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Impact ionization in nonideal plasmas in a strong electric field
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The influence of an applied electric field on the impact ionization and on the mass-action law of
a nonideal hydrogen plasma is discussed. The coupling of field and many-body effects leads to a
minimum behavior of the impact-ionization coefficient as a function of the plasma density.
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The effects of an electric field on the atomic processes
in plasmas and solids are of current interest for different
fields of research [1-4]. Especially, progress in dense-
plasma physics requires the study of the influence of
strong electric fields on nonideal plasmas [5]. The be-
havior of a nonideal dense plasma is determined by the
degeneracy if we have

A = +/2nh? /mkpT

and by the strong Coulomb correlation if

nA3 > 1,

nld > 1,

Here | = €2/(kgT) is the Landau length and r; = d/ag
is the Brueckner parameter with the mean particle dis-
tance d and the Bohr radius ag. Under these conditions
many-particle effects may be expected such as screen-
ing, self-energy, and the lowering of the ionization energy.
All these effects influence essentially the ionization and
recombination processes in a partially ionized plasma.
Therefore, a strong modification of the reaction rates at
higher plasma densities may be expected [6].
Furthermore, the ionization kinetics in plasmas is con-
nected with the application of a strong electric field in
many cases. The latter modifies the ionization rates at

re >1.

1 d®p, d%p. d%p, d3P dp,

lower densities because the mean-free-path length is large
and the external electric field accelerates the electrons to
energies which are sufficient for impact ionization.

In this paper we will study the impact ionization in
plasmas which results from a coupling of nonideality and
an applied strong electric field. Thereby we assume that
the field strengths are sufficiently high enough for im-
pact ionization but not so strong that field emission takes
place. As a test plasma we consider a nonideal hydrogen
plasma.

The equations of ionization kinetics may be obtained
from generalized Boltzmann equations for reactive sys-
tems in external fields in which many particle effects,
such as mentioned above, are taken into account [7-10].
Following these papers we obtain for the electron number
density ne

On, ‘ ;
6_7; = Z Z(aflnanj — Bingneny) . (1)

a=e,p j

Here n, and n; are the number densities of the protons
and of the hydrogen atoms in the state |j), respectively.
If degeneracy effects are neglected one gets the following
statistical expressions for the rate coefficients of ioniza-
tion and recombination
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Here T°? is the three-particle scattering operator for
impact ionization and three-body recombination pro-
cesses. The energies of the free electrons and protons are
quasiparticle energies given by the well-known dispersion
relation

p2
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YR (p,w, t) is the quantum-statistical retarded self-energy
function. In order to simplify the problem we use the
approximation of thermal-averaged shifts [11]

2
Eo(p,t) = &

2ma, + Aa(t) ’

where A, has to be determined from
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J ®pReZE(p,r,t) a—giffa (py7yt)

Ag(r,t) =
( [ @pzomfalp,r,t)
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It can be shown that the thermal-averaged shift is related
to the chemical potential by

e

The explicit expressions of these quantities can be found in [18].

dynamically screened effective potential is given by

VEE (papbaz) = Van(q) [1 + /

—00
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np(w) +1

fa = pid + A, . (6)

In the following we use for the self-energy the random-
phase approximation (RPA). Further, in nonideal plas-
mas the two-particle energies and the wave functions ¥p,,
for bound states (v = j) and for scattering states (v = p)
are given by an effective wave equation [12, 18]

2
(575 + ff + AL (pepp2) — ‘) Upy(Pe, Ppy 2) = [ = fe(pe) = fe(pe)] / Vel (peppa2) U pu (pe + 4, Pp — 4,2)d% = 0.

(7)

If the nondegenerate case is considered, the

X
zZ—Ww

The dynamical self-energy and the effective potential
are connected by

Zg(papbz)=/(2 h)3[ X (Papbg2) — Van(9)] -
9

The dynamical screening can be evaluated [18] and yields
an effect of around 8% to transport properties. The ki-
netic features considered in this paper are of greater value
as can be seen below, so that we can neglect the influ-
ence of dynamics in (9). In the static limit the effective

potential simplifies to
Van(9) ¢\~
E(Q’ O) = q2 + P ’

€(g,0) ’

A (pappq,0) =

where V,; is the Coulombic potential and € the static -

dielectric function. From the effective wave equation the
quasiparticle energies of the electron-proton pairs can be
calculated. We have for the scattering states

P2 p2

Ep, = ——
Pr ZmH + 2me
and for the bound states
2

2my

Here E0 is the binding energy of an isolated hydrogen
atom and A; is the atomic energy shift due to the sur-
rounding plasma. Therefore we obtain the following ex-
pression for the lowering of the ionization energy:

ALy = Ao+ Dy — A

Let us come back to the ionization coefficient . Because
of the large mass difference between electrons and ions

+ A+ A,

Ep; =

+EY + A

— €a(Pa) — €6(P6 — @)

np(w) +1 )] ®)

Z—w —€q(Pa + q) — €u(Pb)

[

the adiabatic approximation can be applied. Further, we
use a modified first Born approximation [13]

<papepp|T02|jpﬁa> = (pa|<+pepp I‘/eeeﬂljpﬂﬁa)

where |p.pp+)| Pj) are scattering and bound-state solu-
tions of the effective wave equation.

It follows for the ionization coefficient of electron im-
pact:

. 87 /°° ion
al = ——a— de f(e, E)ec;" (e, E) . 10
¢ (27h)3n, |E;|+AT # ) ’ ( ) (10)

In the following E denotes the electric field. Further on
we have introduced the ionization cross section by

ion  8Th? [Pmex dmex 2
gion = o / dprdQﬁ/ qdq |V (q) Pjp(9)]
Pelp Jo 9min

(11)

Here iiq = pe — Pe denotes the momentum transfer of
the projectile and

Pmax = (pg —2m, Ieﬂ) 1/2
Pe (pe — 2meI°f —

RQmin = Pe — Pe ,
RAgmax = De + Pe

’

1/2
)

follow from energy conservation where the effective ion-
ization energy is given by I7 of — |E;| + AL
With P;; we denote the atomic form factor

P(@ = [ ¥ TEmeter (12)

For the determination of o we have to solve two prob-
lems: (i) the calculation of o7°™ on the basis of the effec-
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tive Schrédinger equation and (ii) the determination of
the electron distribution function f. in a strong electric
field.

Let us consider the first problem. The simplest ap-
proximation for a§°“ follows if we restrict ourselves to
ground-state ionization. Using the effective wave equa-
tion (7) the wave functions ¥ (r) ¥F(r) and with (11)
the ionization cross section can be calculated [13]. The
result for the ionization cross section as a function of the
electron-impact energy for different screening parameters
is shown in Fig. 1. One can see that the threshold energy
moves down to zero with increasing screening as well as
the maximum of ionization-coefficient increases.

Using the Coulomb potential for V& and Coulombic
wave functions but taking into account quasiparticle en-
ergies, the following modified Bethe formula is a good
approximation [6]:

; E
ot = 2.57ra(2)l?11 In

E—Ae—AP+A1
13
Bl (13)

with € = p2/2m..

Next we look at the distribution function in an external
field. The determination of f. in a strong electric field
starting from a kinetic equation is a well-known problem.
To account for anisotropy in a first approximation we
write

fe= fg + fe1 cos? , (14)

where f2 is the isotropic part which includes the field
dependence explicitly. If we insert (14) in the electron
kinetic equation assuming the diffusion approximation
and the stationary case we arrive at

Lo [p(eEn_mel| o S )1 =
p2 6p {p (3 fe MH Te [pfe +kaapfe —0!
(15)
9 0 1 1 _
eEapfe Jerfe =0. (16)

Here the contributions of collisions are included in the
energy- and momentum-relaxation time [14, 15]
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FIG. 1. for electron im-

where the collision frequencies v are connected with the
quantum-mechanical cross section o by

Y4 T
Vg = —ngol .
T mg e

a
We want to solve Egs. (15) and (16) under the usual
boundary condition. The result is the well-known
Dawydow expression

€ de
0 _ —
fo = Cexp /0 pEn mﬂe;:?T — | - 17

In order to determine f2 from (17) the cross sections must
be known. In the case of electron-proton collisions the
scattering phase shifts were calculated by a numerical so-
lution of Schrédinger’s equation assuming the statically
screened Debye potential. The elastic scattering of elec-
trons on hydrogen atoms in the ground state was treated
using the adiabatic-exchange model taking into account
a screened polarization potential [16]. For the excited
processes we have used a semiempirical formula given by
Drawin [17].

Now let us return to the ionization and recombination
processes. First we consider the stationary solution of
the rate equation (1). In this case we have for atoms in
the ground state

1
na_ Pe
Nenp ol

(18)

This is a mass-action law which determines the plasma
composition. But, if a significant number of electrons ex-
ceeds the threshold energy due to the strong field and due
to the lowering of ionization energy, this equation is no
longer the thermodynamic mass-action law. We have a
nonequilibrium Saha equation caused by the strong elec-
trical field. Therefore the rate coefficients have to be
determined by the distribution function (17), which de-
pends on the plasma composition itself. We solved this
problem by an iteration procedure introducing an effec-
tive temperature at each step which enters the self-energy
shifts,

T(B) = o (Fian(E))

This effective temperature is just defined in order to re-
produce the field dependence of the mean kinetic energy
and the particle flux determined by the distribution func-
tion (17). With the help of this effective electron tem-
perature we can calculate all many-particle shifts by a
displaced Maxwellian distribution. This procedure en-
sures the main features of the distribution function (17)
as well as the self-consistent solution to the plasma com-
position and does not change the result compared with
using the Dawydow expression itself. The results for the
distribution function which follows from (17) together
with the ionization cross section can be seen in Fig. 2.
In the low-density regime we observe a fine splitting of
the ionization cross section due to the applied electric
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FIG. 2. The self-consistent distribution functions for dif-
ferent field strengths (arbitrary units) in comparison with the
field-dependent ionization cross section vs momentum for a
constant screening parameter of 0.01ka, .

field. Further on the high energetic tail of the distri-
bution function increases and both effects contribute to
an enhancement of ionization processes. The situation is
very different at high densities, as we can see in Fig. 3.
Whereas at zero electric field and neglecting many-body
effects (AI; = 0) a very small fraction of electrons is
sufficiently high energetic for impact ionization, the frac-
tion of electrons capable for impact ionization is strongly
increased by the lowering of threshold due to screening
effects at higher densities (with a large AIy). Here the
electric fields of Fig. 2 have no remarkable influence.

In the same manner we have used (18) in order to de-
termine the degree of ionization a = ne/(n. + nu). The
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FIG. 3. The self-consistent distribution functions for same

field strengths (arbitrary units) with the corresponding ion-
ization cross section vs momentum for a constant screening
parameter of lka, as well as for a vanishing screening of
0.001xa,.
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FIG. 4. The ionization degree vs total electron density for
different applied electric fields and for one density selected
over the field.

result is shown in Fig. 4. The sharp drop of the number
of atoms at higher densities is due to the lowering of the
ionization energy Al , the so-called Mott transition. On
the other hand, we observe deviations from the equilib-
rium mass-action law at lower densities. Here the drop
in the number of atoms is the result of impact ioniza-
tion by field-excited electrons, as it is to be seen in the
figure. Finally let us consider the density dependence of
the ionization coefficient which follows from (10) using
the impact-ionization cross section (13) and the distribu-
tion function (17) in Fig. 5. Again two density regions
can be observed with a different behavior of a;. In the
low-density case the electrons are strongly accelerated by
the field and therefore we have higher ionization rates in
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FIG. 5. Ionization coefficient vs total electron density for

three different applied electric fields.
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comparison to the zero-field case. At high densities the
many-particle effects dominate which leads to an expo-
nential increase of a. In dependence of the field strength
a separation of these two effects is observed in the region
of moderate densities. The result is a minimum behavior

of the ionization coefficient. The minimum vanishes at
strong fields because of the overlap of field and plasma
medium effects. In a forthcoming paper we will present
some details of the calculation and we will discuss the in-
fluence of strong fields on the recombination coefficient.
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