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Method of controlling chaos in laser equations
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A method of controlling chaotic to laminar Aows in the Lorenz equations using fixed points dictated
by minimizing the Lyapunov functional was proposed by Singer, Wang, and Bau [Phys. Rev. Lett. 66,
1123 (1991)]. Using different fixed points, we find that the solutions in a chaotic regime can also be
periodic. Since the laser equations are isomorphic to the Lorenz equations we use this method to control
chaos when the laser is operated over the pump threshold. Furthermore, by solving the laser equations
with an occasional proportional feedback mechanism, we recover the essential laser controlling features
experimentally discovered by Roy, Murphy, Jr., Maier, Gills, and Hunt [Phys. Rev. Lett. 68, 1259
(1992)].

PACS number(s): 05.45.+b

Since the development of the control algorithm of
chaos proposed by Ott, Csrebogi, and Yorke [1,2], several
experiments have been performed where the devices are
first driven into chaotic regimes, and then, using ap-
propriate dynamical control techniques, subsequentially
restored to order. For information relevant to this Brief
Report, we will discuss only the experiment on convec-
tive chaos [3] and the controlling of chaos in lasers [4].

For the first experiment [3], Singer, Wang, and Bau
heated a vertical circular tube from the bottom half-
circle. At high heating wattage, the temperature
difference between 9 o' clock and 3 o'clock ( T9 —T3) was
found to be chaotic in time. Then, with the appropriate
time-dependent heating control, they successfully
brought the system back to a "laminar" regime. This
success was in agreement with the earlier finding that the
solutions of the Lorenz equations provide a good resem-
blence to the observed fiow in the loop [5].

In the second experiment we consider here, Roy, et al.
[4] used a diode-laser-pumped Nd-doped yttrium alumi-
num garnet (YAG) system that contains a potassium ti-
tanyl phosphate (KTP) doubling crystal in h cavity. For
a given orientation between the YAG and KTP crystals,
and when the laser is pumped to about three times the
threshold, chaos was observed. Using a technique of oc-
casional proportional feedback (OPF), they were able to
control chaos and the intensity became periodic again,
even at the high pump rate.

In the following, we discuss the controlling method of
the convective system [3]. In addition to the classical
Lorenz equations, the authors [6,7] control the heating
rate with the controlling term esgn(z —zo), where e is
the control constant and z is the temperature difference
between 12 o' clock and 6 o' clock ( T&z

—T6).
The Lorenz equations with this control become

dx
dt

=Pr(y —x),

dt
xz

dz=
dt

= —[R +esgn(z —zo)] —z +xy,

where Pr is the Prandtl number and R is the Rayleigh
number. The variables x, y, and z correspond, respective-
ly, to the average velocity in the loop, T3 —T9, and

Tip T6
To repeat this calculation we use a stiff' differential

solver (LSQDE, performed on a CRAY-YMP supercom-
puter. The parameters used in this calculation are
Pr=10 and R =28 (b =1 in this case). The time step b, t
is 0.01. The chaotic behavior of x (t) for the case @=0 is
shown in Fig. 1(a). In all our calculations, we use 2' in-
tegration time steps, except for Fig. 3(c). The corre-
sponding power spectrum is shown in Fig. 1(b). The
phase plot of y(t) vs x (t) in Fig. 1(c) shows a typical
Lorenz attractor.

With e =2.069 999 99 and zo = —1, the function x ( t )

changes from chaos to laminar [Fig. 2(a)]. This value is a
consequence of Lyapunov functional analysis of the
Lorenz equations [3].

Interesting results occur when zo = + 1, a new fixed
point. We find a periodic behavior of x (t) with the con-
trol parameter e=2. 6 [Fig. 2(b)]. In this case, the aver-
age value of x„=—5. Furthermore, when zo =+1 and
@=2.999999999, we also find a periodic solution with
x,„=+ 5 [Fig. 2(c)]. The solution diverges at e= 3. Be-
tween e=O and @=2.999999999 there are windows of
periodic x(t) sandwiched between chaotic states. With
this new control mechanism, we are able to force the new
attractor to reside within the "eyes" of the Lorenz attrac-
tor shown in Fig. 1(c) ( x,„~ =5). Thus the periodicity of
the types shown in Figs. 2(b) and 2(c) is the consequence
of this new phenomenon.

In our study, controlling chaos in the Lorenz equations
in a sense is analogous to entering the parameter space of
a new map, with the controlling term, for the Lorenz
equations. The control parameter consists of a constant
R and a feedback parameter e sgn(z —zo ).

The laser experiment [4] motivates us to interpret our
new findings of periodicity of the chaotic regime of the
Lorenz equations with the periodicity of the intensity of a
laser. It was pointed out in 1975 by Haken [8] that the
Lorenz equations and the laser equations are mathemati-
cally isomorphic. In the laser equations, we have the field
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strength E with decay time ~, the polarization P with de-
cay time y, and the atomic inversion D with decay time
y&1. In properly chosen units and with our new control
term, they become

=Ir(I' E—),
dt

dP
dt

= —yED —yP,

dD = yii [(A+ 1 ) + e sgn(D D—o ) j

—XaD+XaEP .

With the proper identification of the parameters, the two
equations can be shown to be equivalent. The inversion
D =g„cr„in our paper needs some elaboration. Here o.„
is the difference of the occupational numbers N& and N2
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FIG. 1. (a) x (t) of the Lorenz equations with Pr = 10, R =28,

(b =1). In all our studies, the time t =0.01n, where n is the in-
tegration time step. (b) The power spectrum P(co) of the func-
tion x(t) of (a). (c) Plot of y(t) vs x(t) of (a), showing a typical
Lorenz attractor.
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FIG. 2. (a) x ( t) of Eq. (1) with control zo = —1 and

@=2.06999999. (b) x(t) of Eq. (1) with control zo=+1 and
e =2.60. (c) x ( t) of Eq. (1) with control zo = + 1 and
a=2. 999 999 999 9.
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of the lower and upper atomic ene gyner levels of the atom
, n, „=N —N . This definition of o.„is chosen, namely, o.„=,— 2.

h E . (1). Furthermore, with the fol-to be consistent wit q.
lowing identification,

Pr
t —+t

. with z =+1, should be used as a controlling method
indows, the

values of x (t) are either +5 or —5. The intensi-average va ues o x
are e ual toties in t ese w'th indows are positive since they q

the square of x ( t) or E ( t). The parameter

E —+(R —1) ' x,
P~(R —1) '~ y,
D~z,
A=R —1,
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h the Lorenz equations has been ex y
I,9—121.

For simplicity, we have used the Lorenz equations in

method using the parameter e sgn,(z —z ) in our stu y,
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FIG. 3. (a) x(t) of Eq. {5) with control A,, =8.1512 applied
every 18 integration time steps for a durat oration of 15 time steps.
(b) x{t)of Eq. (5) with control A,, =8.1512 applied every 50 in-

of 29 time steps.tegration time steps for a durat6ion o

FIG. 4. (a) x(t) of Eq. (5) modified with control A,x for
X=1.3 applied every 30 integration time pme ste s for a duration of

l Ax fore s. {b) x(t) of Eq. (5) modified with control A,x for

of 24 time steps. (c) The power spectrum P(co) of the function
x(t) of (b).
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(4)

is the effective pump term of the laser, where D; is the in-
itial inversion and D,&, is the threshold inversion where
instabilities start to occur. The results of our calculations
for the Lorenz equations can be directly applied to the
laser equations with the transformations in Eqs. (3) and
(4). The control term, in this case, is Esgn(D DD—). The
inversion D, relative to a chosen Do=+1, is used to
determine the sign of the control term.

In the next section, we provide a control mechanism
where the proportional feedback is different than that
used in Eq. (1). This new feedback is inlluenced by the
experimental work of Roy et al. [4]. Here, the intensity
of the output of the laser is set in coincidence with a
given periodic sequencer (OPF) and the resulting output
of the intensity and the gate is used to add to the pump
term. As a specific case, we use the proportional feed-
back scheme discussed below, and Eq. (1) becomes

dx
dt

=Pr(y —x),

dp
dt

xz (5)

dz
dt

N

R +Ax g m(t n~) ——z+xy,

where A.x is the proportional control term and the control
is applied with frequency r. In this study, m.(u) is a m-

function defined as the difference of two Heaviside func-
tions, m(u) =H(u —.a) H(b —u), —where b —a is the time
width of the control signal.

In the following we discuss the results of solving Eq. (5)
with various controlling parameters, frequencies, and
widths. The value of A. is set to 8.1512 and the propor-
tional feedback is applied occasionally every 18 integra-
tion time steps, (~= 186,t), for a duration of 15 time steps
(b —a =156,t). The corresponding function x(t) is
shown in Fig. 3(a). When the integration time is doubled
to 2', the function x (t) changes somewhat but the fast

frequency is still present. With much longer integration
the function x (t) settles to a fixed point.

With the same A,, =8.1512, the feedback is applied
every 50 integration time steps for a duration of 29 time
steps. The result is shown in Fig. 3(b). The value of
A,, =8.1512 is found by solving Eq. (5); it is the value
where we found that it takes the shortest number of itera-
tion time steps to achieve periodicity. The periodicity of
this plot sustains indefinitely. For any duration less than
20 time steps, the monochromatic nature of x (t) is lost.

We change the control term to be proportional to kx
to mimic the fact that the intensity is the square of the E
field. With X, =1.3 applied every 30 integration time
steps for a duration of 24 time steps the signal is chaotic
[Fig. 4(a)]. When k, = —1.0 is applied every 30 integra-
tion time steps for a duration of 24 time steps, the signal
becomes periodic again [Fig. 4(b)] with the corresponding
power spectrum shown in Fig. 4(c).

In general, with the various control methods discussed
above, we can recover either fixed-point or periodic solu-
tions of the Lorenz laser equations. The correct equa-
tions that describe the real laser system of Ref. [4] can be
more complex than the Lorenz laser equations, but our
study shows that the general features of the control of
chaos in lasers can be modeled with the latter with some
success.

The methods of controlling chaos have been rapidly
developed [13—16]. In this Brief Report, we find that a
laser operated at a chaotic mode can be brought back to a
periodic mode with the various control mechanisms dis-
cussed above.
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