
PHYSICAL REVIEW E VOLUME 47, NUMBER 1 JANUARY 1993

Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media

Wei Ren
Department ofApplied Mathematics, Uniuersity ofElectronic Science and Technology of China,

Chengdu, Sichuan 610054, Peoples Republic of China
(Received 26 June 1992)

An electromagnetic wave theory of bounded homogeneous anisotropic media is developed by using
the method of angular spectrum expansion. The series and integral representations of the circular cylin-
drical wave functions and the spherical wave functions of the first, second, third, and fourth kind for
homogeneous anisotropic media are obtained. Each coefficient of the Fourier series of a circular cylin-
drical wave function is a one-dimensional finite range of integration and every coefficient of the
spherical-harmonic-function series is a two-dimensional finite range of integration. The addition
theorem of wave functions for anisotropic media can be derived from that of wave functions for isotropic
media. Weyl's method of deriving the scalar Green's function in isotropic media is generalized to the
study of the dyadic Green's function in anisotropic media. The cold homogeneous magnetoplasma is
considered as an illustrative example. For a cold homogeneous magnetoplasma, simplified series repre-
sentations of wave functions and dyadic Green s functions are given. The distributional singular behav-
ior of the dyadic Green's functions in the source region is investigated and taken into account by solving
the static problem and the boundary integral equation is derived.

PACS number(s): 42.25.8s, 03.40.Kf, 52.35.Hr

I. INTRODUCTION

The spherical wave functions of homogeneous isotropic
media were obtained by Mie as early as 1908 [1],and the
dyadic Green's functions of homogeneous anisotropic
media at large distances for the source were also worked
out by Lighthill more than 30 years ago [2]. However, so
far there are no corresponding eigenfunctions for aniso-
tropic media [3—6] and no general methods for the com-
mon representations of the dyadic Green's functions ex-
cept in the rectangular coordinate system and in the
Fourier-transform domain [7].

Recently, there has been a growing interest in the
theory of bounded homogeneous anisotropic media
[8—ll]. Although the electromagnetic wave theory of
unbounded homogeneous anisotropic media is well
known [12—14], it can only be numerically treated by the
method of finite element, the method of moment, etc.
[15—17] in the bounded cases.

The eigenfunctions are very important for the elec-
tromagnetic problems in both isotropic and anisotropic
media, because the three-dimensional moment methods
[17], the coupled-dipole method [18], and the integral-
equation technique [3] are all difficult for the computa-
tion in the resonance region. Spherical wave functions of
the first kind for anisotropic media are useful in designing
ferrite circulators and resonators [19,6], studying modu-
lation incident light beams [3], and analyzing characteris-
tics of dense random media with moderate-size particles
[20]. The circular cylindrical wave functions of the first
kind for anisotropic media are also useful in studying the
scattering and guiding of waves by anisotropic cylinders
[15,16,21]. In order to apply the efficient recursive algo-
rithm developed by Chew to the electromagnetic scatter-
ing by many scatterers and multilayered scatterers of an-

isotropic media and apply the multiple-scattering theory
to random media, vector wave functions of all kinds and
their addition theorems are required [19,22]. In fact, in a
series of papers [23,24], Chew and Wang showed that the
eigenfunctions are helpful for the problems involving
both homogeneous and inhomogeneous media. Their ex-
cellent works inspire the author to develop the theory of
wave functions for anisotropic media.

The point-source radiation in anisotropic media is a
subject in plasma physics, ionosphere physics, and ma-
terials science [25,12]. Their far-region fields can be cal-
culated by the saddle-point method, which has been used
to analyze many nonlinear phenomena [12]. The dyadic
Green's functions in the form of separation of variables
are required to study Raman and Auorescent scattering
by active molecules embedded in a particle [26,27] and to
establish T-matrix formulation from Huygens s principle
and extinction theorem for homogeneous anisotropic
media [22,28]. The general representation of dyadic
Green's functions is also required to set up integral equa-
tions [29] and study the scattering by weakly nonlinear
target [30,31]. For the cold magnetoplasma discussed in
this paper, the general representations of dyadic Green's
functions in the rectangular coordinate system exist [25],
which is very useful for the far fields and the problems in
planar-layered media. But there are no counterparts in
circular cylindrical and spherical coordinate systems,
which are required for the problems in cylindrically and
spherically layered media.

The immediate motivation of this work was the desire
to obtain the T matrix for a ferrite sphere, which is fun-
damental in material science [19] and develop the
multiple-scattering theory in anisotropic background
media which is basic in microwave remote sensing [10].
It would take far too much space to describe here all of
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the major advances in the subject that we are treating and
so we will cite here mainly those papers that have had a
direct impact on this work and a few others that deal
with closely related topics.

Of greatest importance to this work is the series of pa-
pers by Uzunoglu and co-workers [32,3] and the series of
papers by Monzon and Damaskos [33,34]. In the early
work by Uzunoglu, Cottis, and Fikioris [32], they treated
the gyroelectric-cylinder problem analytically. The an-
isotropy axis of the gyrotropic medium was assumed to
coincide with the cylinder axis. Soon thereafter, Monzon
and Damaskos treated the scattering by an anisotropic
circular cylinder numerically and stated that because of
the complex form of the series solution, it results in no
substantial improvement in the formulation. Since then,
all the authors have treated this kind of problem numeri-
cally in conjunction with the method of angular spectrum
expansion. The numerical results and comparisons
presented in the papers by the above authors were also
verified by the other authors [35—37]. In this paper, we
shall use the same angular spectrum representations
proved by the above papers as the starting point of our
theory.

The following facts are also of great importance to this
work. First, it is well known that in the static limit the
scattering properties of an anisotropic sphere are similar
to that of an isotropic ellipsoid [38,39]. Secondly, a har-
monic function in the spheroidal coordinate system is a
series of that in the spherical coordinate system [40].
Thirdly, a vector spheroidal wave function can be ex-
panded in terms of a series of vector spherical wave func-
tions [41] and a vector elliptic cylindrical wave function
can be expanded in terms of a series of vector circular cy-
lindrical wave functions [42]. Therefore, instead of
searching the finite-term representation of the wave func-
tions for an anisotropic medium as Monzon and
Damaskos did, we study the possibility of series represen-
tations of the wave functions for an anisotropic medium.
This approach leads to the more obvious answer to the
problem, which has not been solved by many mathemati-
cians, physicists, and engineers for a long time [4—6,20].

It is observed that the series representation of elliptical
cylindrical wave functions and spheroidal wave functions
of the second, third, and fourth kind for an isotropic
medium can be obtained by replacing the Bessel functions
of first kind in the series representation of elliptical cylin-
drical wave functions and spheroidal wave functions of
first kind by the Bessel functions of second, third, and
fourth kind [41,42]. This implies that if a series of Bessel
functions of first kind is a solution of a differential equa-
tion, when the Bessel functions of first kind are replaced
by the Bessel functions of second, third, and fourth kind,
the series also is a solution to the problem. This is the
key method of this paper, which solves the open problem
about the fields in an annular region presented by Mon-
zon and Damaskos [33,34].

The organization of this paper is as follows. In Sec. II
we solve the vector wave equation in the circular cylin-
drical coordinate system and give the Fourier series rep-
resentations, the integral representations, and the addi-
tion theorems of vector wave functions of first, second,

5&2 0

0

and scalar magnetic permeability p =pp, where ep and pp
are the free-space permittivity and permeability, respec-
tively, and e„e2,e3 are constants. The vector wave equa-
tion, in the case of e given from (1), is written in the form

V X V XE(r)—koF E(r) =0, (2)

where ko=co(capo)'~ is the free-space wave number.
The solution of the wave equation (2) can be examined in
the Fourier domain by the transformation

E(r)= f dk, f dk f k dyke'"'E(k) . (3)

Substituting (3) into (2) yields

f dk f dk f k dyk[k'I —kk —k02F ]

XE(k)e'"'=0, (4)

where I=xx+yy+zz is the unit dyadic, k =k.k, and
k =k,z+k, k =k„x+k y, p =xx+yy.

For nontrivial solution of E(k), the determinant of the
matrix in the square brackets of Eq. (4) operating on E(k)
must be equal to zero. Hence [32]

e,k +[(k, —koe, )(e, +e3)+koe~]k
+[(k, —koe, )+koe2]e3=0 .

The roots of (5) are designated in the following as
k =k, (i =1,2, 3,4), and the corresponding eigenvectors

third, and fourth kind for homogeneous anisotropic
media. We follow a similar procedure in the spherical
coordinate system in Sec. III. We turn in Sec. IV to the
evaluation of the dyadic Green's functions due to the
solenoidal part of the current J in both spherical and cir-
cular cylindrical coordinate systems by means of the
method of angular spectrum expansion. In Sec. V we
derive the dyadic Green's function due to the lamellar
part of the current J through the solution of the corre-
sponding static problem. We also discuss the singularity
in the source region and derive the boundary integral
equation for the homogeneous anisotropic media. Sec-
tion VI concludes the work with a discussion of the relat-
ed problem.

In the following analysis and exp( icot—) time depen-
dence is assumed and is suppressed throughout.

II. CYLINDRICAL WAVE FUNCTIONS
IN ANISOTROPIC MEDIA

In this section, the vector wave functions in the circu-
lar cylindrical coordinate system for a homogeneous an-
isotropic medium are presented. The proposed method is
based on the angular spectrum representations of the field
in a simply connected domain of an anisotropic medium.
The solution of wave functions is obtained by a Fourier
transformation technique in conjunction with the concept
of characteristic waves.

Assume a magnetoplasma characterized by a dielectric
tensor in a rectangular coordinate system
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M,- are obtained by letting k =k,- in the following equations.

E(k„k, ipk ) =E, ( k„k, ipk ) [ [ A ( k„k )cosy k
B—( k„k )sing k ]x+ [ A ( k„k )sinipk +B ( k„k )cos' k ]y+ z ] /D

(6)
=E,(kz, kp, i'�)M(kz, kp, q&k ),

g(k„k )=k, k (k, +k —koe, ), B(k„k )=ik, k koez,

D (k2 k2 e)(k2+k2 k2e ) k4e2 (8)

Returning to Eq. (3), we get

4
E(r)= f e ' f dip„g k, M, ( k„k;, pii)

oo 0 i =1

2

E(r)= f A(k, )e ' dk, f dq&k g M (k„k,yi, )
GO 0 q=l

X exp[ik .p]

Xexp[ik; r]Z, (k;,yk) where

x A(k, )dk, . (9)
E, = A ( k, )Cq, ( ipk ) . (12)

The special form of (11) suggests the use of the well-
known expansions [33,42]

Note that the integrand function in Eq. (9) is periodic
with respect to yk and that

+ Oo

e ~' = g i™J(k p)e "e™q', (13)

k3= —k, , k4= —k2. (10) C, = + oo

a„,e (14)

It is easy to end up with the expression [32] We finish with the following expression:

+ ik + Qo + Qo

E(r)= g f A(k)e ' dk, g a„g e' q' f i™J(k p)e "M (k„k,ipk)dip&
q =1 n = oo m — Qo

0

2 +oo + .
k +

a„ f A(k )dk e ' g e™~f i™J(kzqp)e "Mq(k„k~q, yk)dipk
q=1 n= —oo m = —oo

2 +co + oo

a„ f A(k, )dk, E„(k„p,&p, z),
q=1 n= —oo

(15)

+ Go

E„(k„p,(p, z)= g e' q'E„(k„p)e

E„,(k„p)= f i™J(k p)e "M, (k„k „rp„)drpk .
0

(17)

E'„'(k„p,y, z ) = f

It is noted that E„(k„p,cp, z ) is one of the eigenfunctions of vector wave equations (2). It is also noted that after the
replacement of Bessel functions of the first kind in Eq. (16) by Bessel functions of the other kind, E„(k„p,y, z ) is one of
the eigenfunctions of Eq. (2) too. Therefore we may use Eqs. (15)—(17) as the general definition of cylindrical wave
functions of various kinds for an anisotropic medium if J (k p) is replaced by the Bessel functions of the correspond-
ing kind.

Equation (17) can also be expanded into a form resembling the vector wave solution. For this purpose, introducing
the vector wave functions L, M, N discussed in Tai s textbook [43] [see also Eq. (22) and Appendix A], after some
straightforward algebra we obtain

a„mq(i' )M"(kzq, r)+ f3„~q(ipk )N"(kzq, r)+y„q(ipk )L"(k~q, r) dipk

(i =1,2, 3,4), (18)
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where

~ m i (n —m)yk
m

=i e

k,o;„= [(A,—A +, )M
q2

pq

+(A, + A +))Myq]

+M, 2

(19a)

(19b)

aZ„"'(k„p)„
k '

Bp

nk,'
Z„"(kf,qp)q

p

+k,',Z„"(k„p)z

&nmq
k,

[(A +,+A, )M q2
pq

+(A, —A +))Myq], (19c)
L'„'(r, k„kpq ) =—

X exp[ j(n y+ k,z )],
az"'(k )n pqp P + n Z(j)(k )~

ap
n pqp p

(22b)

y„=[ik (M„cospk +M sinpk ) +M,q ik, ] A

(19d)
+ ik, Z„"(k p)z exp[i(n y+ k,z )],

The integral representations of circular cylindrical
wave functions of various kinds for anisotropic media are
as follows:

E'„'(k„p,y, z)= f M (k„k,tel, )e "e " dyke

(i =1,2, 3,4), (20)

A~ = —2k, k Oe2/D,

A~= —2k (k —koe, )/D

+2[1+k (kq koe))/—D]/kq,
A~= —2ik, [1+k (kq —koe, )/D]lkq,

(22c)

(22d)

(22e)

(22f)
where c,. is the complex integration path of the circular
cylindrical wave functions of ith kind for isotropic media
[42]. From the formalism of this section, it is easy to see
that Eq. (22) is valid for i =1. Substituting the integral
representations of the circular cylindrical wave function
[42] into Eq. (18), exchanging the order of integration,
comparing the series of wave functions of second, third,
and fourth kind with that of the first kind, and recalling
the integral representation of the wave function of the
first kind, we end the proof.

The addition theorems of circular cylindrical wave
functions for anisotropic media can be directly obtained
by using the counterpart of isotropic media [22,42] in Eq.
(18) [41].

The above method is easily adapted to solve the wave
equation for the more general anisotropic media. By in-
specting Sec. 7.2 of Stratton's treatise [42], it is easy to
see that our circular cylindrical wave-function theory for
anisotropic media is an extension of that for isotropic
media.

For the magnetoplasma, after some straightforward
algebra, by grouping properly the terms involved in the
integration and by introducing the L, M, N cylindrical
vector wave functions [32], we end up with the following
expressions:

E'„'(k„p,y, z)=qri "[AM(k„k )M'„'(r, k„k )

+ A~(k„k )N'„'(r, k„k )

+ AL (k„k )L'„'(r, k„k )],
where

Bz" k

. p p

X exp[i(n y+ k,z )],

(k2 +k2)1/2
q pq z (22g)

Z"(k p)= '

J(k p), i =1
Yn (k qp), i =2

J„(k p)+iY„(k p)=H„"'(k p),
J (k p) iY (k p) H (k qp)

l =3
i=4

(22h)

III. SPHERICAL WAVE FUNCTIONS
IN ANISOTROPIC MEDIA

Following a procedure similar to that of Sec. II, we
find the eigenwave angular spectrum expansions of elec-
tromagnetic fields inside a spherical region of homogene-
ous anisotropic media as follows [3,12—14]:

E(r)= g f dyk f dOkk„sinOkC„(k)
n=1

3 ik„-r
X g E „(Ok,yk )ej e.

j=1

(23)

is the nth-order Bessel function of the ith kind. D is
given in Eq. (8).

It is well known that in a gyroelectric medium, the
electromagnetic fields can be derived by two scalar wave
functions [13]. In this way we get the same results. This
is a theoretical verification of the method of plane-wave
angular spectrum.
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H(r)= g f dq„ f dB„k„sinBI,C„(k)
n=i 0

3 ik„r
X g HJ„(8i„yi, )e& e

j=i

+I
C„(k)= g g b„, PI (cosB& )e ™~k,

1=0m= —I
(25)

where e. is the unit vector in the jth direction; C„(k) is
the amplitude function to be determined; k„ the wave
number satisfying the dispersion equation, and the quan-
tities in the square brackets are the electric field and mag-
netic field of the nth eigenwave. For the homogeneous
magnetoplasma discussed in this paper, k„and E„
are determined by Eqs. (5)—(8) with k =k cos81„
k, =k sinOI, . The theoretical analysis and the numerical
results in Refs. [3,32—37] give the proofs of Eqs. (23) and
(24).

A standard way of expanding the unknown angular
spectrum amplitude is to use the series of orthogonal
complete harmonic functions on a spherical surface [42]:

where Pl (cosB) is the Legendre function. The particular
form of (23) and (24) suggests the use of identity

+'
'4l'm'(Bk 0'k j)i (k r )PI' (cosB)e

I'=0 m'= —I'

(26)

Ai.~ (Bi,pl, )=i (2l'+1), , (Pi (c os Bl)e
(l' —m')! —lm'gg

l'+m'!

As shown in Appendix A we have

3 oo

g EJ„(BI„yI,)eje
+ I'

a«. .Mi (k„r )
(1)

I'=0 m'= —I'

+P«,N', ,".,(k„r )

+y„i. ,L„i. .(k„r),(1) (27)

where L'",M'", N") are vector spherical wave functions
of the first kind. L,M, N and a, P, y are given in Appen-
dix A. Substituting Eqs. (25) and (27) into Eq. (23), we
find that

2 a) + I

E(r)= g g g &„, E„, (r),
n =11=0m= —I

E„& (r)= f f k„sinBj, dB&dy&PP (cosBj, )e™~k

oo + I'

[anr M', ".(k„r)+P„, N', .".(k„r)+y„, L',",(k„r)] .
I'=0 m'= —I'

(28)

(29)

Equation (29) is the definition of spherical wave functions
of the first kind and the solution to the Maxwell equa-
tions. Because spherical Bessel functions and spherical
Hankel functions satisfy the same equation and the same
recursive relations, when the spherical Bessel functions
are replaced by spherical Bessel functions of the other
kinds (second, third, and fourth), Eq. (29) also satisfies the
Maxwell equations. Thus we have the general definitions
of spherical wave functions for anisotropic media as fol-
lows:

E'„'I' (r)= f f k„sinBI, dB&dpi, PP(cosBi )e~~
0 0

X g a„&, M'll' (k„r)
I'm '

+13« ~ Ni'I (k.r)+y« ~ Li'~ (k.r)

(i =1,2, 3,4), (30)

where L",M",N" are vector spherical wave functions
of ith kind; L",M", N" and a, P, y are given in Appen-
dix A.

From (30), it is evident that spherical eigenwave func-
tions of all kinds for anisotropic media are accordingly
determined when the media parameters are given.

We can separate the function of (B,y) and the func-

!

tions of r in Eq. (30) using three vector spherical harmon-
ic functions [20]:

3

E'„'I'm.(r)= g g V~i~(B,q))Z„'~im(k„r),
l, m j=1

(31)

where Z„".I (k„r ) is a double-integral representation in a
finite domain [0,~] X [0,2n]. Z„'J& (k„r) and VJI (B,y)
are given in Appendix B.

From the orthogonality of Vjl on a spherical surface,
we treat the scattering of an anisotropic sphere by plane
waves strictly by solving the linear equations whose
coefficient of each is a double integral only. But in the
literature [3], the linear equations are derived from
Galerkin's method whose coefficient of each is a double
integral involved in an infinite double series. The algo-
rithmic complexity of Ref. [3] is reduced considerably.
For a homogeneous magnetoplasma, our method is even
more efficient because the integral about yI, can be car-
ried out analytically as shown in Appendix B.

We can directly obtain the addition theorem of spheri-
cal wave functions for homogeneous anisotropic media by
using that for homogeneous isotropic media in (30) [41].

From the derivation of this section, it is obvious that
the integral representation of spherical wave functions of
first kind for homogeneous anisotropic media is
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E'„&' (r)= f f P) (cos8k)e™~k IV. DYADIC GREEN'S FUNCTIONS
IN ANISOTROPIC MEDIA

3

X g E„(8„,yk)e e " k„
j=1

XsinOgdO~dyp . (32)

Substituting the integral representations of spherical
wave functions [44],

h&'"(k„r)PP (cos8)e'

It is well known that the electric field due to the lamel-
lar part of the current J is given by the solution of the
static problem and the electric Geld due to the solenoidal
part of the current J is given by the solution of the dyadic
wave equation [45,46].

The dyadic Green's functions due to the solenoidal
part of the current J, Cx(r, r'), satisfy the vector wave
equation,

V X V X Cx(r, r') —co poeoF„G(r, r') = —I5(r —r'), (35)

&, f f e' "'
P&. '(cosu )e™'sinudv du,4'

(33a)

j&(k„r)P& (cos8)e™~'

where co is the angular frequency and po is the isotropic
permeability of the medium. Using the Fourier trans-
form and the identity

1 27T K I k
e "

P& (cosu )e' 'sinu dv du,
4m

f d3k eik (r —r')

8m 3 (36)

(33b) we obtain [ 1 2—14]

&„r=k„r[cos8cosu+sinOsinucos(i)v —v )], (33c) C"(~,r') = [&&—I&I'I+co'poeoF„] 'e (37)

into Eq. (30), exchanging the order of integration, com-
paring the series obtained, and recalling Eq. (31), we ob-
tain the integral representations of the spherical wave
functions of third kind for homogeneous anisotropic
media

E'„&' (r)= f f P) (cos8k)e

The dispersion relation is considered as a general eigen-
value problem of Hermite matrices for a lossless homo-
geneous anisotropic media; the three-dimensional Fourier
transform of the dyadic Crreen's function Cx(r, r') can be
represented as [12—14]

—k

Cx(k, r') = d rC)i(r, r')e
00 „=) (k —k„)N„

3

X g EJ.„(8k,rpk)e~e
" k„

j=l

X sin8gd Ogdyg, (34a)

(38)

where E„and N„=E„*.e„.E„are the eigenwave vector
and normalized value of the nth eigenwave vector.

The inverse Fourier transform of Eq. (38) is

where B is the specific complex integration path [44]. So
we give the general integral representations of spherical
wave functions of all kinds for homogeneous anisotropic
media

Cx(r, r')= f d k g 2 2(k —k„)N„
(39)

E'„'&) (r)= f f PP(cos8k)e™~k
I

3

X X EJ.(8k vk)e, e " k.
j=1

The general representations in the spherical coordinate
system have not been obtained so far, although many
researchers have treated the problems in cylindrical coor-
dinate systems [25].

From

X sinOgd O~dy~, (34b)
E(r)= f C)r(r, r').J(r')dr' (40)

where C; is the corresponding integration path for isotro-
pic media [44].

It is shown that in Eq. (34a), the integration paths of
anisotropic cases are the same as that of isotropic cases
for outgoing waves, and Eq. (34b) is returned to the iso-
tropic cases when k„,E~„are independent of 0& and y&
by inspecting Sec. 7.12 of Stratton's treatise [42]. It is
evident that our spherical wave-function theory for aniso-
tropic media unifies that for the isotropic media [42].

we can see that it represents outgoing waves which can be
expanded by the spherical wave functions of third kind
for anisotropic media, in which the integral for 0A. is
along path 8 as shown in Sec. III. This is supported by
Weyl in calculating the point-source radiation in isotro-
pic media [42]. As k =k„sin8k and k„ is a bounded
function of 0&,y&, if and only if the integration path B
for 0& is chosen, the correct complex integration path for
k may be obtained as shown by Weyl [42]. So we have
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] 2m + 2 ik (r —r')
G(r, r')=

z f dyk f d8k f " g E„'E„dk sin8kk
ger o

" a " —~ „,(k k—)N

+2

i k„~(r —r')

2 f f df'kd8k g En En sink kn (41)

In terms of the relation between integral representation and the series representation of spherical wave functions of
third kind for anisotropic media as well as the relation between the spherical wave functions for anisotropic media of
third kind and that of first kind, we have

2 2 oo + I )fc

G(r, r')=, g f dgk f d&k g g &i~(gk, qk), hi "(k„lr—r' )&p(cos&')e' ~»»kk„,
8m ~=o

(42)

where (8', y') means 8«, y«[19] and A&m(0k, y&) is
defined by Eq. (A4).

For the cold homogeneous magnetoplasma,
N„=E„*.e„E„ is independent of yk. Using the formula
(B8) and (B9) given in Appendix B, we can manipulate
analytically the integral about yk.

Equation (42) can be written in the form of separation

of variables when r ( r' and r & r'.
We have derived the dyadic Green's function for iso-

tropic media and obtained the same result using the
method described above. So the present theory is a natu-
ral extension of Weyl's method.

The above method is easily adapted to the circular cy-
lindrical coordinate system. The result is

+ oo

G(r, r')= f e ' g f dykM*M 1/(M*- eM ) g i e™~kH~"(k ~p
—p'~)e™~~,

8~ 0
q =1 m = —oo

(43)

where y' means cp„„.. For the magnetoplasma, it is easy to
see that the integral about yk can be evaluated analytical-
ly in terms of Eqs. (6)—(8) and then the series is converted
into a few terms.

S=
4~ko2(e2ie, )'"

a. (x /e, +y /e, +z /e, )'
(48)

V. SCALAR DYADIC GREEN'S FUNCTION
AND BOUNDARY INTEGRAL EQUATION

The dyadic Green's function due to the lamellar part of
the current J, G, can be deduced in a few simple steps
beginning with the solution of the static problem [38].

(44)

The solution to Eq. (44) is

6= 1 1

4ire, (e3)'i (x /e, +y /e, +z /e&)'i
(45)

G= 2VVG .
ko

(46)

In the Huygens principle for the anisotropic media
[22], if the field point r is located in the boundary of the
media, the singularity of the dyadic Green's function has
to be properly accounted for. Usually, we can evaluate
the divergent integral by using an exclusion volume sur-
rounding r. If we choose the exclusion volume as a
sphere, we have [47]

E=S J (47)

(j2G (j2G $2G
V F'VG=e, +e, +e3 2

= 5(r r') . — —
x' ' gy' '

gz

The tensor S can be evaluated by elementary functions
[39]. With the above results, we derived the boundary in-
tegral equations for a homogeneous anisotropic medium
easily [22].
—E,„,(r) =

—,'S E(r)

+ g dS'
I
—

jason

X H(r') G, (r', r )

+n XE(r') V' X G, (r', r) ], (49)

where G, (r, r')=G(r, r')+G'(r, r'), with G and G' given
by (42) and (46) respectively, and E;„,(r) is the incident
field.

VI. CONCLUSION AND DISCUSSION

We have developed a method to transform the
eigenwave theory of unbounded homogeneous anisotrop-
ic media to the eigenfunction theory of bounded homo-
geneous anisotropic media. Our wave-function theory for
anisotropic media unifies the classical wave-function
theory for isotropic media [42]. We have also found a
unified method to study the dyadic Green's functions in
both isotropic and anisotropic media. The method is ex-
pounded by taking the cold homogeneous magnetoplas-
ma as an example. Although only a magnetoplasma is
considered in this paper, because of the symmetry of
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Maxwell's equations the present analysis is directly appl-
icable to ferrite materials as well [19,38]. This study
shows that for an arbitrary homogeneous anisotropic re-
gion, the electromagnetic fields can be expanded by a
series of the eigenwave functions; each of the series is also
a series just like the isotropic case in the spheroidal coor-
dinate system [48]. So we can use the simple method of
mode matching to analyze the guiding, resonance, radia-
tion, and scattering in anisotropic media. The
computational-complexity analysis shows that the algo-
rithmic complexity of an anisotropic spherical scatterer is
less than that of an isotropic nonspherical one and that
the complexity of a spherically layered anisotropic
scatterer is less than that of an isotropic nonspherically
layered one. The theory developed in this paper is appl-
icable to any waves and fields, such as the elastic waves in
elastic anisotropic media, whose eigenwave numbers and
eigenwave vectors can be determined and to any bounded
coordinate systems, such as elliptic cylindrical and
spheroidal coordinate systems. The canonical solutions
of wave functions and dyadic Green's functions for aniso-
tropic media given in this paper are useful in the further
studying of problems in anisotropic cylindrically layered
and spherically layered structures [22,43].

The present work, in comparison with previous works,
has the following differences.

(i) Although the method of angular spectrum expan-
sion has been successfully used to solve the problem in a
simple connected domain by many authors, so far the ex-
tension to the annular domain is unavailable. We solve
this open problem.

(ii) Except for the theoretical work of the early paper
for the special medium and in a special coordinate system
[32], all the authors used the representations of the
plane-wave angular spectrum to simplify the numerical
computation; we utilized the verified representations for
developing the electromagnetic wave theory of bounded
homogeneous anisotropic media. This theory includes
that of isotropic media. So there are counterparts be-
tween the present theory and the classical one [42]. This
is helpful in the formulation of boundary-value problems.
Therefore the focal point of this paper is different from
that of previous works.

(iii) As discussed in Sec. III of this paper, the theory
developed in this paper simplified the numerical compu-
tation considerably. For the problems needing the inter-
nal fields [26,27], the advantage of the method presented
in this paper is more obvious. Invoking the asymptotic
expression of Bessel functions for large order [49], we can
easily treat the truncation of series appearing in this pa-
per.

(iv) The present theory facilitates the utilization of the
character of media. As described in this paper, all the in-
tegrals about yk can be computed analytically for a mag-

I

APPENDIX A:
EXPANSION OF A VECTOR PLANE WAVE

Let
+I

1=0m = —I

+I

1=0m = —I

oo + I

1=0m = —I

(Ala)

(A lb)

(A 1c)

where [42]

L'i~(k„r, 8, 0 )=V%'im ~

M~(' ( kr, &, q&) =V X (r+'i' ),
N'(' ( k„r,8,p ) = V XM'i',1

n

(A2a)

(A2b}

(A2c)

4", =2,"(k„r)P, (cose)e™~, (A3a)

J,(k„r), i=1
y&(k„r), i =2

z" kr =
gi(k„r )+iy, (k„r ) =h,"'(k„r),
gi(k r) iyi(k„r)=h(' —'(k„r),

l =3
i=4.

(A3b)

Taking the divergence and curl of (Ala), substituting
the identity (26), we get

netoplasma. It is appropriate to point out at this time
that this paper's simplified theory for a cold homogene-
ous magnetoplasma is easily generalized to the case of a
moving uniaxial medium, a moving gyrotropic medium
[13],and the bianisotropic medium discussed in Sec. 3.3d
of Ref. [13].

(v) Although our theory overcomes the difficulty of
separation of variables [4] from the view of mathematical
physics, the essence of the present theory is the physical
insight into the problem.

There are many topics in the electromagnetic wave
theory of bounded homogeneous anisotropic media to be
studied which are left for future papers on applications.

l slnt9kcos+k
n

(1—m }! lm EpA,

Ai ——i'(21+ 1) PP (cosek )e1+m !
(A4)

oo + I oo + I
M", '"= g g a„, k„N', "+P„, k„1VI'," .

1=0 m = —I 1=0 m = —I

(A5)



672 WEI REN

In terms of the formula given in Ref. [50], we obtain

k„ Pl
a«m =

1 1
[(1+m + 1 )(1+m +2)Al+, m+, —Al 1 m+1]21 1+1 21+3 7

m+1+ [
—(1—m —1}(l—m }Al+1,m —1+ Al 1,—m —1] (A6)

x —3
+n10 Ip kn ~ 12

k„
p"„1 = [(1—m )(1+m + 1)Al+, + Al, ),

(A7)

) n10 2kn A 11

Similarly, we get the ayl, p„"1,yyl, a'„l, p'„1, and y'„1 . So we have

~nlm Enx Anlm +EnyAnlm + nznIm

1 nlm nxpnlm + ny+nlm + nxl nlm

denim nx~nlm + ny Vnlm +Enzlnlm

(A9)

(A 10)

(A 1 1)

(A12)

APPEND IX B REPRESENTATIONS OF Zn jpnt ( k„r ) AND VjIm ( 8~ ((P )

Let [20,44]

V» (g, ill) =Pl (8,@)=rpl (cosgk )e

V2, (g, y)=B, (g, y)=rVPl (cosg)e' ~=rXC, (8,1P)

dPI (cosg}; lm'=8 e' y+y . Pl (cosg)e'
d 0 sin8

&m m
dpi (cosg)

(g, y)=C1 (g, p)=8 . Pl (cosg)e'

(81)

(82)

(83)

After some straightforward algebra, we get

Z„"l (k„r)= f f '
k„singkdg&dgkpl, (cosgk)e™~kf„"l(k„r),

0 0

1 (1 + 1)z,"(k„r)

k„r

[k„rz,"(k„r)]' z,"(k„r)

knr nr

f'3I (k ")=a l zl"(k.r}
where zl"(k„r ) are given in Eq. (A3).

In terms of Eqs. (6)—(8), using the following formula [51]:

(21+1)singe''yP (cosg)e™y=P +'(cosg)e'™+I ~le —Pm+'(cosg)e'( +')~

(21+ 1)singe '"Pl (cosg)e' y=(l —m +2)(1—m + 1)pl+, '(cosg)e'
—(1+m)(l +m —1)pl, '(cosg)e'

we can evaluate the integral about yk analytically.
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