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Collective modes in nonrelativistic electron-positron plasmas

Naoki Iwamoto*
Department of Physics and Astronomy, The Uniuersity of Toledo, Toledo, Ohio 43606

(Received 13 August 1992)

The longitudinal and transverse collective modes in a nonrelativistic electron-positron plasma are
studied in two cases: a static uniform magnetic field is present or absent. The dispersion relations for
the longitudinal and transverse collective modes in the absence of a magnetic field and those for the lon-
gitudinal mode in the presence of a magnetic field (Bernstein mode) are found to be similar to those for
the one-component electron plasma. The transverse modes in the presence of a magnetic field, on the
other hand, are found to be quite different from the electron-ion plasma: The dispersion relations for the
left- and right-circularly polarized waves propagating parallel to the magnetic field are found to be iden-
tical. In addition to the transverse plasma oscillations, the low-frequency Alfven mode exists, while the
whistler mode does not exist. For waves propagating perpendicular to the magnetic field, the extraordi-
nary wave becomes a pure transverse mode. In the cold-plasma limit, there is only one resonance at the
cyclotron frequency and one cutoff frequency for the extraordinary mode, in contrast to the electron-ion
plasma, where there are two hybrid resonances and two cutoff frequencies.

PACS number(s): 52.25.—b, 52.35.Hr, 52.35.Fp

I. INTRODUCTION

Recent experiments have opened up the possibility of
creating a nonrelativistic electron-positron plasma in the
laboratory. There are at least two schemes in which the
nonrelativistic electron-positron plasma can be produced
in the laboratory. In one scheme, a relativistic electron
beam impinges on a high-Z target, where positrons are
produced copiously. The relativistic pair plasma is then
trapped in a magnetic mirror and is expected to cool rap-
idly by radiation [1]. In another scheme, positrons are
accumulated from a radioactive source [2,3]. The pur-
pose of the present paper is to study the collective modes
in a nonrelativistic electron-positron (e e+) plasma by
deriving the dispersion relations and damping rates in
two cases when a static spatially uniform magnetic field is
absent or present. We consider only a homogeneous neu-
tral electron-positron plasma in thermal equilibrium.

In general, the study of the collective modes in a plas-
ma is of importance from the diagnostic point of view,
since the observation of the propagation characteristics
of the wave modes may be used in order to determine the
physical parameters in the plasma [4]. So far, the proper-
ties of the electron-positron plasma have been studied
mostly in the relativistic regime in the astrophysical con-
text. This is because pair production, which is one of the
most effective means for producing an electron-positron
plasma, involves high-energy processes under most astro-
physical conditions, such as solar flares, pulsars, black
holes, and the jet phenomena associated with active
galactic nuclei [5,6].

Some of the unique features of the neutral e e+ plas-
ma may be stated as follows.

(i) Same dynamical properties for electrons and posi-
trons: Owing to the same masses and electric charge
magnitudes for the electron and the positron, their
dynamical behavior is the same. This is to be contrasted

with the electron-ion (e-i) or electron-hole (e-h) plasma.
The dynamical time scales are different from those in e-i
and e-h plasmas. In the case of the e-i plasma, for exam-
ple, the relation among the electron-electron (ee), ion-ion
(ii), and electron-ion (ei ) relaxation time scales is [7]

r„:r;,'~„—= 1:(m; /m, )':m, /m, ,

where m, and m, are the masses of the ion and electron,
respectively. Due to this hierarchy of the time scales the
e-i plasma may exist as a two temperature plasma where
the electrons and ions are both in thermal equilibrium
but at different temperatures T, and T;, respectively. For
an e e+ plasma, on the other hand, the electron-electron
(
——), positron-positron (++), and electron-positron

(
—+ ) relaxation time scales are comparable [8]:

(1.2)

Thus it is not possible to produce an e e+ plasma with
each component in thermal equilibrium and either with
T ))T+ or with T (&T+. Here, T is the tempera-
ture of the species o ( —for electrons and + for posi-
trons). That is, when an electron plasma in thermal equi-
librium at temperature T is mixed with a positron plas-
ma in thermal equilibrium at temperature T+ (WT ),
thermal equilibrium for each component will not be at-
tained until the whole e e+ plasma reaches a thermal
equilibrium state.

(ii) Coupling to electromagnetic waves in the presence
of a magnetic field: In the presence of a magnetic field,
the electron and positron perform a gyromotion at the
same frequency (

~
0

~

=A+ ) in opposite directions. This
is to be contrasted to the case with the e-i plasma, where
0;« ~ 0, ~. For a charge-neutral e e + plasma, i.e.,
when n =n+, the plasma couples to the left- and right-
circularly polarized waves equally, which is in contrast to
the e-i plasma.
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(iii) Annihilation processes:

8 +8 ~2/, 3f, . . . (1.3)

In addition to the ordinary plasma processes, pair annihi-
lation can take place in an e e+ plasma, which also ap-
plies to the non-neutral case. The pair-annihilation pro-
cesses are of particular importance in astrophysics since
the y rays produced give a clear signature of the presence
of positrons in the astrophysical object. The
annihilation-line y-ray source found near the Galactic
Center, which has recently been identified [9] as the x-ray
source 1E1740.7—2942, has allowed an estimate of the
number of positrons and the time variability, as well as
the environment in which the annihilations take place
[5,6, 10—13].

(iv) Annihilation time scales versus time scales for col-
lective oscillations: Under realistic conditions, the
electron-positron plasma is well defined in the sense that
its lifetime against pair annihilation is much larger than
the characteristic time scales for collective oscillations.
In order to illustrate this point, let us consider a neutral
( n =n+ ) electron-positron plasma. As a characteristic
time scale for collective oscillations, one may take the
plasma frequency (cf. Sec. II)

p=(8~n e2/m )1/2=7. 98X 104nl/2 s-l, (1.4)

where the cgs units will be used throughout this paper
with n the electron number density in cm . The
thermally averaged rate coefficient (rate divided by target
density) for direct annihilation (e +e ~2y), which
dominates at temperatures T & 7 X 10 K, is [12]

R,In:—(cr, v„&) =m.r, cJ(a)

at T=10 K, for example. In either case, the electron-
positron plasma will live suSciently long for many collec-
tive oscillations before it annihilates.

The organization of the present paper is as follows. In
Sec. II, we derive the dispersion relations for the longitu-
dinal modes in an electron-positron plasma at finite tem-
peratures in the cases where a magnetic field is absent or
present. In the presence of a magnetic field, the longitu-
dinal plasma wave and the Bernstein mode are con-
sidered. In Sec. III, the transverse modes are studied
with or without a magnetic field. For the waves propa-
gating parallel to the magnetic field, the dispersion rela-
tions for upper and lower branches are derived. For
wave propagation perpendicular to the magnetic field, the
dispersion relations for extraordinary and ordinary waves
are derived in the cold-plasma limit. In Sec. IV, a sum-
mary and some discussion are given.

II. LONGITUDINAL MODES

The dielectric tensor may be obtained from the com-
bination of the Maxwell equations and the linearized
Vlasov equation [16—19]. We first consider the longitudi-
nal modes in the plasma with and without an external
magnetic field.

A. Without external magnetic fields:
The Langmuir mode

The frequency- and wave-number-dependent longitudi-
nal dielectric function is [20]

e(k ro)=1+ g (k Ik )W(co/k(k~T Im )' ),
=7.48X10 ' J(a) cm s (1.5) (2.1)

Rp, /n =1.1X10 "—2.4X10 ' cm s (1.6)

for T = 3 X 10 —3 X 10 K. Once the positronium is
formed, its annihilation depends on the spin of the
ground state [15]: The parapositronium decays into two
photons with a lifetime ~0=1.24X10 ' s, while the
ortho-positronium decays into three photons with a life-
time el = l. 39 X 10 s. From (1.4) and (1.5), one obtains

Here, v„l is the relative velocity, r, =e /m, c, c is the
velocity of light, and o, is the annihilation cross section
in the Born approximation [14], m r, c /v „„, times a
Coulomb correction factor [12], which, after thermal
averaging, yields a dimensionless function J(a) of a pa-
rameter a =(2m Rlk~T)'/, where %=1 Ry. The func-
tion J(a) is weakly temperature dependent, varying, e.g. ,
1.1(J(a)(81.3 for 3. 1X10 & T&3X10 K. At tem-
peratures T (7X 10 K, on the other hand, positronium
formation via radiative recombination dominates at a
temperature dependent rate [12]. For example, the rate
coeKcient varies

where W(x) is the plasma dispersion function [21],
k =(4mn q Ik~T )' the Debye wave number with
n the number density, q the electric charge, T the
temperature, m the mass for the particle species o (—
for electrons and + for positrons), and k~ the Boltzmann
constant. In addition, k—:~k~ and m =m+ =—m. When
the temperature of the electrons is the same as that of the
positrons ( T = T+ =—T), (2.1) reduces to

e(k, co)=1+(ki, /k )W(co/k(k&T/m)'/ ), (2.1a)

co(k)=co [1+—,'(k/kD) + . ], (2.2a)

where kD ——k +k+. In order to find the dispersion re-
lation for collective modes, we seek a solution to the
equation e(k, co)=0. A well-defined collective mode ex-
ists where the phase velocity of the wave is much larger
than the thermal velocity of the particles,
co/k »(kz T/m )'/ . In such a region, one finds

R, /co =0.937X10 ' J(a)n

at temperature T and

(1.7) y(k)= (vr/8)' co (kD—/k) exp[ —(kD/k) /2 —
—,'],

(2.2b)

Rp /ct7p 6 36X 10 ' n '" (1.8) where co =—co +co + with co =4~n q /m . The
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dispersion relation (2.2) is quite similar to that for a one-
component electron plasma. The latter may be trivially
obtained from the former with the replacements
kD ~k, cop ~cop2 2 2 2

B. In the presence of an external uniform magnetic field

In the presence of an external static uniform magnetic
field of strength B, the longitudinal dielectric function is
given by [20]

e(k, co)=1+ g (k /k ) 1+ g [co/(co n—Q )][W((co n—A )/lk~~l(k~T /m )' ) —1]A„(/3 ) . ,
cr= —,+ n = —oo

(2.3)

where 0 —= q B /m c is the cyclotron frequency including the sign of the electric charge q (i.e.,
fl+=lelBIm+c —=0)0, 0 = —0+ &0), P =kik&T Im fl =(Ioz /0 )(kilk ), A„(P )=I„(/3—) exp( —

/3 ), and
I„(x) is the modified Bessell function of the first kind with k = lkl =(k~~ +ki)' and k~~

=k B/lkl lBl. In the follow-
ing, we consider the case T = T+ ——T (i.e. , /1 =P+ —=P). Then, noting that [22] I „(/l) =I„(P),one finds that

e( k, co)=1 +(k Dlk) -1+ g [co/(co —nfl, )][W(( co n0 —)/lk~~l(k sT/m)'~ ) 1]A„(P—) (2.3a)

1. Longitudinal plasma wave

When the magnetic field is weak such that Q «Mp,
the dispersion relation for Langmuir wave is little
modified from its field free case. Let us study the longitu-
dinal collective mode in the presence of a strong magnet-
ic field (0 ))co ). We look for a solution near co=+co
in the long-wavelength limit k «kD of the form

under the conditions that

n Q [1+6„(k)] &(n +1 )A

and

leo —nQ l/lk~~ l(kii Tlm)' )) 1 .

The condition on b, „(k) from (2.9) and (2.10) is

(2.9)

(2.10)

co +c=oo(k)+i yo(k) .

One finds

,(k)=(lk„ /k) , [A,(/3)]'"=( k„l/k) , ,

yo(k)/coo(k)= —(~/8)' '(kD/k)'[Ao(p)]' '

(2.4)

(2.5)
5„(k)=kD~A„(/3)/[k +kD[1 —Ao(p)] I (2.12)

lk„l(kgT/m)'"/I« I «l&„(k)l &1/n . (2.11)

The condition (2.11) allows one to use the asymptotic
form of the plasma dispersion function [21), which yields

y„(k)/co„(k) l

(2.6)X exp[ —(kD /2k )Ao(f3)] .

When ki=0 (wave propagation parallel to the magnetic
field), the dispersion relation and the damping rate of this
mode [(2.5) and (2.6)] reduces to those of the Langmuir
mode [(2.2)] in the magnetic field free case. The condi-
tion that the magnetic field be strong (0 ))co ) may be
physically stated in the following equivalent forms.

(1) The particles perform many Larmor motions dur-
ing one plasma oscillation.

(2) The energy density of the magnetic field is much
larger than the rest mass energy density of the particles.
This is because 0 /co =(B /4m)/n mc ))1.

(3) The Larmor radius (rL ) is much smaller than the
Debye length (A,D ). This is because

l
0

l /cop —A,D /rL ))1.

2. The Bernstein mode

=(vr/2)' [lnQ lb, „(k) /lk((l(k~T/m)' ]

X exp[ —[nQ h„(k)] I l2k~~l (ksT/m)] . (2.13)

One finds that there is no damping as k
~~

~0 (i.e.,
kz~k). This is because the electron's motion is not free
in the direction perpendicular to the magnetic field, so
that the resonance condition cannot be satisfied when

o.

III. TRANSVERSE MODES

A. Without external magnetic fields

In the absence of an external magnetic field, the
frequency- and wave-number-dependent transverse
dielectric function for an isotropic electron-positron plas-
ma at temperature T(=T =T+) is [20]

Next, we study the collective mode near the cyclotron
harmonics [20,23]

Ez(k, co)=1—g (co /co )[1—8'( !co( kkTsIm )'~ )]
co= nQ (n =+1,+2—, . . . ) .

We look for a solution of the form

co =co„(k)+iy„(k)
—=nQ [1+6„(k)]+iy„(k),

(2.7)

(2.8a)

(2.8b)

(3.1a)

(3.1b)
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co(k) =co +c k

y(k) =0 .

(3.2)

(3.3)

The damping is absent because the phase velocity of the
wave obtained from (3.2) is always greater than the veloc-
ity of light, so that no particles can be resonant with the
wave. This result is analogous to the one-component
electron plasma.

B. In the presence of an external magnetic field

where co =—co +co +. Solving the equation
eT(k, co) =(ckjco), one finds the dispersion relation for a
transverse plasma mode of the form co=co(k)+iy(k) as

E„E
E1 =U Ey

E, E,
(3.6)

where

the z axis is chosen in the direction of the magnetic field.
It is convenient to introduce a unitary matrix [20]

I /i/2 —i ji/2 0
U = i j—i/2 1/i/2 0 (3.5)

0 0 1

where UU =U U =I. Then, the electric field com-
ponent in the Cartesian coordinates may be transformed
to

We now consider the electron-positron plasma in an
external static uniform magnetic field. The dispersion re-
lation for the transverse collective modes may be ob-
tained by solving the equation [20]

E„=(1 /i/2)(E„iE )—,
EI=( i ji 2)(E—„+iE ) .

(3.7)

(3.8)

det
~
e( k, co ) —( ck lco ) ( I—k k lk )

~

=0 .
Under this transformation, the dielectric tensor becomes

(3.4) [20]

1. Wave propagation parallel to the magnetic geld

We first study the wave propagating parallel to the
magnetic field with the wave vector k=(0, 0, k), where

I

e, 0 0
CQV~= 0 e, 0,

0 0 e

where

(3.9)

e„(k,co)=1—g [co Ico(co+Q )][1—W((co+Q )Ik(kiiT /m )'~ )], (3.10)

e((k, co)=l —g [co /co(co —Q )][1—W((co —Q )/k(k~T /m )'~ }], (3.11)

e(k, co)=1+ g (k Ik )W(cojk(kttT Im )' } . (3.12)

For the waves propagating parallel to the magnetic field, the dielectric functions simplify considerably with only the
fundamental cyclotron frequency contributing. From the charge neutrality condition (n =n+ ),

e„(k,co) =el(k, co)

=1—[co~ /co(co —Q)][1—W((co —Q)/k (ks Tjm)' )]
—[co jco(co+Q)][1—W(( +coQ)/k(k Tsjm)'~ )], (3.13)

where co —=4m. n e /m =co +—=4mn+e /m and
Q= ~e~Bjmc )0. In the region ~co

—Q~ &&k(ks Tjm)'
[thus co+ Q »k (ks T jm)'~ ], (3.13) becomes

e„(k,co)=1—co~/(co —Q ),
so that one obtains the dispersion relation

co =
—,'([Q +co +(ck) ]

(3.14)

+I[Q +co~+(ck) ] —4(ckQ) ]'i ) . (3.15)

(a) Upper branch. Equation (3.15) expresses two solu-
tions. Let us first consider the upper branch, with the
plus sign in (3.15). In the long-wavelength limit
(ck ((Q, co& ), the dispersion relation becomes

co(k)=(Q +co )' [I+cop(ck) /2(Q +co ) + ],
k —+0,

while in the short-wavelength limit (ck ))Q, co )

co(k)=ck[1+—,'(co /ck) + . ], k~~ .

(3.16}

(3.17)

The dispersion relation (co vs k) is schematically shown in

Fig. 1. When co & Q, (3.15) with the plus sign reduces to
the magnetic field free case. In addition, Fig. 2 illustrates
the dielectric function e&(k, co) [=e„(k,co)=(ckjco) ]
versus frequency m. From Fig. 2, one finds that there is a
resonance at co=A, and the wave is totally reflected when
Q & co & co„where co, = (Q +co„)'~ is the cutoff frequen-
cy.
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FIG. 1. The dispersion relation for the transverse collective
mode propagating parallel to the magnetic field. The left (I)
and right (r) circularly polarized waves have the same disper-
sion (solid curves). The lower branch is subject to damping due
to Doppler-shifted cyclotron resonance at finite wave numbers
(the portion of the lower solid curve between the dash-dotted
lines).

(b) Lower branch. Let us now consider the lower
branch, with the minus sign in (3.15). In the long-
wavelength limit (ck « Q, co ), the dispersion relation be-
comes

co(k)=ck/[1+(co„/Q) ]', k~0, (3.18)

co(k)=Q, kazoo . (3.19)

This collective mode is strongly damped when

which is the Alfven mode. In the short-wavelength limit
(ck ))Q, co~), on the other hand, the dispersion relation
becomes

~co
—Q~ &k(ks T/m )', i.e., when Q —kvz&co &Q+kvr

with vr —= (ks T/m)'~ . This damping is due to the
Doppler-shifted cyclotron resonance, where the frequen-
cy of the wave seen by the electron with the velocity com-
ponent parallel to the magnetic field v

~~

( & v r ) is
co'=co+kv with the plus (minus) sign corresponding to

II

the wave propagating antiparallel (parallel) to v
~~~.

For the
electron-positron plasma, the right-circularly polarized
wave is resonant with the electrons and the left-circularly
polarized wave is resonant with the positrons. The lower
branch is also illustrated in Fig. l. It is instructive to
compare the transverse collective modes propagating
parallel to the magnetic field in the electron-positron
plasma with those in the one-component electron plasma
and electron-ion plasma. One finds the following unique
features of the electron-positron plasma.

(1) The dielectric function of the right-circularly polar-
ized wave c„(k,co) is identical to that of the left-circularly
polarized wave ei(k, co). This results from the fact that
the electric charge to the mass ratio is equal in magnitude
and opposite in sign for the electron and the positron.

(2) The resonance occurs for both the right- and left-
circularly polarized waves. The electrons (positrons) are
responsible for the resonance with the right- (left-) circu-
larly polarized wave. This feature is also the direct
consequence of the equal electric charge to mass ratio
with opposite sign.

(3) The electron-positron plasma being a two-
component plasma, the helicon mode does not exist,
which is in contrast to the one-component electron plas-
ma, while the Alfven mode exists as in the case of the
electron-ion plasma.

(4) Owing to the symmetry between the positively and
negatively charged particles, the dispersion relation for
the right-circularly polarized wave is identical to the
left-circularly polarized wave. Therefore the whistler
mode does not exist, which is in contrast to the electron-
ion plasma.

2. 8'ave propagation perpendicular to the magnetic field

We consider the transverse collective modes whose
wave vectors are perpendicular to the magnetic field.
Without loss of generality, one may choose the x axis to
be the direction of the wave vector, so that k=(k, 0,0).
In this case, the dielectric tensor takes the form [20]

0

0 (3.20)

0 0

where

FICi. 2. The dielectric function (ke, co) [ =e„(k, ~)
=(ck /co) ] as a function of the frequency co. A cyclotron reso-
nance occurs at m= Q, and the wave is totally reflected in the re-
gion 0 (m &co„where co, =(0 +~ )' is the cutoQ'frequency.

e', (k, co)=1—g(k /k ) g [(nQ )~/co(co nQ )]—
(3.21)
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e2(k, co)=1—g (k /k )

X g [(n 0 ) /co( co —n 0 ) ]

X[A„(P ) —(2P /n )A'„(P )],
(3.22)

e3(k, co)= 1 —g (co& /co ) g [(co/(co —nQ )]A„(P )

(3.23)

e„(k,co)= g(co /co ) g [(co/(co —nQ )]nA'„(P ) .

(3.24)

One immediately notices that e ( k, co )=0, since the elec-
tric charge to mass ratio is of the same magnitude with
opposite sign for the electron and the positron. There-
fore the dielectric tensor becomes diagonal. This feature
is unique to the electron-positron plasma. For simplicity,
let us consider the cold-plasma limit (T~O), where only
the fundamental cyclotron frequency contributes. Then,
the nonzero components of the dielectric tensor are

by the positron mass (m+ ). However, some care must be
taken. By taking the limit m; ~m+, the upper (UH) and
lower hybrid (LH) resonance frequencies in the electron-
ion plasma reduce to coUH~(co +A )' and coLH~Q,
respectively. On the other hand, there is only one reso-
nance (cyclotron resonance) co =0 in the electron-
positron plasma from (3.28). Obviously, this cyclotron
resonance in the electron-positron plasma corresponds to
the lower hybrid resonance in the electron-ion plasma.
Apparently, no resonance exists in the electron-positron
plasma that corresponds to the upper hybrid resonance in
the electron-ion plasma. Therefore it appears that the
limiting procedure m;~m+ in the electron-ion plasma
does not give correct results for the resonance in the
electron-positron plasma. Let us now take a look at the
cutoff frequencies. In the limit m; —+I+, the two cutoff'
frequencies in the electron-ion plasma merge into one

ei(k, co)= e(ik, c)o=1 —co&/(co —0 ),
e3(k, co)=1—co /co

(3.25)

(3.26) 3
(a) Extraordinary wave The d. ispersion relation for the

extraordinary wave may be obtained by solving the equa-
tion

(e, e2 —e„)/e, =(ck/co)

Because e„=O, (3.27) simplifies to

(3.27)

e~(k, co) =(ck/co) (3.28)

The electric-field components are E, =0 and
E /E~=i(e /e, )=0. Therefore E=(O,E,O), i.e., the
extraordinary wave is a pure transverse wave such that
Elk and ElB. Contrary to the one-component electron
plasma, the extraordinary wave in the electron-positron
plasma is not a hybrid mode, since the longitudinal com-
ponent of the electric field is absent (E„=O). This is a
unique feature of the electron-positron plasma. Solving
(3.28) with (3.25), one finds that the dispersion relation
for the extraordinary wave propagating perpendicular to
the magnetic field is identical to that for the transverse
wave propagating parallel to the magnetic field (3.15).
The dispersion relation for the extraordinary wave propa-
gating perpendicular to the magnetic field is illustrated
for the two cases Q) co and Q) co in Fig. 3. It is in-
structive to compare the extraordinary waves in the
electron-positron plasma and the electron-ion plasma in
the cold-plasma limit. The comparison is made in Table
I. The electron-ion plasma has two cutoff frequencies,
while the electron-positron plasma has only one. In addi-
tion, the electron-ion plasma has two hybrid resonances,
while the electron-positron plasma has only one (cyclo-
tron) resonance. One can obtain the results for the
electron-positron plasma by replacing the ion mass (m;)

ck

I
P

~) 2) 1 /2

P

FICx. 3. The dispersion relation for the transverse collective
modes propagating perpendicular to the magnetic field in the
cold-plasma limit in the two cases where the magnetic field is (a)
strong (Q) co~) and (b) weak (Q(co~). There are two extraor-
dinary (ex) wave branches (upper and lower) and one ordinary
(o) wave branch.
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TABLE I. Comparison of the extraordinary waves in the electron-positron plasma and in the
electron-ion plasma in the cold-plasma limit. Here, Ap:—co, +co;, co, =co, +Q„co;=—co;+0';)
0, :—0+ = —0, and cop cop —+cop+.

Electron-ion plasma

Cutoff frequencies
co, = [( ~ 0, ~

+A; ) /4+ Q ]
' + ( ~ Q,

~

—fl, ) /2

Electron-positron plasma

Resonance frequencies
Upper and lower hybrid resonances (UH and LH)

co =(co +cd')/2+[(co —co') /4+co' cd' ]'
LH

Cyclotron resonance
6)—0

cutoff frequency co, =(co +0 )' . Thus this limiting
procedure does correctly reproduce the cutoff frequency
in the electron-positron plasma. The origin of the
discrepancy in the resonance frequencies may be ex-
plained as follows. For the electron-ion plasma there are
two solutions each for the resonance and cutoff, which
are respectively given by the zeros of the denominator
and numerator of the dielectric function [19]. When the
limit m; ~m+ is taken, there is a cancellation of a factor
between the denominator and numerator of the dielectric
function. Therefore there is now only one solution each
for the resonance and cutoff. This is why another solu-
tion disappears in this limit.

(b) Ordinary waue. The dispersion relation for the ordi-
nary wave is given by solving the equation
E3(k, co ) = (ck /co ), which in the cold-plasma limit [Eq.
(3.26)] yields co =co +c k . The only nonzero electric
field component is E„so that E~~B. Therefore the disper-
sion relation is the same as the field-free case with the
magnetic field having no effect. The dispersion relation is
schematically shown in Fig. 3. For warm plasma, the
higher cyclotron harmonics contribute to E'& and ez
(affecting the extraordinary wave) and to e3 (affecting the
ordinary wave). For the ordinary wave, nonlocal effects
become important at the intersections of co=ck and
co=nQ with n a positive integer.

IV. SUMMARY AND DISCUSSION

The nonrelativistic electron-positron plasma sustains
well-defined collective modes. The longitudinal collective
modes both in the absence and presence of an external
static uniform magnetic field and the transverse collective
mode in the absence of a magnetic field are found to be
analogous to those either in the one-component electron
plasma or the electron-ion plasma. On the other hand,
the transverse collective modes in the presence of a rnag-
netic field are found to be quite different from those in the
one-component electron plasma and electron-ion plasma.

When the charge neutrality condition is satisfied
(n =n+ ), many of the unique features of the electron-
positron plasma arise from the facts that the electric
charge to mass ratio is the same in magnitude but oppo-
site in sign for the electron and the positron. Due to this
symmetry, it is found that the dielectric function of the

left-circularly polarized wave e&(k, co) is identical to that
of the right-circularly polarized wave e„(k,co) for the col-
lective modes propagating parallel to the magnetic field.
Therefore the dispersion relation for the left-circularly
polarized wave is the same as that for the right-circularly
polarized wave. Another consequence is that the whistler
mode does not exist, which is in contrast to the electron-
ion plasma.

The resonance occurs for both the right-circularly po-
larized waves (that resonate with the electrons) and the
left-circularly polarized waves (that resonate with the
positrons). Since the electron-positron plasma is a two-
component plasma, the helicon mode does not exist,
which is in contrast to the one-component electron plas-
ma. On the other hand, the Alfven mode exists as in the
case of the electron-ion plasma.

For the collective modes propagating perpendicular to
the magnetic field, the dielectric tensor becomes diagonal
due to the symmetry. An immediate consequence is that
the extraordinary wave is a pure transverse wave, i.e., it
is not a hybrid mode, which is in contrast to the one-
component electron plasma. The comparison between
the extraordinary waves in the electron-ion plasma and in
the electron-positron plasma reveals that the number of
cutoff frequencies and the number of resonances differ.
The dispersion relation for an ordinary wave in the cold-
plasma limit is found to be identical to that for a trans-
verse wave in the absence of a magnetic field. For warm

plasma, the nonlocal effects on the dispersion of the ordi-
nary wave become important.

Finally, let us mention a few directions in which the
present work may be extended. From the schemes that
can produce the electron-positron plasma, it is apparent
that the plasma can be either neutral or non-neutral. In
the non-neutral case (n Wn+ ), some of the features that
are unique to the neutral electron-positron plasma do not
hold. We thus expect that the collective mode depends
on the charge excess (n n+ ) for the e—lectron-positron
plasma much more sensitively than for the electron-ion
plasma. In the present paper, we have considered the
homogeneous plasma in thermal equilibrium. The
present analysis may also be extended to the inhomogene-
ous case in order to allow for a specific plasma-
confinement geometry [24,25] and/or to the nonequilibri-
um case, where a number of instabilities, many of which
are unique to the electron-positron plasma, are expected.
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In analyzing the positron annihilation lines near the
direction of the Galactic Center, plasma effects have been
neglected. This is justified by the low density of the posi-
trons in most of the astrophysical environment. In the
laboratory electron-positron plasma, the density may
eventually reach to the degree where annihilation pro-
cesses must be treated as occurring in a dielectric medi-
um, not in a vacuum. The plasma effects can play an im-
portant role in an annihilation, where an electron with a
screening cloud around it collides with a positron also
with a screening cloud to annihilate. One may use the
dielectric functions given in this paper to incorporate the
plasma effects [26]. We wish to study and report these
cases in the future.
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