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Impact ionization in nonideal plasmas in a strong electric field
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The influence of an applied electric field on the impact ionization and on the mass-action law of
a nonideal hydrogen plasma is discussed. The coupling of field and many-body eR'ects leads to a
minimum behavior of the impact-ionization coefBcient as a function of the plasma density.
PACS numbers: 52.25—.b, 05.20.Dd, 82.20.Mj, 34.80.Dp
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Here t = e /(k~T) is the Landau length and r, = d/ao
is the Brueckner parameter with the mean particle dis-
tance d and the Bohr radius ao. Under these conditions
many-particle effects may be expected such as screen-
ing, self-energy, and the lowering of the ionization energy.
All these effects inHuence essentially the ionization and
recombination processes in a partially ionized plasma.
Therefore, a strong modification of the reaction rates at
higher plasma densities may be expected [6].

Furthermore, the ionization kinetics in plasmas is con-
nected with the application of a strong electric field in
many cases. The latter modifies the ionization rates at

The effects of an electric field on the atomic processes
in plasmas and solids are of current interest for different
fields of research [1—4]. Especially, progress in dense-
plasma physics requires the study of the infiuence of
strong electric fields on nonideal plasmas [5]. The be-
havior of a nonideal dense plasma is determined by the
degeneracy if we have

lower densities because the mean-free-path length is large
and the external electric field accelerates the electrons to
energies which are sufficient for impact ionization.

In this paper we will study the impact ionization in
plasmas which results from a coupling of nonideality and
an applied strong electric field. Thereby we assume that
the field strengths are sufficiently high enough for im-
pact ionization but not so strong that field emission takes
place. As a test plasma we consider a nonideal hydrogen
plasma.

The equations of ionization kinetics may be obtained
from generalized Boltzmann equations for reactive sys-
tems in external fields in which many particle effects,
such as mentioned above, are taken into account [7—10].
Following these papers we obtain for the electron number
density n,
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Here n& and n~ are the number densities of the protons
and of the hydrogen atoms in the state 1j), respectively.
If degeneracy efFects are neglected one gets the following
statistical expressions for the rate coefficients of ioniza-
tion and recombination
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Here T is the three-particle scattering operator for
impact ionization and three-body recombination pro-
cesses. The energies of the free electrons and protons are
quasiparticle energies given by the well-known dispersion
relation

Z~ (p, w, t) is the quantum-statistical retarded self-energy
function. In order to simplify the problem we use the
approximation of thermal-averaged shifts [11]
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E (p, t) = + ReZg( p~, t) ]„a~ („,)
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where A~ has to be determined from
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f dspReZ~(p, r, t)q~„ f (p, r, t)d. (r, t) =
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It can be shown that the thermal-averaged shiR is related
to the chemical potential by

Pa =P +&a1d (6)

In the following we use for the self-energy the random-
phase approximation (RPA). Further, in nonideal plas-
mas the two-particle energies and the wave functions 4~„
for bound states (v = j) and for scattering states (v = p)
are given by an effective wave equation [12, 18]
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The explicit expressions of these quantities can be found in [18]. If the nondegenerate case is considered, the
dynamically screened effective potential is given by

Vii, b (popbqZ) = Viig(q) 1 + Ime '(q, ~ + io)
QQ
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The dynamical self-energy and the effective potential
are connected by

the adiabatic approximation can be applied. Further, we
use a modified first Born approximation [13]

a:b(p.phd) = ds
q

(9)
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where [p,p„+) [ Pj ) are scattering and bound-state solu-
tions of the effective wave equation.

It follows for the ionization coefBcient of electron im-
pact:

The dynamical screening can be evaluated [18] and yields
an effect of around 8' to transport properties. The ki-
netic features considered in this paper are of greater value
as can be seen below, so that we can neglect the inHu-

ence of dynamics in (9). In the static limit the effective
potential simplifies to

vb (p p~q, o)=, ~(q, o) =V b(q)
q)0 q +~

where V b is the Coulombic potential and e the static
dielectric function. From the effective wave equation the
quasiparticle energies of the electron-proton pairs can be
calculated. We have for the scattering states

p2 p2EF„=
2fDH 2774e

and for the bound states
p2

+E,'+4, .

Here E is the binding energy of an isolated hydrogen
atom and L~ is the atomic energy shift due to the sur-
rounding plasma. Therefore we obtain the following ex-
pression for the lowering of the ionization energy:

ds f(s, E)so,'o (s, E) . (10)
7I np

In the following E denotes the electric field. Further on
we have introduced the ionization cross section by
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follow from energy conservation where the effective ion-
ization energy is given by I' = ~Ez [+AIz.

With P~„we denote the ato-mic form factor

P (q) = d r @*(r)4+(r)e&~' (12)

Here hq = pe —pe denotes the momentum transfer of
the projectile and

Let us come back to the ionization coefBcient a~ . Because
of the large mass difference between electrons and ions

For the determination of n~ we have to solve two prob-
lems: (i) the calculation of o.'o on the basis of the effec-
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comparison to the zero-field case. At high densities the
many-particle eifects dominate which leads to an expo-
nential increase of n. ln dependence of the field strength
a separation of these two effects is observed in the region
of moderate densities. The result is a minimum behavior

of the ionization coeKcient. The minimum vanishes at
strong fields because of the overlap of field and plasma
medium effects. In a forthcoming paper we will present
some details of the calculation and we will discuss the in-
fluence of strong fields on the recombination coefficient.
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