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Coupling impedance of beam pipes of general cross section
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We have derived expressions for the longitudinal and transverse resistive wall coupling impedances
for a beam pipe of arbitrary cross section in the ultrarelativistic limit. These expressions involve
the integral of the square of the tangential magnetic fields along the wall, which can be obtained
from the solution of the two-dimensional Poisson equations with a monopole and dipole singularity,
respectively. Explicit results are given for beam pipes of elliptical and rectangular cross sections,
including the limiting cases of a circle and a pair of parallel plates,

PACS number(s): 41.75.—i

I. INTRODUCTION

We have recently calculated the longitudinal and trans-
verse resistive wall coupling impedances in a beam pipe
of elliptical cross section for an ultrarelativistic beam [1].
Since the general features of the calculation are indepen-
dent of the beam pipe cross section at ultrarelativistic
velocities, we extend it here and include the results for
elliptic and rectangular beam pipes.

In Sec. II, we derive an expression for the longitudinal
coupling impedance as an integral over a Poynting-like
vector at the surface of the beam pipe generated by an
ultrarelativistic beam along the axis of the beam pipe.
The same technique is applied in Sec. III to the transverse
coupling impedance, but for fields generated by a line
dipole beam along the axis of the beam pipe, obtained
by a simple limiting process involving a beam off axis.
In Sec. IV we obtain the necessary fields for an elliptical
beam pipe and in Sec. V for a rectangular beam pipe. In
these sections we also derive the image fields from which
the parameters appropriate to the coherent and incoher-
ent tune shifts can be obtained. Finally in Sec. VI we
present the results for the coupling impedances, includ-
ing numerical results for difFerent ellipticities and aspect
ratios.

1
Zii(k) = ——

Ip
dz E,e&"', (2.2)

where E, is the longitudinal component of the electric
field when 2:i = O, yi = 0. We use Eq. (2.1) to rewrite
Zii(k) as

II. LONGITUDINAL COUPLING IMPEDANCE

For a drive beam of current density

J, = Iob(x —zi)b(y —yi) exp( —jkz)

in the frequency domain, with k = u/c, the longitudinal
impedance is defined as

IIol Z~~(k) = d+ n [E2 x Hi+ Ei x H2], (2.6)

where the surface encloses the drive beam. If we choose 8
to be the inside surface of the beam pipe, n E& x Hq ——0,
and we have, for a length of beam pipe L,

iIo~i Z~i~i(k) = I /dsss„|, (—2.7)

where s is a coordinate tangential to the beam pipe sur-
face in a plane perpendicular to the axis of the beam
pipe. The form in Eq. (2.7) is a generalization of a re-
sult derived earlier [2] for a beam pipe of circular cross
section and used recently by Napoly [3].

We now obtain the result for a resistive wall by ex-
pressing E, at the wall in terms of IIq, . Specifically we
take

Z, =- -ka(1+ J)ZoII„~2, (2.8)

Zii (k) = —
2

dv E J',j.
(2 3)

0

where the volume integral is over a region which includes
the drive beam.

We now consider two situations. The first, denoted
by the subscript 1, is the lossless pipe, and the second,
denoted by the subscript 2, is the pipe with wall losses.
We then construct

I
oI'[ ~~" ( ) +

~~

"*(
)] =

I
oI'[

~[

'( ) —
~~

'( )]

v[Ez J' + Ei J],

(2.4)

where Z( )(k) is imaginary. (It actually vanishes in the
II

ultrarelativistic limit. ) Using

J —V X H1,2 JLdeE1,2

(2.5)
+ x E1,2 2~)(tH1, 2

Eq. (2.4) can be converted into a surface integral, leading
to
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~Io~'Z~~(4)/Zo = (I + j)(t Ib/2) )do~Ho. ~'. (2.9)

Finally, Hq, can be obtained from the solution of the
Laplace (or Poisson) equation in the two transverse di-
mensions since c2B2/Bzs = Bs/Bt2 for an ultrarelativistic
particle. Specifically

ZOHg, = Eg„= —exp( —jkz)V'~C (x, y),
where 4(x, y) is the solution of

7'~4(x, y) = ZpI06—(x —xg)6(y —yi), (2.11)
with perfectly conducting boundary conditions at the
beam pipe wall. Here n is a coordinate normal to the
beam pipe wall and Eq„ is the electric field normal to
the beam pipe surface for the lossless problem.

where b = (2/ko Zo) / is the skin depth of the wall mate-
rial whose conductivity is o. Here Zo = (p/e) ~/~ = 120vr
0 is the impedance of free space. Using Eq. (2.8), we
write the longitudinal impedance as

IV. BEAM PIPE OF
ELLIPTICAL CROSS SECTION

A. Elliptic coordinates

The Poisson equation for the electrostatic potential of
a line charge of density A located at x = x~, y = y~ is

B2C B2C A+ = ——6(*—»)6(y —y~)Bx By co
(4.1)

where A/ep can be written in terms of the drive current
as A/tp = ZOIO. We transform to elliptic coordinates
defined by

x = ccoshucosv, (4.2)

y = csinhusinv,

where the beam pipe is an ellipse of major axis 2a, minor
axis 2b, with

III. TRANSVERSE COUPLING IMPEDANCE a = ccoshup, 6 = csinhup, c = a —6 . (4 4)

The transverse coupling impedance can be analyzed in
a similar manner. If we start with the axial dipole drive
current

B2C) B24
Bu Bv

+ = —ZOIob(u —uy)6(v —vy), (4.5)

In the transformed coordinate system, Eq. (4.1) becomes

J, = I06(y) exp( —jkz) [6(x —xg) —6(x+ xg)], (3.1) where uq, vq are related to xq, yq by Eqs. (4.2) and (4.3).
We write the solution to Eq. (4.5) as

the transverse impedance in the x direction can be ex-
pressed as the limit for small x) of C'(u, v) = fo(u) + ) f„(u) cosnv+ ) g„(u) sinnv,

Z (k) =— z e (4.6)

BZ, Z, (x„O,z) —E,( x„O,z)—
Ox 2x]

(3 3)

where BEz/Bx is evaluated for x = y = 0. But we can
also write the derivative of E, at the origin as

where f„(u) and g„(u) are some linear combination of
exp(+nu).

Substituting Eq. (4.6) into Eq. (4.5) and expanding
6(v —vq), we obtain

for vanishingly small x&. Thus we have d'fo ZOI06
(4.7)

Z (k) =-
4A:Ipx2q

dz[ Z, (x„O, z)

—Z, (—x„O,z)]e~"'.
d f„2 ZOI()—n f„=— 6(u —u] ) cos nvy,
du '1t

(4.8)

Using the value of J in Eq. (3.1), we can therefore write

dvE J*, (3.4)
d2g„2 ZpIp—n g = — b(u —uj) sinnvq.
du 2 "

vr
(4.9)

in analogy with Eq. (2.3). As before, the volume integral
in Eq. (3.5) can be written as a surface integral, and we
obtain

4oo~Io~ kZ (4) = L/doH, H/„—(3.5)

where we must now use the fields corresponding to the
dipole configuration in Eq. (3.1). Finally, we use Eq.
(2.8) to obtain

x + iy = ccosh(u + iv), (4.10)

well-behaved solutions correspond to the form cosh n(u+
iv). Since

cosh nu/ = T„(cosh u)), (4.11)

We seek solutions to Eq. (4.1) which are well behaved
at x = 0, y = 0. Since

4o& ~Io~ Z (4)/Zo = (I +j)(Ih/2) )do~Ho,
l'(3.6)

where T„ is the nth TschebyscheK polynomial, the func-
tion
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(4.i2)

(4.13)
I

(x+ iybcoshn(u+ iv) = T„~ c )
is regular at x = 0, y = 0 and its real and imaginary parts
guide us to the forms

f„(u) = cosh nu, g„(u) = sinhnu.

B. Green functions

We now construct the one-dimensional Green-function
solutions to Eqs. (4.7), and find for the functions which
vanish at the elliptical boundary, u = uo,

ZpIp up —u1, 0 & u & u1
p(u

2n up —u, u1&u&up (4.14)

ZoIp cos nvl cosh nu sinhn(up —ul), 0 & u & u1
n u ~

' n&l
lr cosh nup sinh n(up —u) cosh nu1, u1 & u & up (4.i5)

ZoIp sin nv1 sinhnusinhn(up —ul), 0 & u & u1g„(u) =
lrsinhnuo sinhn(uo —u) sinhnu1, u1 & u & up

n&l (4.16)

Here

ZoIo Q(v)
2lr h(v)

.cosh nu1 cos nv1 cos nv

cosll nupA=1

sinh nu1 sin nv1 sin nv
+2

sinh nuon=1

(4.i7)

(4.18)

and h(v) is the metric

h(v) = c(sinh uo + sin v)'~ (4.19)

The term proportional to up in Eq. (4.14) is a constant
which will not enter into the fields. It will therefore be
omitted.

Use of Eqs. (4.14)—(4.16) in Eq. (4.6) yields the two-
dimensional Green function in an elliptical pipe [4]. From
this, we obtain for the component of the electric field
normal to the elliptical boundary

m=O

Q1y(v) = 2 ) (—1) (2nl+1)
sin(2m + 1)v

m=o
(4.24)

2
[t

2K& „„,cn(v, q)

( lr ) dn (v)q)
(4.26)

These infinite sums can also be expressed in closed form
in terms of the Jacobi elliptic functions sn, cn, and dn
of argument V = 2KV/lr, where K(k) is the complete el-
liptic integral of modulus k corresponding to the "nome"

q = exp( —2up) = [a —b~/(a+ b) Prom th. e Fourier ex-
pansions for these functions [5] one finds readily

A,
"

(4.25)

at the elliptical boundary. For later use, we expand Q(v)
up to linear terms in x1 and y1. For this purpose we
write

2t'2K „„,2 sn(v, q)
dn (V, q)'

(4.27)

cosh nu1 cos nv1 + i sinh nu1 sin nv1

cosh n(u1 + zv1)

[(x1+~y1 ~[

)
nor . nor (x1+ iyllcos + n sin +
2 2 g c

and find

(4.20)

Qp(v) =1+2) (—1)
m=1

(4.22)

Q(v) =Qo(v)+ —'Q1 (v)+ —'Q&u(v)+ . (4.21)
C C

with

which have been verified by computer for the range 0 &
up & 1 and 0 & v & lr/2. Similar expressions for an
elliptical beam pipe have also been given by Palumbo
and Vaccaro [6].

C. Image potential

Although it is not needed for the coupling impedance,
we also derive the potential due to the images alone since
the results involve many of the same combinations of pa-
rameters as for the impedance. This image potential can
be used to calculate the coherent and incoherent tune
shifts due to the beam which may be important in avoid-
ing resonances.

The image potential can be found by obtaining
f (u), g~(u) when the boundary is infinitely far away and
subtracting these values from Eqs. (4.14)—(4.16). Specif-
ically, the limit uo ~ oo leads to the coeKcients for the
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"self" potentials

ZoIo —ui, 0&u&ui
-u

'
u, &u (4.28)

given by

f."'( ) =o, (4.32)

ZpIo cos nui e ""'cosh nu, 0 & u & uif„' u e coshnu1, u1 + u

g g e—Atbo

f(')(u) = — coshnu cosh nui cos nvi, (4.33)
vr cosh nu0

(4.29)

ZpIp sin nui e ""'sinh nu, 0 & u & ui
ngn e " sinhnu1, u1 & u

g„' (u) = — . sinh nu sinh nui sin nvi,
g j e—Atco

m sinh nu0
(4.34)

and to the coefBcients for the image potentials

(4.30)

(4.31)

where Eqs. (4.29), (4.30), and (4.33), (4.34) apply for
n & 1. The image potential, obtained by using Eqs.
(4.33) and (4.34) in Eq. (4.6), correctly vanishes as uo —+

oo, and has no discontinuous derivative at u = u1. Such
a discontinuity is present only in the self-field.

Using Eqs. (4.32)—(4.34), we find for the image poten-
tial in Eq. (4.6)

C(')(u, v) =—ZpIo cosh nu cos nv cosh nui cos nvi sinh nu sin nv sinh nui sin nvi+ e ""'
cosh nu0 sinh nu0A=1

(4.35)

This potential can be expressed in terms of x and y by using Eq. (4.12). Specifically we find

ZpIp . „„, ReT„(*+'")ReT„(*'+'"') ImT„(*+'")ImT„(*'+'"' )e ""'
7I' cosh nup sinh nu0A=1

(4.36)

It is now a simple matter to calculate the parameters
associated with the coherent and incoherent tunes. These
come, respectively, from the xxi and yyi terms in the
expansion of the potential for small x, 2:1,y, y1 and from
the 2: —y terms in the potential for 2:1 ——O, y1

——0.
Using

T„(cos8) = cos n8, T„(sin P) = cos n(m /2 —P), (4.37)

we can write, for P « 1,

OO

ZoI (x —y) )
~=~ cosh nuo
even

V. BEAM PIPE OF
RECTANGULAR CROSS SECTION

A. Green function

(4.41)

and therefore, to order z2

n z nor2 2 nor
T„(z) = 1 — cos + nz sin (4.39)

The "coherent" part of the potential then becomes

nor n2$~ n7r
T„(sing) = cos 1 — + nP sin, (4.38)

2 ' The Poisson equation is written in Eq. (4.1) for a rect-
angular beam pipe whose boundaries are at x = +a, y =
+b If we expan. d 4(x, y) into a Fourier series in the y
coordinate

C(x, y) = ) F„(x)sin (y+ b),

c() ( y)
ZpIo xxi ) n'e " '

c2 ~=1coshnu0
odd

with the boundary conditions F„(—a) = F„(a) = 0, we
can easily show that F„(x) must satisfy

yyi ) n'e ""o
h 0

odd

(4.40)
(5.2)

Similarly, the "incoherent" part of the potential can be
written as

Clearly F„(x) is a one-dimensional Green function which
can be written as
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2ZoIo»n p&(b+ yi) sinh ~z(x+ a) sinh ~z(a —zi), x & zi
nor sinh "& sinh

z& (a+ zi) sinh
z& (a —x), z ) zi.

The two-dimensional Green function is therefore

2ZoIp ).sin
z& (y+ b) sinh z&(b+yi) sinh

z& (x+ a) sinh
~& (a —xi), x ( xi

sinh ~~ (a+ xi) sinh ~~ (a —x), x ) zi.

(5.3)

(5 4)

The form in Eq. (5.4) converges exponentially as long as ~z —xi~/b is not too small. An alternate form which
converges as long as ~y

—yi ~/a is not too small is obtained by interchanging a and b, z and y, zi and yi in Eq. (5.4).

B. Image potential

For the rectangular beam pipe, a two-step process is used to remove the self-potential from Eq. (5.4). The first
step is to take the limit as a —+ oo in Eq. (5.4). Specifically, we find

C (x, y) =

Since
OO

~ COS 7lCTC)
—nA

nn=1

ZpIp . .
~ ~

cos ~~ (y —yi) —cos 2„(2b+ y+ yi)X Xg

2" =1 n

1= ——ln(1 —2e coso + e )
—2A

2

(5.5)

(5.6)

(obtained by taking d/dA and summing the resulting geometric series), we can write

ZoIp sinh
4& + cos 4&

2 ~(~—») 2 ~(V—ui)
C' x y = ln

sinh * *' + sin4b ib

We can now take the limit b ~ oo in Eq. (5.7) to obtain

( )
ZoIo l„(x—»)'+ (y —yi)'
4~ (4b/~)2

(5.7)

(5.8)

which gives the correct (ZpIp/27r)ln—r dependence on the distance between (x, y) and (zi, yi). We now construct the
image field

C ' s'(z, y) = C (x, y) —C (z, y) + C ' (z, y) —C ~ (z, y).

From Eqs. (5.4) and (5.5) we then find

(5.9)

C'(x y) —C' (* y) =—ZpIo .sin
z& (y+ b) sin

z& (b+ yi) . sinh "z&* sinh "z&'
2b

~ n~a +
n Slnh 2b

cos} nay co h nut
2b 2b

Cosh n7t. a
2b

and from Eqs. (5.7) and (5.9) we find (5.10)

(z y) —O" (z, y) = ln sinh —(x —zi) + cos —(y yi)4~ 4b

(z —» )' + (y —yi)'
X

sinh
&& (z —xi) + sin f&(y —yi)

(5.11)

The image potential is therefore the sum of Eqs. (5.]0)
and (5.11). Note that Eq. (5.10) converges as
exp( narra/b) for lar—ge n, and that the term in the sec-
ond set of square brackets in Eq. (5.11) is well behaved
at & = &1,y = y1.

Once again, the parameters associated with the coher-
ent and incoherent tunes can be obtained by extracting
the xxi, yyi, and (z —y ) terms in an expansion in pow-
ers of z, xi, y, yi. After considerable algebra, the results

can be written as

c'.". ( y) =—ZpIp 1 ) Ae

4b 12 n=1 sinh n2b

1 ) ne
+ggl 6

+ =1 h nban= 1 COS
even

(5.12)
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and

~.'.. ( y) = ZpIprr 2 &~
1 ) ne(x —y &

8b2 ].g ~=~ cosh "~~odd, 2b

circular beam pipe in Eq. (6.6). The corresponding ex-
pressions for Zi„(k) and Gi„(up) are obtained by using
Qi„(v) instead of Qi~(v).

B. Rectangular beam pipe
(5.13)

Clearly Eqs. (5.12) and (5.13) are equally well presented
by simultaneously interchanging z and y, xi and yi, and
a and b. From this, it is easy to verify that 4,'„, h(z, y) =
0 for a = b, as it must be from symmetry arguments. IIiu(a y) = —

[ p(y)+xiPi*(y)+» iw(y)]
Ip

(6.7)

Our first step is to obtain Ei ——ZoHis on the wall
x = a by expanding —04/Bz in Eq. (5.4) up to terms
linear in xi and yi. In this way we find

VI. COUPLING IMPEDANCES where

It is now a simple matter to obtain the longitudinal and
transverse coupling impedances by evaluating the line in-
tegrals in Eqs. (2.9) and (3.1) using explicit expressions
for the fields on the boundary obtained for the elliptical
beam pipe using Eqs. (4.17) and (4.21)—(4.24), and for
the rectangular beam pipe using Eq. (5.4).

A. Elliptical beam pipe

) cos(nary/2b)
Pp y ~=i cosh(narra/2b)

'

0(id

vr ) n cos(nay/2b)
2 ~=i sinh(narra/2b)

'

0(id

(6.8)

(6.9)

IIo I' Qo(v)
Zz 4~z hz(v) (6 1)

Since the metric is ds = hdv, Eq. (2.9) gives

Z~~(k) kLb'(1+ j) dvQo(v)
Zp 8vr' p &(v)

(6.2)

&sing the harmonic number nh, = kL/27r, we obtain

For the longitudinal impedance we use Eq. (4.17) for
2:q ——0, yq ——0 in the form

vr ) n sinh(nary/2b)
2 ~=& cosh(narra/2b)

'

even

(6.10)

Z~~(k) (1+j)b r'b1
+o

I

—I,nhZp 2b i a)
where

(6.ii)

For the longitudinal impedance we take xi = 0, yi = 0
and integrate Pp(y) over y from b to b —The co.ntri-
bution from x = —a doubles the result. In this way we
obtain for the longitudinal impedance

Z)((k) (1+g)bG
nhZo

where [7]

(6.3)

Fo(A) = vr
1

"=i cosh (nor /2 A)
Qd&i

"=i cosh (nvrA/2)
Odd

sinh uo Qo(v)dv
Gp uo

27l p [sinh up + sin v] i~2~ 2 2 1 2
(6.4)

Zi (k)
Zp

where [7]

L(1+j)b
bs 1z uo

sinh up Qi~(v)dv
4~ p [sinh up+sin v] ~

(6.5)

(6.6)

and where Qi~(v) is defined in Eqs. (4.23) and (4.26).
Once again, the normalization of Gi~(uo) is chosen so
that Gi~(oo) = 1, reproducing the known result for a

and where Qp(v) is defined in Eqs. (4.22) and (4.25).
Here Gp(up) is normalized so that Gp(oo) = 1, repro-
ducing the known result for a circular beam pipe in Eq.
(6.4).

For the transverse impedance, the drive current in Eq.
(3.1) requires us to use 2xi Qi (v)/c in place of Qp in the
expression for IHi, l

in Eq. (3.7). In this way we obtain
Zi (k) L(1+j)b (b)

Zp O'Irb (a )
where

(6.is)

n'
Ei (A) =- "=i sinh (n7r/2A)

od(i

n2
+A "=2 cosh (nmA/2)

even

(6.14)

The transverse impedance in the y direction is then ob-

(6.i2)

Here we have included the contribution on the walls y =
+6 by interchanging a and b. In an analogous manner,
we find that Zi~(k) is related to the integral of Pi2~(y)
over y and the corresponding contribution from the walls
at y = +b After consid. erable algebra, we find
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tained by exchanging x for y in Eqs. (6.13) and (6.14),
and by moving the factor A to the Grst sum in the brack-
ets in Eq. (6.14).

Equations (6.12) and (6.16) are in a form which per-
mits taking the limit a/b ~ oo, converting the sums in-
volving (nub/2a) t;o integrals. In fact, using

1.0—

z
2 =1

cosh z
0.4—

F,„

"d' ="
cosh z

(6.15)
0.2—

0,0—
I

0.0
I

0.2
I I

(~-b)/(~+b)

I

0.8
I

1.0

z~dz

sinh z

one finds, for a/b —+ oo, that

F,(0) = 1, F,.(0) = ~'/24, F,„(0) = ~'/12 (6.16)

FIG. 2. Numerical values of Fo(q), Fy~(q), and Fqy(q) for
the rectangular case as a function of q = (1 —A)/(1+ A) =
(a —b)/(a+ b)

ment with the parts of Eqs. (6.12) and (6.14) which
correspond to the surfaces y = +b.

correspond to the appropriate values for parallel plates.
A graph of the numerical values of Go& G»& and G]y

for the elliptical pipe is presented in Fig. 1 as a function
of the "nome" q = (a —b)/(a+ b) The va.lues for q = 1
correspond to parallel plates and are seen to agree with
the corresponding values for the a/b -+ oo limit for the
rectangular case in Eq. (6.16). The graph of the nu-
merical values of Fo, Fy, Fy& for the rectangular case is
presented in Fig. 2 as a function of q = (1 —A)/(1+ A) =
(a —b)/(a+ b) The simi. larity between the two figures is
striking, but perhaps not surprising, since the ellipticity
of the ellipse and rectangle are very similar.

The longitudinal and transverse resistive wall
impedances have also been analyzed by Neil and Sessler
[8] and by I aslett, Neil, and Sessler [9], respectively, not
including losses on the side walls (x = +a). Their results
are given in terms of the scaled impedance parameter V,
and in the limit p —+ oo their expressions are in agree-

VII. COUPLING IMPEDANCE OF HOLES
IN THE BEAM PIPE

For completeness we include a brief discussion of the
results for the coupling impedance of a small hole in a
beam pipe [10]. We start with Eqs. (2.7) and (3.6) and
assume that the dimensions of the hole are small corn-
pared with the wavelength. In this case, the coupling
integral

I dSEzH dSn, ExHj, (7.1)

written here as an integral over the interior aperture of
the hole, can be expressed in terms of the inside elec-
tric polarizability, y;„, and inside magnetic susceptibility,
Q;„, of the hole as

1.0— (7.2)

0.6—

0.0—
I

0.0
I

0.2
I I" (a-b)/(~+b) 0.8 1.0

FIG. 1. Numerical values of Go(q), Gz (q), an& &sy(q) f»
the elliptical pipe as a function of the "nome" q = (a—b)/(a+
b)

We have here assumed that the Geld outside the beam
pipe can be ignored. A more complete discussion of
the inside and outside polarizability and susceptibility
is given elsewhere [ll], including numerical results for a
circular hole in a wall of finite thickness.

Once Q;„and y;„are known, the impedance ean be
calculated from ~Hq,

~
along the beam pipe wall. For

the longitudinal coupling impedance, this quantity is
proportional to Qzo(v) in Eq. (4.2) for an elliptical
beam pipe, where v is the azimuthal coordinate of the
hole, and to Po(y) [or Po2(x)] in Eq. (6.8) where 2:, y
are the coordinates of the hole. For the transverse
coupling impedance, the corresponding quantities are
Q2~ „(v),P~~ (x, y), P~z„(2:,y), given in Eqs. (4.23), (4.24)
and (6.9), (6.10).

The impedances of well separated holes (by at least a
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few hole diameters) can be added to each other, since the
surface integral in Eq. (7.1) extends over all holes.

VIII. SUMMARY

General expressions have been obtained for the longitu-
dinal and transverse coupling impedances of a beam pipe
in the ultrarelativistic limit in terms of integrals of the
fields over a surface (usually the beam pipe) which sur-
rounds the beam. For a resistive wall these expressions
can be written in terms of integrals of the square of the
tangential magnetic field over the surface of the beam
pipe. The magnetic Geld can itself be obtained from
the solution of the Poisson equation in the two trans-
verse coordinates for a monopole singularity (longitudi-
nal impedance) and for a dipole singularity (transverse
impedance).

Detailed expressions are given for an elliptical beam
pipe and for a rectangular beam pipe, including the im-
age fields which are useful for determining the coherent
and incoherent tune shifts. The expressions involve well-
convergent series and are well suited to numerical compu-
tation. Such numerical results are provided as a function

of (a —b)/(a+ b) where 2a and 2b are the major and
minor axes of the ellipse or the width and height of the
rectangle. The results for the ellipse agree with the well-
known results for a circle when a = b, and the results for
both cases agree with the results for parallel plates in the
limit a —+ oo.

It may be useful to reiterate at this point that we have
assumed that p -+ oo in our calculation of impedance.
In fact, our calculation is greatly simplified in this limit,
particularly for the case of the elliptical pipe. However,
for large but finite p, the impedance results will depart
from those given in Eq. (6.3), (6.5), (6.11), and (6.13) at
frequencies for which kb p where b is a characteristic
dimension of the chamber cross section. We note that re-
sults for finite p for a chamber of circular and rectangular
cross section have been available [8, 9] for some time.

In addition, our treatment of wall losses uses the rea-
sonable assumption that the skin depth is small com-
pared to the characteristic dimension of the chamber
cross section. For the unlikely situation where 6 + b,
the analysis is much more complicated and unlikely to
be analytically tractable, except for a chamber of circu-
lar cross section.
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