized model. The equilibrium effects on the scale
lengths give the system a stiffness that contributes to
profile consistency [17].

The purpose of the present investigation is to study the
reaction-diffusion equation for the evolution of tempera-
ture for explosively unstable situations, taking into ac-
count the pinch effects. For the occurrence of tempera-
ture pinch an inhomogeneity of the density is necessary.
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In the present work the density profile is assumed con-
stant in time and, for simplicity, chosen identical in form
to that of the temperature profile. Even if for practical
cases [13] a time variation of the density occurs, it is of
principal interest to consider analytically the role of a
temperature pinch caused by a time-independent ‘bell-
shaped” density inhomogeneity. The present study is
limited to one-dimensional situations, and to free cases
(no other boundary than that introduced by the fixed den-
sity profile).

The temperature evolution is assumed to be described
by the following equation, namely,
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where the terms including spatial derivatives refer to or-
dinary diffusion and pinch, respectively, and where the
last term on the right-hand side of Eq. (1) accounts for
the heating, 7 and n denoting the temperature and densi-
ty of the plasma. For a tokamak fusion plasma diffusion
caused by drift-wave turbulence for temperature gradient
driven modes [16] the temperature exponent § is given by
6=1.5. For a burning fusion plasma the exponent p may
be chosen p=3-2 and even smaller for extremely hot
plasmas, i.e., T=25 keV. The coefficients of diffusion a,
pinch &, and heat source c are all considered constant and
may all be of order 1. The exponent (3 is chosen equal to
1. Losses, e.g., radiation losses by bremsstrahlung, may
be represented by a term —eT % but are here neglected
for the high temperatures considered [1].

For explosive-type solutions the following similarity
form of the solutions is assumed, namely,

T(x,t)=(to—t (&), (2)

E=x/(to—1), (3)

and assuming, furthermore,
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n=ny-L=ne, n=22, @)
0 b0
where ny and ¢, refer to the central (maximum) values of
the corresponding variables.
It is convenient to introduce new variables of space and
time; accordingly,

(ch/aT)l/zxﬁx R (5)
cht —t . (6)

Introducing the expressions (2), (3), and (4) in Eq. (1) and
matching powers of (¢, —1¢) leads to the results

u=—1/(p—1), v=0. (7

When the pinch effect is considered, k0, it is necessary
that p =581 in order to have a solution of the form

T=(ty—t) VP Vg(x), (8)
whereas for k =0 the expression (2) is a solution with
=1(1+ud) if p#8+1 (p7#1).

For p >&+1 the solution in the absence of the pinch
effect (k =0) is dominated by the creative nonlinear heat-
ing term and corresponds to ‘“‘collapse,” whereas for
p <6+1 the diffusion process dominates and causes an
evolution towards an infinite width in a finite time, “an-
ticollapse” [7,8]. For k#0 (k >0), and with the further
assumption of equal shapes of the profiles for T and n (4),
J

the form of the pinch term in Eq. (1) assures similar be-
havior. If the exponent of the T in the pinch term was in-
creased the pinch effect became of more importance,
counteracting the diffusion (aiding the heating) and thus
leading to collapse even for p =8+ 1. An anticollapse sit-
uation would, correspondingly, occur if the exponent of T’
in the pinch term was decreased. When the relation (4) is
fulfilled the central expansion method [1] can be used to
study the corresponding coupled equations for the evolu-
tion in time of the amplitude and width of the tempera-
ture profile in these more complicated cases.

In expression (8) the time of explosion 7,
expressed by

to,=Tg " V[(2p+1)/(p—1))p~ 1
(p=8+1, p#1), (9)

=t, can be

where T, =T7(0,0).
Introducing for the ratio of the pinch and diffusion
coefficients,

K=k/a , (10)

the remaining equation becomes

(1— ¢5—i‘i d—¢P 1. (11)

P

Multipling both sides of Eq. (11) by ¢#?d¢/dx and in-
tegrating, one obtains
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In relation (12) ¢, denotes a constant of integration. One Flo,k)= 2 da
notices that ¢,=0 and ¢,=¢, give identical results. ’ 0 (1—k2sin%a)!/?
From Eq. (12) one has, for x,=0,¢, =0, _ fsimp dx (= )
- Vv 2 oo T8/
— \/2 1 K)l/Z( _1)1/2(5+2)1/2 [(l—x )(l_k * )]
=+ 2 ( p However, the integral I in (14) may be approximated in
the central domain of the plasma (¢ =< ¢,) by the expres-
¢ d¢ sion

o {2 O[1—(/dp)P1} 12 (¢ <o) . (13)

The integral in expression (13) may be evaluated in terms
of elliptic integrals for certain values of p and 8. In the
case where p =3, 8=2 one has, for example,
I= ¢ d¢
% (¢* [ 1—(d/¢o 1}

1 dx
——¢0fu ‘/1_x3

b
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where

24572
I=— [1— (/)12 . (15)
It follows from relations (13) and (15) that
x2/1P=1—(¢/¢y’ , (16)
where
8/p

r=2-k [-E“—Zﬁ—— (p —1)(5+2)

p? (p —1)(6+2)

(p#1, p7#0), A7)

or
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2
b/bo=1— ‘% (x <<L), (18)
where
L*=pl?, (19)

with /2 given by the relation (17), and where L plays the
role of a width of the profile.

The evolution of the temperature can therefore be writ-
ten

T=Ty1—t/t ) """ V[1—(x/LP+---], (20

where ¢, the time of explosion, is given by the expres-
sion (9) and the relations (17) and (19), where in (18) x is
the normalized space coordinate, according to (5).

From the form of Eq. (11) one notices that the effect of
the temperature pinch is to diminish the influence of
diffusion by the factor (1—K), or inversely to support the
inertial and source processes, represented by the first and
second terms on the right-hand side of the relation (11),
respectively. From the expressions (17) and (19) the

pinch will accordingly diminish the width of the localized
solution, which will evolve explosively with unchanged
shape.

As the temperature of a fusion plasma increases in time
the exponent p of the temperature T in the source term
will experience a degradation, which will limit the ten-
dency of explosion and eventually lead to saturation [11],
an effect which will also be supported by radiation losses
and the influence of a finite boundary [1,9,11].

An extension to coupled equations for the evolution of
the temperature and density profiles is a challenging
problem. Numerical simulation studies of related ques-
tions have recently been performed [13,18]. These nu-
merical simulations show that the dynamic coupling be-
tween temperature and density may cause saturation of
the explosive growth in temperature, followed by a rapid
decay in temperature and a simultaneous saturated explo-
sion in density. These extreme cases mark the transition
to situations where a coupling between temperature and
density may lead to oscillations, approaching equilibria
for cases where radiation losses and boundaries are con-
sidered [13,18].
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