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A diagrammatic technique has been worked out in the framework of nonequilibrium statistical

mechanics as developed by Prigogine and co-workers to tackle the problem of radiation emission from a

relativistic electron in an ambient plasma embedding an axial-wiggler magnetic field. The theory is exact

in that the diagrams contributing towards the self-consistent-field approximation have been summed up

exactly and one obtains a time-dependent response function. The kinetic regime has been obtained by el-

iminating the memory by taking an asymptotic limit in time. Explicit calculations have been affected to
V'

obtain functions like the Cerenkov angle and the refractive index as well as the power emitted by the sys-

tem. It has been shown that the radiation emitted has very peculiar polarization features.

PACS number(s): 41.60.—m, 52.20.—j, 05.70.Ln, 95.30.Gv

I. INTRODUCTION

In a series of papers Rankin [l] and Rankin, Stine-
bring, and Weisberg [2] have very exhaustively collected
almost all the known details of emission characteristics of
pulsar radiation and have shown that these facts could be
explained to a fair degree of accuracy by the model pro-
posed by Radhakrishnan and Cook [3] for the Vela pul-
sar. Nearly complete hsts of references up to 1989 are
given in these papers. The radiations are expected to
come from a cone centered around the magnetic axis of a
neutron star rotating with an angular speed of 1000 rpm.
This speed does not seem to be stationary in time. How-
ever, the patchy domains in the cone as depicted by Ran-
kin [l] needs additional mechanisms to maintain an inho-
mogeneously structured magnetosphere in an axially
symmetric dipole field.

We propose in this paper an alternate mechanism
based on the Cerenkov process in a periodic magnetic
field superposed on a constant field. The Cerenkov mech-
anism was already proposed by Bestin, Gurevich and Is-
tomin [4] as a plausible radiation model for pulsars.
However, the inclusion of an undulating magnetic field
would drive the emission cone in an oscillatory process
and produce what is known as the "search light" effect as
in the free-electron-laser (FEL) dynamics. The trajectory
of an electron together with its Cerenkov cone is shown
in Fig. 1. The emission produced by the process is unpo-
larized, whereas the pulsar radiation shows significant
polarization. Also, in the strong magnetic fields existing
in such objects, nonlinear effects, such as curvature
effects, as well as interaction between the synchrotron
and Cerenkov processes resulting in a synergism, must
play a very decisive role in the emission process, and
hence any linear or a quasilinear theory including only
one process or the other at a time would be inadequate to
explain the features satisfactorily. Further, non-
Markovian processes would be significant, which make
the emission frequencies highly time dependent, which
would result in a different kind of spectroscopy of these
objects.

The model we propose here depends on the motion of a
relativistic electron moving in a constant magnetic field
which has been modulated by the very likely presence of
a series of finite-amplitude magnetohydrodynamic
(MHD) waves. This would result in a periodic field'being
imposed on the axial field. Such an arrangement is
known as an axial-wiggler configuration. It was recently
shown [5] that the Hamiltonian characterizing the
motion of an electron in an axial-wiggler magnetic-field
configuration can be made integrable through a series of
canonical transformations. This, however, is in the ab-
sence of medium. The problem of the passage of a rela-
tivistic electron through a nonrelativistic plasma embed-
ding an axial-wiggler field was solved recently [6,7] be-
cause of its importance in FEL dynamics, in the frame-
work of nonequilibrium statistical mechanics as
developed by Prigogine and co-workers [8]. In the astro-
physical context, the ambient magnetic field very likely
gets modified by the presence of finite-amplitude magne-
tohydrodynamic waves. These variations are in general
time dependent and not necessarily periodic, but we con-
sider this as static and spatially periodic in the first ap-
proximation, since the frequency of the MHD waves is
much smaller than all the other frequencies in the system.
The magnetic-field strength is represented by its cyclo-
tron frequencies Qo for the axial field and Q for the
wiggler field and the spatial undulation of the wiggler
field by the wave vector k„. The test particle is denoted

FICx. 1. Trajectory of a relativistic electron in an undulating

magnetic field. The guiding center of the helical trajectory is

anchored on the magnetic-field line. The cones represent the
V'

Cerenkov ones, with the electron at its apex.
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by the suffix T, the plasma particles by 1. The system
also has electromagnetic radiation characterized by A, .
As the particle interacts with the radiation field (A. ) and
the medium particles together with the magnetic fields,
we shall have four characteristic frequencies in the sys-
tem, viz. v&, co &, Qo, and Q, and therefore one should ex-
pect the emerging frequency as a synergic one [9,10] re-
sulting in a masing action. The physical process in this is
that the motion of the relativistic electron moving in the
axial-wiggler field embedded in the quiescent plasma
would generate synchrotron radiation due to the magnet-
ic field, Cerenkov radiation due to plasma medium, and
curvature radiation due to the spatial undulation of the
wiggler field. The effective synchrotron frequency is
given by A=(AO+0 )' . The curvature radiation has
the frequency (U, k ). While the synchrotron radiation is
polarized, the Cerenkov radiation is unpolarized. The di-
pole radiation generated by the plasma particles in the
Cerenkov cone, together with the synchrotron and curva-
ture radiations generated by the electrons, are partly ab-
sorbed by the electron that follows, thereby increasing its
energy. This nonlinear interaction generates synergism
or maser action. Hence the frequency of the emerging ra-
diation will be unique and is a highly complicated func-
tion of these frequencies.

The paper is structured in the following manner. Sec-
tion II gives the Hamiltonian formulation of the problem.
The system consists of (i) a relativistic test particle (T), (ii)
nonrelativistic plasma particles (I), and (iii) an ambient
radiation field (A, ) all in the presence of the axial-wiggler
field, and we use the Hamiltonian of this system to evalu-
ate the time derivatives appearing in the general Liouville
equation in the 6X-dimensional phase space. The formal
solution of this equation is written in the characteristic
coordinate system [Eq. (10)] and this solution is then
transformed into the resolvant space [Eq. (16)]. Section
III consists of a discussion of the noncommuting opera-
tors and the subsequent Baker-Hausdorff expansion. Sec-
tion IV consists of a discussion of the terms appearing in
Eq. (16) that contribute towards the self-consistent-field
approximation which has coefFicients of e n /m, e and m
being electronic charge and mass, respectively, and n is
the concentration in the thermodynamic limit N —+~,
V~ oo; N/V =n. The subset of infinite terms from the
original Dyson series is summed up exactly, giving collec-
tive modes. Section V details the summation of the above
series resulting in the response function in the one-
particle distribution function (OPDF). Using this OPDF,
we evaluate the average energy loss suffered by the test
particle, and in the next section we obtain the expression
for the Cerenkov angle as well as the refractive index [Eq.
(57)]. In Sec. VII, we elaborate the Optics by discussing
the refractive index, as in Sec. VIII we discuss the polar-
ization. Section IX has a detailed discussion of the re-
sults evaluated from the above formulation. Section X
lists the main conclusions. The evaluation of the
response function is detailed in the Appendix.

where

HT=mc (1+u )'

el
Hi =( I/2m') Pi ——3

c

2

(2)

In Eq. (2),

mQo
mcuz =Pz.+ (jx+iy)

2

mQ e+ (icosk z+j sink z) ——3&,
2k c

m&o . . mQ,
P&=P&+ (iy+jx)+ (icosk z+j sink z) .

2 2k

(3)

In Eq. (3), P is the canonical momentum and k is the
wave number of the wiggler field. All these are written in
canonical variables. It may be noted that while uT con-
tain the interaction vector potential Az, P& does not con-
tain the same. Equation (2) may be expanded and the
square term in A will contribute (in the random-phase
approximation [11]) an eff'ective radiation frequency,
v&=(vs+co &)'~, with co

~
being the plasma frequency.

One can write Eq. (2) as

Hz. =mc (1+uz )'

10, = P, (e, /m, c)(P,—. A ),
2m(

(4)

Here now uz. =PT /(1 PT )'~, wh—ich gives
(1+uz )' =(1—Pz )

' —y. Hence the Hamiltonian for
the relativistic particle is mc y. We shall now write the
continuity equation for the Liouville density,

p =p(qT, u T, q~, Pt Jz.

~p + . ~p + . ~p + . . ~p +p . ~p
at 'aq, ' Vu, 'aq, 'ap,

+Jg +ci)g =0,a . a
0Jg Bcog

(6)

and obtain the time derivatives appearing in Eq. (6) from
the Hamiltonian equations. One can write Eq. (6) as

magnetic field (denoted by the cyclotron frequency Qo)
and a wiggler field (A) acting as the inhomogeneous com-
ponent. The system also has a radiation field with fre-
quency v&. The total Hamiltonian is written as

a =0,+ yH, + yH, ,

II. FORMULATION OF THE PROBLEM

The system consists of a relativistic electron passing
through a nonrelativistic plasma embedding an axial

Bp
Bt
p +Xp=exp(5L)p,

where now

(7)
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with

0
e, =—e, + e, = (i cosk z+j sink z)+ —k,0 0 0 A

e2= —i sink z+j cosk z, (10)

XT=cpT.
BqT

()+—e, XpT ~

r T

0 0 Q 0e3= e3 ——e, = — (—i cosk z+j sink z)+ k,0 0 0

+Qe3XPi.

These operators are written in the natura1 coordinates of
the system defined by the unit vectors e, , e2, and e3 as

where e„e2, and e3 are the wiggler coordinates and i, j,
and k form the Cartesian system, 0 =(00+0 ), and ei,
E'2, and e3 are Z dependent in the Cartesian system. But
the Jacobian of transformation from Cartesian to wiggler
systems as well as to the new coordinates is unity. All the
terms in Eq. (6) containing A are included in the (5L)
operator, and this is defined as

(5L ) =A T+%T+~ i +&i,
where the operators are explicitly written as

(8/VV, )'"a,1 ei(QJi since')cos(K& qT) +PX( KiXe i)(Q Jicosco i)si n( K& qT)
C

1/2(8/Vvi) ai J coscoi ei+mQ (e3Xei) cos(K& q&)
P11 Bq, l

1/2
8c a

ai (P ei)cos(K& q T)Q csin(co i) aj,

m) p'~~

' 1/2
a

(PI eicos(K& q&)QJ&sin(coi ) aJ,

In writing Eq. (12) we have used the expression for 2 i as

1/2
Sc

a&[e&(QJ&cosco&)cos(K& q)

+e&(QJ i cos(co i )sin(K& q) ] .

In Eq. (12), a& is a dimensionless number denoting the
strength of interaction, and in these operators we have
written only the k part. The —A. part is obtained by re-
placing cos(K&.q) by sin(Ki„q) and sin(K& q) by

I

—cos(K& q). We have also retained only one term in the
Poisson bracket, as we assume the initial distribution as
angle independent.

We shall now make use of the linear nature of Eq. (7)
and formally integrate, giving the general solution as

p(t) =e 'p(0)+e f dr e " '(5L )p(r), (14)
0

where p(0) is the initial state. Here the first term is the
free Row term in which the initial state is transported to
time t without any change, while the second term con-
tains all of the interactions within the system. We shall
now iterate Eq. (14) to get the general Dyson series as

GO

p(t)= g e"f dt, f dt2 . . f dt„e ' (5L)e ' ' . . (5L)e " ' " (5L)Xe "p(0) .
n ——0 0

(15)

Equation (15) contains all of the information in the series
and hence is the most general solution. It should be real-
ized that Eq. (15) is not a perturbation series but is a gen-
eral solution of the Liouville equation. We now pick up
from this equation terms with (e c/m ) as coefficients. It
is interesting to note that the exponential operators in Eq.
(15) have the time factor as (t —t, ),
(t, tz), . . . , (t„ i t„)—, t„and since (5L) as w—ell as X.

do not contain time explicitly, Eq. (15) is a convolution
series, and hence in the resolvant space, this can be writ-
ten as

p(t)= g e"fdze '"R (z)[(5L)R (z)]"p(0), (16)
1

27K 0

where we have defined the Laplace transform as
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f(z)= Ie"'f (t)dt1

2& 0

and 8 (z) is the LT of the operator e +'. The series (16)
is a geometric progression and hence can be summed up
exactly. In the next section some of the properties of
these operators are discussed.

III. OPERATORS

The propagator exp( —Xr) has members which do not
commute. When written explicitly,

B BrX —= —(cr) P +P +P
1Bx 2By 3Bz

B . BB = cd—3 cosO + sinO
Bx By

A+B

(20)

1 A.
2

=e "exp f dA, B —A[A, B]+,[&,[&,B]]
0

k3
[~,[~ [~»]]]+

noncommuting operators appearing in the propagator
following Fujiwara [12].

We now define

8 8
2BP, 1Pz

(18)

In the new coordinate system with c.3 in the Z direction,
the second part of the operator corresponds to the angu-
lar momentum operator. Hence the operator (18) can be
written as

(21)

where the square bracket is a commutator. Since y is
(1—P )

' it is independent of 8 and

[A,B]= B*,

B . Bc 1P cosO +slI18
Bx By

Q~ B

q BO

—(P3cr)
B

Bz

(19) [A, [AB]]=—

BB*=cd —sinO +cosO
Bx By

2

(22)

(23)

We shall aC'ect a Baker-HausdorA' expansion of these
I

Hence Eq. (21) becomes

e +'=e'n' " e'exp 5 P,sin +Pz 1 —cosc . O, v

Q

B

Bx

P sin —P 1 —coscy . Q~
2 1

B B—(P3cr)
By Z

(24)

If, now, we measure the length in terms of (film QD)'~ and momentum in units of (m A'QD)', we can write Eq. (24) as

CZQ0 aQ0 —

~parcae)

e '=exp — [P sincor+P (1—coster)] + [P (1—cosmos) —P since'] —aQ0P r e
1 2

Bg co 877 Bg

where

(25)

1/2
mc

AQ0

X
co=Qly, P, =P cosO, P~=P sinO, y .=

Z

' 1/2

X

A similar procedure for the operator corresponding to the field particles would give

e ' =exp (P, sinQr+ Pz(1 —cosQr ) + (P, (1—cosQr ) —PzsinQr ) P3Q0r e—
0 8 Q ' Bg

(26)

where IV. MATRIX ELEMENTS OR "DIAGRAMS" IN EQ. (15)

P, =P cosO, P2 =P sinO .

This completes the Baker-Hausdorff expansion of the
propagator. 8„=e '(A q+Xq+A g+Xg}8'„ (27}

We shall next consider the right-hand side of Eq. (15).
One can write the integrand as
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where

The % operators are Poisson brackets, and making use of
a well-known property of Poisson bracket

dxdy U, V =0,

e f dt) fdJ) dc@)„e 'A. )„e 'p(0), (29)

and this term would vanish on integration of action angle
variables of the radiation field, since the vertex A has a
costa& term. Thus the first-order term would vanish.

(b) The second-order term is written as

iXt& T
—iL(t& —t2)

e t& tze &e
0 0

X(A .+% .+A'. +X' )e 'p(0), (30)

where k and A,
' could in general be different. However,

on integration over co& and J& we get a nonvanishing
contribution only when X=X'. Since the field particle in-
dices are integrated out, A ' and B' terms would vanish
and so also A & would vanish on A, integration. Hence the
only term left is

t 1 (XT+J I )t] 7- (ET+XI )(t] t2)
dt, dt2e ' 'A &e

0 0
—

(Mr+Et )t3
(31)

X(~
In this the propagator e ' would be unity as l variables

where U and V are functions vanishing at the boundary,
we see that in Eq. (27) only an A vertex can appear on
the extreme left and that a B vertex will always succeed
an A vertex. With this result, we shall consider few
terms of the series. Furthermore, since we are integrat-
ing over the field particle variables, the series necessarily
have to start with an A vertex.

(a) The first term is when n =1 and this can be written

t2

FIG. 2. The interaction of the particle with the radiation
field. The solid curve in the upper part depicts the test particle
and the slashed curve at the bottom represents a photon. The
square denotes a creation vertex (B) and the circle an annihila-
tion vertex (A). The diagram has to be read from right to left.
The state is taken from zero to t& by the propagator at which a
virtual photon is emitted which is absorbed at t& and finally pro-
pagated to t.

are integrated. We ultimately get

0 0

(32)

and this is represented Fig. 2. The figure has to be read—LTtz
from right to left. The solid line is the propagator e
which takes pT(0) from 0 to t2. At t2 a B vertex creates a
correlation by emitting a virtual photon of wavelength (A, )

and both these are propagated from t2 to t &, the test par-
ticle along the upper line and the radiation by the lower
dashed line. At t, the particle absorbs this radiation and—X(t —t&)
is propagated along e ' to t. This now is said to
have completed an interaction with the field. In the
above, a circle represents an A vertex and a square a B
vertex. The interaction starts at t2, creating a correlation
by the vertex B and is annihilated at t, by the vertex A.
This is the first nonzero term.

The third-order term also vanishes for the same reason
as the first order. The fourth-order terms are given as

t
1 2 7 +(t) 2) 7 7 $ ] +( 2 3) 7 7 jdt, f dt2 f dt3 f dt4e Hie (A) +%3.+A) +%).)e (A)„-+X)„-+Ai.+S) .)

0 0 0 0
X( t3 l4 ) T 7 ) I

—Lt4Xe (Ai +Xi-.+Ai-. +Xi )e p(0) . (33)

If we pick up only the terms in which the test particles
are involved, we get the situation shown in Fig. 3. These
are the only three possibilities in which the test particle is
involved. As there are no field particles participating in
this, there will be two orders of volume appearing in the
matrix element. One volume factor would be absorbed in
the summation over K) as (8m /V) g It:&~f dK&,
while the other volume (inverse) would set the first and
second terms as vanishing in taking the thermodynamic
limit. In the last one, the two terms are identical, and
they have already been accounted for when we take the
first term. This completes the operators with only the

X(t t) ) —
T L(t, —t2)— —

e
—X(3—3) (

— (3 —4) TXe %i e (34a)

L(t t& ) 7 X{t] t2) 7e 'a, e

X(1213) / C(1314)'Xe %)e (34b)

test particle vertices. The remaining terms give different
possibilities depending on the position of these vertices in
the time sequence. However, the nonvanishing terms are
given as follows:
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t
4 2 (b)

a particle index 1 appears, one has to sum over them,
thereby getting 1V. In Fig. 3, there are four vertices and
hence I/V . Conservation of wave vectors gives only one
K&, and after making the above transformation, we are
still left with 1/V. As there are no field particles in-
volved in the above interaction, this matrix element
would vanish on taking the limit V~&x&. All of the
figures !4(a) —4(b) j are 4-vertex diagrams. However, there
is a field particle involved in this which gives a factor X,
which in the thermodynamic limit would give a concen-
tration no. Here, these diagrams are of the order

(c)

e no
2

e
m, mT

2
2

COp)

FIG. 3. The various possibilities of fourth-order interaction
between the test particle and the radiation field, the order being
denoted by the power of e.

All of the subsequent terms would be (e /mT)(co ))",
where n gives the number of field particles involved. We
are now ready to sum the series and obtain the collective
modes. We now consider the subset of diagrams from
Dyson series (15) with coefficients containing the interac-
tion time scale (m /e c)', and this constitutes the self-
consistent-field approximation. We thus get

X(t2 t3 ) )
—X(t3 f4 )

(34d)

Xe ' 'A, e ' 4%' (34c)
—X(t —t, ), —X(~, —~2)

e A~e Aq.

T e
—izedf

1 T
1 —E(z)

(35)

where & T/I and
I T, & are the final and initial states, re-

and these are repreented in Figs. 4(a) —4(d). In Fig. 4(a)
the particle emits a photon at t4 which is absorbed by a
field particle at t3 which is again emitted at t2 and finally
absorbed by the test particle at t). In Fig. 4(b) the field
particle emits photons at t4 and again at t3 and these are
absorbed by the test particles at t2 and t„respectively.
All of these diagrams give rise to distinct series.

We shall now consider density dependence. Wherever

(a)

0-
I

tt tp
(a)

r

I

t3
(b)

B

t3 t4

(b) (c)

tz
(c)

FICx. 4. (a) —(d) are the various interaction possibilities of the
test particle through a radiation field with one field particle.
The different possiblities are due to the position of the vertices
with respect to time.

FICx. 5. Collective interaction to which the test particle is
subjected by the medium and the photon field. Each diagram of
Fig. 4 gives its own collective mode. While Fig. 4(a) gives a sin-

gle response function (single wiggly line) ~ (b) —(d) give two col-
lective modes. This is due to the binary mixture of the interac-
tion.



646 R. PRATAP, K. SASIDHARAN, AND VINOD KRISHAN 47

spectively, of the test particle, and this can be written as

where

lz
u (z)=

zz vg

X fdze

TXSqe 'pT(0},

—iz(, t&
—t2) 1

u (z)
1 —s(z)

(36)

FIG. 6. Diagram representing the series (35) resulting in the
collective mode.

It may be noted that while in Fig. S(a), the is only one
response function, for Figs. 5(b) —5(d) there are two
response functions corresponding to the two segments of
the curly lines in them. This corresponds to two distinct
collective modes and arises because of the binary nature
of elementary interaction. We shall consider the single-
particle distribution function as given by Fig. 5(a).

and e(z), the response function, is given in the Appendix.
The diagram corresponding to Eq. (36) is shown in Fig.
5(a), where the curly line is represented in Fig. 6. We do
get similar diagrams for the other terms appearing in Eq.
(34). These are given in Figs. 5(b) —5(d).

This completes the collective interaction in a plasma.
I

V. THE ONE-PARTICLE DISTRIBUTION
FUNCTION (ODPF)

In evaluating any local property, we require a OPDF.
Substituting the operators in Eq. (36), we can write the
ODPF as

8me 2 t 1f (t)= az g dt, dt2 ez(eq"p)cos[(K& —Kz) qT+p]
K(

Xe 'pT(0) f dz e
1z 1

(z —vq) y(0)
(z —vq)(z —fI )

(37)

where

p pco std t ) p +pe3s—1I1 cot ) 2 + e'3( p E3 )( 1 coscot ) 2 ), (38)

1/2
mc
A'00

(39)

aQO
[e3 pXK&(1 —coscot, 2) —(kz p)singlet, 2]

+(e3 Kz)(e3 p)(singlet, 2 cot, 2), —

with

In writing Eq. (37) we have taken into account the —
A,

part as well. We shall convert the summation over K&
into integration. Also we shall consider the wave-vector
conservation K&—K&=e&l and the corresponding new
polarization ez =ez —e3[(e, ez)/ (Kz e3)]1 such that
ez Kz =0 if ez K&=0. With this, Eq. (37) takes the form

2 2

f (t)=
2 f dK& f dt, f dt2 ez(ez"p)cos(1$+p)e 'pT(0)

2m 7T

x fdze "'" lz

z —[(van+0 +o )/2]

v —0—2 2

+ 1— jz

z —[(van+0 o)/2]— (40)

where

cr =(vq —0 ) +4y(0) . (41)

VI. AVERAGE ENERGY LOSS
BY THE TEST PARTICLE

We can take now the inverse Laplace transform of Eq.
(40), and it is observed that the effective frequency of
emission is [(vz+Q +o }/2]'~ . For cases v&+0 (o
this frequency becomes imaginary and we get absorption.

We shall now evaluate the average rate of loss of ener-

gy by averaging the test particle Hamiltonian using Eq.
(40) and the derivative, finding its time. We, thus, have
after a partial integration
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dE
dt

e a c
2m.2 fdK) f dt2(e& p)(ez p)cos(lg+p)e 'pT(0)

0

cosQ(v &+0 +o )/2(t —tz )

v~ —0
+ 1— cos1/ (v&+f1 —o )/2(t t2)— (42)

We shall construct an initial state from the wave functions of the Klein-Gordon equation without the interaction poten-
tial, weighted with the Boltzmann function as

n, m

Hn 0+p2) —(t))+g) pE„s(q—)s(g)s(t) )s(p) —po)
(43)2"n!&7r

where the eigenvalues E„=mc + [(n + 1/2)+(P3 /2)])!00. We shall substitute this
in Eq. (42), transform u integrations to p integration by writing du =y dp, and perform g', g integrations, and after
summing over the Landau levels, we get

2 2

1 f dK) fdpf dg f dt2(e)„p)(e~"p)cos(t]5(g aQ0p—3t2)5(p )dt 27T2 0

v~ —0
X 5(p3 —

p() ) 1+ cosQ(v&+0 +o.)/2(t —t2) (44)

where now

o.'Qo
[(p]K2 p2K, )(1——cos0)t]2) —(p,K, +p2K2)sin0)t]~ j

a00+ 1 —p2+ 1+ (p]sin0)tz+ p2(1 —coscot2 ) —(ap3K300)t]2

(45)

5 2er =y'a2~
—

( 1 /4)coth(PAGO/2)

pA'0()
2 sinh

2

We now perform the p integration and get Eq. (44) as

2p
z p0 f dt2 f zdvzdvpd tf(d)g (1—

]M ) — sin8cos(t
dl 2~2c 2 o

~2 Q2
X cos( aK),p000I), t t 2 ) 1+—
Xcos+(van+0 +cr )/2t —t~5(g —P000t~) . (46)

Equation (46) contains two terms as far as the propagation vector is concerned, the second one depending on the azimu-
thal angle (t). We have expressed Kz in spherical polar coordinates. Again from the 5 functions, it becomes obvious
that g has a range from 0 to p0Q0t. We can now perform t2 integration and write the power radiated per unit length as
a function of time after integrating over t2 as

e I p() v~ —Qf v)'dvtdp f dg(1 —]M') 1+
c 4~Go CT

X cos(aKqp000(M++(v&+0 +o.)/2) t—
0 0

+cos(aK&P000(((, —Q(v&+0 o. )/2) t— (47)
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Integrating over g and taking asymptotic limit in time, Eq. (47) takes the form

z z f vzdvzdp(1 —p ) 1+
4~ c 0

X[5[aQDKQ p+Q(v&+0 +sr) /2]+5(aQDKQ~ —Q(v2&+0 +o )/2)), (48)

which gives the resonance condition, thereby giving the
usual Cerenkov angle as

v +Q +
p= + (49)

2pav ~

If we now integrate Eq. (48) over p, we get

VIII. POLARIZATION

The new polarization is given by

e&-e
ex.=ez —e3 l,Kz.e,

which in Cartesian coordinates becomes

(55)

d E
dl dQ

e I pa vg —B
, ,

' fv,dv, 1+
4~ c 0

AEe, =e& + cosk z,0
v~+Q +o.

x 1—
2P0v q

(50)

One can realize from the definition of o in Eq. (41), that
r

OF .e, =e& + sink z,
Q

00e, =e& — F,0

(56)

v~ —A
2vgd vg 1 + =d(vg+Q +o. )=dao (51)

with

and with this Eq. (50) can be written as

dE el
djdQ 2

e I 1f codco 1
c p(yv

where

(52)

QD(ez, cosk z+e&2sink z)+Ac&3 I,
Q(IC&, cosk z+IC&2sink~z) —0+$3

1F= (ez cosk z+ez sink z)
2

(58)

where e&, e&, e&, K&, K&, and K& are initial polar-
I 2 3 1 2 3

ization and initial wave vector components in the Carte-
sian system. If we now set e& =0 and K& =K& =0 ini-

3 1 2

tially, we then have

Q co 0 2A co

Equation (52) is the form of the Cerenkov conditions as
given by Frank & Tamm [13].

VII. OPTICS OF THE SYSTEM

Equation (53) gives the refractive index of the medium.
This consists of three terms: the first is that of vacuum„
the second is the refractive index of the photon gas with
the efFective frequency as given by Eq. (51), while the
third depends on the shifted frequency due to synchro-
tron radiation. Equation (53) can also be written as

and

e, =e, (1+acos k z)+e2asink zcosk z
1

CX CX=e 1+—+—e cos(2k z —8),1 2 2 P w

e, =e,a sink z cosk z+e2(1+a sin k„z)
2

=e 1+—+—e sin(2k z —0),e n
2 2 2 P w

QD
ez, = —a (e, cosk z+ezsink z)

3 Q

(59)

X =1+ 4
co (2Q —co )

(54) 00
e cos(2k z —8),0

where now the second term depends on y. In this form
the second term depends on plasma frequency through g
as defined in (A24) and through the efFective frequency
given by Eq. (51). If now we set 1 =k, the wiggler wave
number, the function y oscillates with respect to k as a
Bessel function of the zeroth order. The evaluation of
these functions under various conditions is given in Sec.
IX.

10
where a=

K~A

In the absence of the Wiggler field, a=0 and the polar-
ization is maintained as the original one; i.e., the axial
magnetic field left to itself will introduce an additional
polarization only in the Z direction. However, at points
at which 2k z —t9=m. /4 we get a circular polarization
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—[2a(a+2)sink zcosk z]e,e, =(1+a) .
1 2

(60)

The associated determinant of Eq. (60) has the value
(1+a), which is positive definite. Hence Eq. (60) it an
equation for an ellipse and the emerging radiation is ellip-
tically polarized. If now e&2 =0, i.e., if the incident beam
is plane polarized, we still have an elliptically polarized
beam with

condition, while at points where 2k„z —8=(2n +1)~r/2
we have the modified polarization being plane polarized.
At points where 2k z —O=nm we get a plane polariza-
tion in the X-Y plane with a finite axial component.

Solving the set of equations in (59) for e, and e2 and
imposing the condition e, +e 2

= 1, we get an equation re-
lating e, and e, as

1 2

(1+aa+2sin k„z)ez, +(1+aa+2cos k z)e,
1 2

(3) (2) (1 }
510 350 170.00

488 326 160.00—

466 302 150.00—

no
444 278 140.00—

/

422 254 130.00
lgr /

/

400 230 120.00
120.00 120.30 120 ~ 60 120.90

200 210 220 230
280 296 312 X 328

121.20 121.50(1 )
240 250 ( 2)

360 (3)

FIG. 7. A plot of the efFective frequency co as a function of
the ambient radiation frequency normalized to the synchrotron
frequency.

2

1 +
2(l+acos k z)

2

2

2asin k zcos k z
(61)

IX. DISCUSSION

(3)
1.0

(2) (1)
1.0 1.00

— (o)

We shall discuss in this section the importance of the
various relations evaluated in the previous sections. To
calculate the different quantities, we shall define the
difFerent frequencies normalized to the synchrotron fre-
quency due to the axial magnetic field. Thus

~p& 0x=, y=, z=
0 0 0

(62)

098 0 9 090—

0.96 0.8 0.80—

p
2

0.90 0.7 0,70—

0.92 0, 6 0.60—

/
/

/
/

/
/

/

/

Vth fiQ0
2PlV th

0.90 0.5 0.50
120.00 120 40 120.80 121.20

200 210 220 230
290 304 318 X 33 2

121.59 121.98(" )
240 250 (2)
346 360 (3)

where v,h is the thermal velocity of the ambient plasma,
p=(kT) ', T being temperature and k the Boltzmann
constant. In terms of these variables we write

(3) (~) (1)
10 10 100

Pfi00
coth

4 2

4i Q 1 +z 2 ( 1 —2+piriQD)

PA'00 PfiQD
sinh

2

and y0 as given in Eq. (%24) is written as

J ( /Q 1 + 2
)J 1 + 1 +z

y2(Z2+y2)3/2

x +y z

This enables us to define o. as given in Eq. (41) as

o (0)x +y —z —1)4
n40 040

and hence the effective frequency

(63)

(64)

(65)

0.98 0.9 0.88—

0.96 0.8 0.76—

p
2

0.94 0.7 0.64—

0.92 0.6 0.52—

0.90 0.5 0.40 1 ( 1 ( i I
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0

FIG. 8. A plot of p (=cos 0), 0 being the semivertical angle
of the Cerenkov cone (a) as a function of X=uz/Qo and (b) a
function of co/fto equal to the effective frequency. The solid
curve for the first window, the slashed one is for second win-

dow, and the slashed-crossed one is for window 3. The ampli-
tude and frequencies for the various windows are given on the Y
and Xaxes.
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TABLE I. Allowed ranges of frequencies (X), effective frequencies (co/Ao), p square of the cosine of
the Cerenkov angle (0), refractive index (X ) and power P. The last column indicate the total power
contained in the frequency interval. These are evaluated for c/U~ =1.62, U„being the Alfven velocity.
The thermal velocity is taken as 0. 1c (=U,h).

X

121.47
120.58

126.71
169.59

0.5441
0.9891

42.5'
60

1.8383
1.0113

57.78
1.88

hpA(co/0 )

2397

R2 210.0
237.0

234.28
333~ 16

0.6223
0.9881

38
6.3'

1.6070
1.0121

88.50
4.00

8355

R3 291.0
359.0

409.41
505.14

0.9897
0.9899

60

60
1.0104
1.0102

4.23
5.11

= x'+y'+z'+1+
2Q0

1/2

(66)

Having defined these different frequencies we now consid-
er Eq. (49) for the Cerenkov angle. Equation (46) gives
the cosine of this angle and this value lies between 0 and
1. Hence Eq. (49) gives a domain of validity for these an-
gles, viz.

creasing frequency and the medium behaves like a vacu-
um for higher frequencies. Figures 10(a)and 10(b) are
plots of emitted power as a function of x and co/Qo.
While as a function of x, the power structure is peculiar,
the power shows a nonthermal structure with a negative
slope as a function of the effective frequency. Again, to-
tal power is more in the middle window and is small for
the higher window. Thus, as the window changes, radia-

0&
x +y +z +1+

00
2PO(x +y )

(67)
(3) (2) (1)

1.20 1.80 2.00
— (o)

For a preassigned value of y (=1.62) and Z =0. 1 and
also 1/k =0. 1, and U,&

=0. lc, relation (67) gives three al-
lowed domains for x (=120.58—121.47; 210—237, and
291—359) through which emission takes place. The
effective frequency m/00 as a function of x for the above
set of values is plotted in Fig. 7. The solid curve is for
the first range, the slashed curve for the second domain,
and the curve with slash and cross corresponds to the
third window. It can be seen that the curvature continu-
ously changes as the windows change, i.e., the slope at
every point changes its sign from negative to positive for
the different windows. Figure 8(a) is a plot of p as a
function of x. Here again the above feature is evident in
which for the third window the refractive index is almost
unity, so much so that the system behaves almost as a
vacuum for this window. Figure 8(b) is a plot of p as a
function of the effective frequency co/Q0. However, as
the windows change, there is no change in the sign of the
slope, but it decreases towards unity as the frequency in-
creases, i.e., p —=1, thereby giving the semivertical angle
close to zero. Radiation in this range is therefore
confined to a cone of very narrow apex angle. The corre-
sponding angles are given in Table I. It may be seen that
the higher frequencies are confined to the inner surface of
the annular cone, while lower frequencies are confined to
the periphery. Figures 9(a) and 9(b) give the plots of the
refractive index as a function of x and co/Q0. Here again,
while the curves get drastically changed in their structure
in Fig. 9(a), in Fig. 9(b) the refractive index steadily falls
from a higher value to unity as the effective frequency in-
creases, which implies that dispersion decreases with in-

1.16 1.62 1.80—

1.12 1 . 44 1.60—

N

1.08 1.26 1.40—

1.04 1.08 1.20—

1.00 0,09 1 00
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312 y 328
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344 360

1.16 1.80 1.80

1.12 1.60 1.60

N

1.08 1.40 1.4 0

1.04 1, 20 1.20

1.0 1 ~ 00 1.00
12 0.00
230
400

130.0 0 140.00 150.00
252 274 — 296
422 444 ~o 466

160.00 170.00
318 340 (2 i

488 510 {3~

FIG. 9. Refractive index (square) of the plasma medium (a)
as a function of X and (b) as a function of the effective frequen-
cy.
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FICx. 11. Plot of m/Ao as a function of X for the three dis-
tinct allowed windows for y = 10 which is the same as P= 1.
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FIG. 10. The power output (a) as a function of X and (b) as
functions of co/Qo. All of these curves are with y =1.02,
z =0.1.
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tion power increases and decreases. Thus, in the above
discussion, it become increasingly evident that one should
consider the various quantities as functions of effective
radiation frequency and that the ambient radiation acts
only as a trigger to effect interaction in the spirit of the
spontaneous emission. These results are presented in
Table I.

To study the effect of plasma density on the emission
mechanism, we repeated the above calculation for y = 10
which corresponds to (c/v~) =10, v~ being the Alfven
velocity. This defines a new frequency as
v„=(ck ) /10). Figure 11 is a plot of co/Qo as a func-
tion of x. Compared with Fig. 7, the curves show com-
pletely different structure for this value of y, and also the
range intervals are different. For the three ranges, con-
cavity in Fig. (7) has changed to convexity in the present
one.

Figure 12 is a plot of p as a function of co/Op. The
three domains over which the inequality is satisfied are
given in Table II. One could observe that in the first
range, higher frequencies are radiated with a smaller
semivertical angle, while the lower ones are radiated at
the other periphery of the hollow cone. This trend is

(3) (2) (~ )

2.0 2.0 1.80

1.8 1.8

1, 6 1.6

N

1.64 ~

1.48—

1. 4 1.4 1.32—

1.2 1.2 1 ~ 16

1. 0 1. 0 1 00
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300 320 340 — 360
400 440 480 ~() 52 0

330.00 350.00 (1)
380 400 (2)
560 600 (3)

FICs. 13. A plot of the refractive index as a function of the
effective frequency for the three windows.

FIG. 12. The square of the cosine of the Cerenkov angle as a
function of co/Qo in the second set of three windows (y = 10).
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TABLE II. The allowed ranges of frequencies when the ratio of the velocity of light to the Alfven
speed is 10. The various quantities are as defined in Table I, i.e., eftective frequency (co/Ao), Cerenkov
angle 0, p' ( =cos 0), refractive index (X ), power P, and total power (b,P) [A(co/Ao)].

Range

239
241

268.14
339.40

0.6345
0.9525

37'9'
12'34'

N

1.5917
1.0143

P
(ergs/sec Hz)

99.68
4.80

Ap 6(co/00)

6761

R2 285
279

299.81
379.88

0.6059
0.9350

38'42'
14 46'

1.8133
1.0802

134.47
28.21

8508

R3 373
424

383.97
596.40

0.5348
0.9986

43'
2

1.8887
1.0114

180.67
6.72

36952

(3) (2) (& )
190 135.0 100.00

Jr

153 113 . 0 80 ~ 00—

116 91 ~ 0 60.00—

79 69.0 40.00—

42 47. 0 20.00

5 25.0 000 i I I I i I I I
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375 420 465 ~o 51 0 555 600 (3)

FICx. 14. Emitted power as a function of co/Qo for y =10.
Again, the solid curve is for the first window, the slashed one is
for the second, and the slash and cross is for the outermost win-
dow.

again preserved in R2 and R 3, as can be seen from Fig.
12. However, in the case of the refractive index, as given
in Fig. 13, the function decreases to unity as the effective
frequency increases. The dispersion decreases and the
medium becomes more and more transparent with in-
creasing frequency. As regards power, there is more
power in the lower frequencies as compared to the higher
ones, which is depicted in Fig. 14. There is very little
power in the range R3, while there is more power in the
rniddle range. These features are also observed in Table
I. In the case of P=1, power content increases as the
range increases, which again has been seen in Table I.
The results are collected in Table II.

The above two tables reveal another feature, viz. , if we
take the product of the difference in power and the
effective frequency interval, in the first case it increases
and then decreases, while in the second case it steadily in-
creases. This gives the qualitative behavior of the in-
tegrated power in the given interval. To obtain this
analytically would, however, be difticult.

X. CONCLUSIONS

The main conclusion in this yaper are (a) radiation is
confined to a set of concentric Cerenkov cones, and these
cones travel along a helical path, with its guiding center
being confined to an undulating magnetic-field line. This
poses the cone towards the observer at regular intervals,
giving what is generally known as the searchlight effect.
If we identify the wiggler as formed by Alfven waves,
then the frequency of emission observed would be a func-
tion of this frequency as well. The argument of the Bessel
function has the term 1p0, where I is the wave number
and p0 is the Z component of the momentum, all being
dimensionless. If we now take

P0
lpo =QA/m QoI

m A'0

lP,
mQ0
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where I and p0 have dimension and are identified as
l =k„and p0 =m Vz, Vz being the Alfven velocity, we
then have lpo=(k V„)/Ao, where k V„ is the Alfven
frequency. This could be a plausible explanation for the
periodic emissions from astrophysical objects. (b) The
full nonlinear effects, when taken into account, give a
growth structure for the power spectrum which is explic-
itly shown in model calculations. The plasma density at
the emitting source plays a crucial role in determining
the frequency windows, indicating the existence of al-
lowed and forbidden frequency ranges. (c) The refractive
index is always greater than unity, as is expected for a
Cerenkov process. (d) The power spectrum is non-
thermal, as has been observed in the case of pulsars. (e)
The nonlinear radiation as well as the curvature radiation
produce a series of synergic frequencies (f). We have
identified a natural coordinate system for the plasma
embedding an axial and wiggler magnetic fields.



47 CHARACTERISTICS OF SYNCHROTRON CERENKOV RADIATION

APPENDIX: EVALUATION OF RESPONSE FUNCTION C(z)

653

We take the first nonzero matrix element and we evaluate the average energy. The first propagator becomes unity,
and we get the term e, the leading term in the series, as

S~e 2
1

—Xt2 —iz(t& —t2)f dt, f dt2 [e&(ez"P)cos(kz qT)cos(Kq. qT+P)e 'pT(0)]tt)dz e ' ' u(z),
0 0 BQ

(A 1)

where now

u(z)= LZ

Z Vg
2 —2

P—P coscot)2+PX E3slncot (2 +F3(P E3 )( 1'coscot (2 )

aQO
[e3 PXK~(1 —cos~t, z) —Kz Psimot, 2+(e3 Kz)(e3 P)(singlet, z

—cot&z)], (A2)

with

fL mcco= —,a=
y

'
A'Ao

If we now add the —A. part, we get

8m.e 2

p~, ~

= f dt, f dt2 [ez(ez"P)cos[(K& —Kz).qT+P)]e 'pT(0)fdz e
0 o Bu

"u(z) . (A3)

The next term in the series is

8p' '= f dt& f dt2 [ez(ez"P)cos[(EC& Kz).qT+P]—e 'pT(0) j fdz e
0 0 BU

"u (z)b, (z), (A4)

where

h(z) =f dz e
oz Vv~

dt, dt~sinv~t34 f dp, dqI [(e&.p, )(ez Kz)sin[(K& —Kz) q, +P]
0 0

—Xt3
+mQeq e3Xeqcos[(K& —K&) qi+P] je 'pi(0), (A5)

with

Ao
[ —(K& P&) i Qsnt +23@ P3I XK&(1 cosQt23) . —

0
where

(A9)

, H„(X)
'p(0) =g e 5(P P)5(P P—)—

2"n!&m.

Xe "5(rj)5(g),

+K3P3(sinQt23 Qt23 )] (A6)

We now take an initial state constructed out of the wave
functions of the unperturbed part of the Hamiltonian as

00
X=g+P2 — 1 — P(sin(Qt3 —8)+sinL9) .

A

We shall now impose a wave vector conservation

(A10)

pl(0)= Xe (p +g) H (P2+g)
2"n!&7r

Kg.=Kg+ eiI,
which gives

(A 1 1)

X5(P)5(P3 P3)e "5(g)5(g), — (A7) (ez e, )

(K )1 (A12)

where E„=(n+1/2)A'Qo .

On operating with e 'pT(0) we have

(A8) such that ez"K&.=0. We shall now perform the g in-

tegration, which is the same as X integration, and we
then have Eq. (A5) as
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Ezt 1P S~e 2 '3
h(z) = fdz e " f dt3 f dt4sinv&. t34

pyg P'~~, 0 0

X fdp][(e&.p, )(ez Kz)sinp+mQ(e~ e3xe~)cosp]

j'2
XI.„—e ' e "5(P Pp —)5(P3 P3—), (A13)

where L„are Laguerre polynomials and

00p=P [ —(E3 cos8+K& sin8)sinQt230 1 2

+ (K3 cos8 —K3 sin8)( 1 co—sQt&3 ) ]

001+ (sin(Qt3 —8)+sin8)0 (A14)

say,

l 12~4
—PI &,[~+&&2)

L —e eIl

n

I3]]1f1p
coth

e4

P]]10p
2sinh

2

(A15)

We shall now sum over the Landau levels using the gen-
erating functions for the Laguerre polynomials and write, We can then write Eq. (A13) as

2
ized 2

b, (z)= — 2 11 f dz e "f dt3 f dt4sinv], t34 fdP](e]„P])(e3 e])sin(p)5(P Pp)5(P3 P—3), —
0 0

(A16)

where we have used Eq. (A12) and again summed up over 1 giving an N which in the thermodynamic limit N/V gives a
concentration resulting in the plasma frequency to ] (=4m ne Im).

We shall now sum over the polarization vector using the relation

(K,xa) ~ (K,xb)
(e„a)(e3 b)=

E~
(A17)

and write

co I I l2
Ezt12 2 3

b, (z)= —2 f dz e "f dt3 f dt4sinv] t34 f P,dP, d8dP3 P]—
0 0

K, .(Kg.P] )
1

Xsin(p )5(P Pp )5(P3 P3 )—, — (A18)

where now

00 Qt23 Qt23
P = —2 PK4sin8k sin cos l)]lk

—8 +0 2 ~ 2
K3$P3 Qpt23 + 1 PA sin( 8]l

—a ) (A19)

where

2 '2
00 00+ 1+0 0

Q01+ cosQt3 .0 (A20)

After performing the integration with respect to P, P3, and 0~ we have

g(z)
(z —v3)(z —0 )

where

(A21)
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Qo
y(z) = 2topi 0

Qo1+ Po(Po —2)0
e ' ~ cosh[(PA'Qo/2]

sinh(PtrtQo) /2

&o Ao
X g e„J„Pol J„((1+ )Pol )flvq

Q 0
(n+l[3z +(n+1)Q] —vz)(z —vz)(z —0 )

[z —[(n + I )0) ] [z —[(n + 1)Q—v~] ] [z —[(n + 1)A+ v~] ]

(n —1)[3z +[(n —1)fl] —v~](z —v~)(z —0 )

[z —[(n —1)A] ] [z —[(n —l)0+v~] ] [z —[(n —1)O—v~] ]
(A22)

In evaluating these integrals, we had obtained Jo(Po A ),
A being given by Eq. (A20), and this was expanded using
the addition theorem in the Bessel function and the most
dominated terms in Eq. (22) when taking the Marconian
limit (i.e., t ~ ae or Z —+0). We get

(A23)

where now

Qo v~
y(0) = + 4n.co |Qo 1+ Po(Po —2)I

Q v~ —Q

A,o
X Jo 1Po Jo(IPo(1+Go/fI)) .

0
This completes the evaluation of the response function.
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