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Density-functional method for lattice-gas problems
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We formulate a method designed for lattice-gas problems that is analogous to the density-functional
theory used to describe equilibrium properties of inhomogeneous classical liquids. After a discussion of
the difI'erences between the discrete and the continuous forms of the theory we present a quantitative test
for a one-dimensional system. Possible applications of our approach to order-disorder transitions in lat-
tice gases are pointed out.

PACS number(s): 05.50.+q

Lattice gases, i.e., ensembles of interacting particles
distributed on discrete lattices, are used as one of the
most universal tools in modeling static and dynamic
properties of different physical systems. With various in-
teractions, lattice geometries and boundary conditions,
such models were successfully used to describe order-
disorder transitions in alloys [1—3], general characteris-
tics of phase transitions [4,5], diffusion processes in solids
[6—8], and more recently even the Navier-Stokes Rows
[9]. Due to the simplicity of the underlying physical
principle and the inherent discreteness, lattice gases are
especially well suited for numerical simulations. A num-
ber of approximate methods for computing partition
functions [1—3] or diffusion constants [10]have also been
developed.

In this work we formulate the lattice analog of
density-functional theory (DFT) known for inhomogene-
ous classical liquids. Lattice sites are allowed to be occu-
pied by at most one particle. In this way a local hard-
core repulsion is taken into account from the outset.
Thus, apart from the discreteness, the main difference to
conventional density-functional theory for continuous
classical systems lies in the fact that average occupation
numbers are based on Fermi statistics. Following the
method presented, e.g. , by Evans [11]we describe the sys-
tem by the grand potential depending on the average oc-
cupation numbers, and define a hierarchy of many-
particle direct correlation functions. With the help of the
lattice analog of the Ornstein-Zernike equation (cf. also
[12]) and discrete forms of the closure relation between
the direct correlation function and the interactions poten-
tial we present an approximate scheme to calculate aver-
age occupation numbers for inhomogeneous lattice gases.
As a working example we apply our method to a one-
dimensional system of interacting particles subject to a
site-dependent external potential. Using a closure rela-
tion given by the discrete form of the mean spherical ap-

I

proximation [13] we obtain results which agree very well
with those computed by the exact transfer-matrix
method.

Let us consider a regular lattice of sites l, which are oc-
cupied by at most one particle. We assume the following
lattice-gas Hamiltonian:

H= —,
' g V(l —I')ntnt + g @tnt —p gnt,

1, 1' 1 I

which is minimized by the equilibrium density ( nt )0,

BQ, =0.
a(n ) t&., ),

(3)

Its minimum value is equal to the grand potential 0 for
the system [15],

The free energy F( [ ( nt ) I ) can be written as a sum of the
ideal-gas free energy F;d and the excess part F„, which
contains all corrections due to the interaction

F=F,,+F„, . (5)

In the present context,

where nl =0 or 1. The first part describes a pair interac-
tion, eI denotes the site-dependent external potential, and

p the chemical potential. It is easily shown that
Mermin's theorem [14] also holds for lattice gases. In
that case it states the uniqueness of the set of site energies
el, which result in a given set of mean occupation num-
bers (nt ). That enables us to introduce the function [11]

0 ([("t)] )= g (nt )~l+F([(nt ) ] ) —p

Fd = —TSd =kT g [(nt )ln(nt ) +(1—(nt ) )ln(1 —(nt ) )],
l

where 5;d represents the ideal-gas entropy and T is the temperature.

(6)

1993 The American Physical Society



47 BRIEF REPORTS 719

As usual, we introduce a hierarchy of derivatives of the
excess free energy, with the first two members

BF,„,—p 8 ni)

Bc,(I, {(n,)})
=c2(l, I', {(ni ) } ) .

(7)

(8)

The first member of the hierarchy ci(l, {(ni ) } ) is the
effective one-body potential and cz(l, I', {( ni ) } ) the
direct correlation function. Combining Eqs. (3)—(7) we
get a self-consistency condition for the mean occupation
numbers,

1
&n, &=

I+exp[P(ei —p) —c, (l, {(ni ) })]
(9)

a( —p
a nl

On the other hand it is easy to show that

a(n, ).=6, , (n, &(1—(n, &)i3—

(10)

+(1—5, , )[g(l, l') —1](n, )(n, ),

In contrast to the theory of continuous liquids [11] we
obtain here an expression in the form of the Fermi distri-
bution, which is a natural consequence of the assumption
that no more than one particle can occupy a site.

If c2(l, I', {(ni ) } ) were known, one could integrate Eq.
(8) to obtain c, ( I, {( ni ) } ) and then calculate ( ni ) from
Eq. (9). Following the standard procedure [11] we first
find the exact relation between c2(l, l', {(ni ) } ) and the
pair-correlation function. Solving Eq. (9) for
c, (I, {(ni ) } ) and differentiating with respect to ( ni. ) we
obtain

teraction (the so-called closure relation), which will com-
plete our set of equations for the direct correlation func-
tion. This is easily done for homogeneous systems with
average occupation n. As in the theory of homogeneous
liquids there are several possibilities. The simplest ap-
proach is the mean spherical approximation (MSA):

cMs~(I I )= PV(I I ) ~I I
~

R

gMs&(I —I')=0, ~I
—I'~ (R

(15)

(16)

where R denotes the hard-core radius or the radius of an
effective hard core [16]. Another possibility would be the
Percus-Yevick approximation (PY) whose discrete form
has been discussed for example in relationship with the
Ising model [12]:

cpv(l —I') =g(l —I')(1 —e~ " ' ') . (17)

c, (l, {(ni ) } ) =c,(n )+ g c2(l —I', n )((ni ) n), —(18)

where we have linearized c, ( I, {( n i ) } ) with respect to
(ni ) n C—lea. rly, the expression (18) could be improved
in various ways [17]. For the present purpose, however,
we confine ourselves to the linear approximation, which
allows us to compute the mean occupation (ni ) in a
rather straightforward way.

Let us now apply our formalism to an exactly solvable
problem in order to test the quality of the approximations
made. As our example we take a one-dimensional model
with two inequivalent sites, described by

Combining one of the above closure relations with Eq.
(13) we can calculate cz(I —I', n ) as a function of the
mean density n, and Eq. (8) in turn determines
c, (l, n ) =c, (n ).

For inhomogeneous systems, instead of integrating Eq.
(8), we introduce a simple approximation,

where the pair-correlation function g(l, I') is defined by

&n, n, .)i&n, &&n, &, IW, I',
g(l, l')= .

0, l=l' .

In deriving Eq. (11) we used the identity ni =ni Com-.
bining Eqs. (10) and (11) we obtain the lattice-gas analog
of the Ornstein-Zernike equation:

H = y Vn/ni+ i+ y n[e/ p y n/
I 1

where

l even,

e» l odd,

(19)

(20)

g(l, l') —1=C(l, l')+ g C(I, l")(n i)[g( "I,I') —1],

(13)

with

CIl, I') =c~(l, I')—,'

)1 —&ni
(14)

where, for simplicity, we dropped the {( ni ) } dependence
in our notation. Note that the kernal C(I, l') in Eq. (13)
differs from Eq. (8) by a local term, which ultimately is a
consequence of the discreteness of the underlying lattice
together with the constraint n&

= n&.

As already mentioned, to find cz(I, I', {( ni, ) } ) we need
a relation between this quantity and the two-body in-

and V) 0. In particular we are interested in the mean
occupation number ( n, ) of sites with energy e, as a
function of the energy difference he=@&—e2 in the case
of a half-filled lattice (n =0.5). Using the simplest
MSA-closure relation Eq. (15) with R =1, we calculate
the direct correlation function and evaluate Eq. (18). Fi-
nally, Eq. (9) is solved for (ni ). Let us compare our re-
sults with exact results obtained by evaluating the four-
dimensional transfer matrix which corresponds to the
Hamiltonian equation (19). In Fig. 1 we have plotted
(n i ) as a function of b, e at a given temperature corre-
sponding to PV= 1.5. The noninteracting case as derived
from the Fermi function is also shown for comparison.
Generally, the repulsive interaction enhances occupation
of the lower-energy sites. As seen in the figure, the devia-
tion from (ideal) Fermi statistics due to interparticle
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FIG. 1. Mean occupation (n, ) of sites with energy e, as a
function of the energy difference he= e&

—e2. The DFT (dashed
line), exact results (dotted line) corresponding to the interaction
strength PV=1.5, and, as a reference, the noninteracting case
(solid line) are compared with each other.

FJG. 2. Mean occupation (n, ) of sites with energy e& as a

function of energy difference Ae=e& —e2 Exact (transfer ma

trix) results (dotted lines) are compared with DFT results

(dashed lines) for three different temperatures.

correlations is well accounted for by the DFT with MSA
closure. Our approximation, however, slightly underesti-
mates this effect, although the difference between the ap-
proximate and the exact solution is small in comparison
with the full effect of interaction. This discrepancy de-
creases with growing temperature, see Fig. 2. But even at
the rather low temperature PV=2. 5 the error does not
exceed 5% for the least favorable energy difference b,e
displayed in the figure.

In summary we adapted the density-functional theory
to lattice-gas systems. Our formalism, when applied to
the one-dimensional system of interacting particles, gives
results which are quantitatively very similar to the exact

solution. This encourages us to apply our method to
more realistic cases in three dimensions. Of particular in-
terest are order-disorder transitions in three-dimensional
lattice gases, which can be treated within the present
scheme in analogy to the freezing theory of simple liquids
based on density functionals [18]. A comparison of our
method with Monte Carlo simulations in cases of an
order-disorder phase transition and two-phase coex-
istence will be the subject of forthcoming work.
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