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Resistive model of the rf discharge including additional dc currents and electrodes
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A resistive model including additional dc currents and electrodes enables understanding and analysis

of rf discharges in the low-frequency range (co (&co~;). A general and exact analysis based on asymptotic
solutions results in analytic representations of relations between sheath voltages, bias, and rf voltage.
For sinusoidal rf voltage an expansion of sheath voltages and discharge current into Fourier series, e.g.,
important for probe measurements, and a general relation between these series is presented. From the

power balance a lower bound of a sinusoida; rf voltage is derived. The model is extended for different

densities and electron temperatures along the sheath edges. Correction and error estimation show the

asymptotic solution to be well suited.

PACS number(s): 52.70.6w, 52.75.—d, 52.65.+z, 52.80.Hc

I. INTRODUCTION

In the past ten years the rf discharge has come under
increased scrutiny with the forced application of plasma-
enhanced dry processing. For several applications the
low-frequency regime considered in this paper (co « to~;)
is more convenient than the opposite regime using fre-
quencies which exceed the ion plasma frequency co; (e.g. ,
co/2~= 13.56 MHZ) essentially.

The resistive model presented in this paper implies
boundary conditions often found in experiments. Probes
[1], auxiliary electrodes [2,3], insulating layers, or other
solid bodies with nonzero potential will be treated as ad-
ditional electrodes. Special cases of various powered
electrodes, e.g. , 13.56 MHz on top or an auxiliary elec-
trode to provide a high plasma density and 100 kHz on a
lower electrode to adjust the ion energy, can also be
characterized approximately.

Especially for the successful use of tuned [4,5] or high
impedance [6,7] probe measurements with suppression of
rf components in the probe characteristic, the knowledge
of plasma potential, or its expansion in a Fourier series,
may be desirable, or even necessary [8,9].

Most known investigations concerning this frequency
range, such as were done by Godyak and Kuzovnikov
[10], have focused their interest on the physical under-
standing of the properties of the discharge [11—13], or
give only slightly different approximations of earlier mod-
els [14—16]. Only pure configurations with two elec-
trodes and without an additional dc discharge current
have been considered. An approach to a systematic and
mathematically exact treatment based on asymptotic, i.e.,
analytical, solutions will be given in this work.

At low pressures, usual p ~ 100 Pa-1 Torr, the Debye
length XD is the smallest characteristic length of the plas-
ma and the impedance of the discharge is dominated by
the properties of the space-charge sheath (sheath) [10,17].
Due to the high electron temperature and very low mass
ratio m, /m+ (mobility, thermal velocity) a sheath al-

ways exists at the plasma sheath boundary separating the
quasineutral plasma from the confining surface consisting

of walls, electrodes, or other solid bodies. The sheaths
give rise to specific relations in current and voltage of the
rf discharge. Depending on rf voltage and net current,
the sheath has an extent of only a few up to several tens
of A, D [18].

The electric fields are of fundamental interest because
the plasma potential, or in general the sheath voltage as
the potential drop across the sheath, determines the ion
energy distribution at the wall to a large extent [2,13,19].
At low pressures, when collisions can be neglected, and if
the ion transit time is much shorter than the rf period, a
complete dependence on the sheath voltage can be given.

In this case the discharge can be treated in a reduced
form. The rf voltage decreased by the potential drop of
the plasma (bulk) resistance can be introduced as an
effective rf voltage. Hence the reduced discharge consists
of sheaths only, and the plasma appears as a source of
charge carriers with an infinite conductivity. Several im-
portant relations can be given without any assumption
concerning a special effective rf voltage. At low pressures
there is no essential difference between the rf voltage ap-
plied at the powered electrode and the effective rf voltage.
After deriving general relations, a sinusoidal rf voltage
will be assumed.

Instead of a pure geometric area ratio [13,14], the
discharge will be characterized by an ion current ratio in-
volving special effects in asymmetrical discharges (see
Sec. II A).

II. MODEL

A. Physical assumptions

The basic assumption of every resistive model is the
neglect of the displacement current. In simple diode
configurations the presence of the displacement current
in the sheath was treated by several workers approxi-
mately [15,20]. Since these models are based on a quasi-
stationary motion of ions, the ion density in the sheath is
assumed to depend only on the potential with respect to
the plasma. Neglecting ionization yields the total current
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to be uniform within the sheath. Bearing this in mind
and taking into account the quasineutrality of the plasma
(p~&(co~; &(co~, ), the ionic displacement current at the
electrode has to be small compared to the ionic convec-
tion current at the sheath boundary. Moreover, this
model gives sheath expansion (or contraction) velocities
which can exceed the ion velocity at the sheath boundary
by orders of magnitude. The movement of the ion densi-

ty profile in the sheath, and particularly at the boundary,
however, has to be slower than the velocity of the ions at
the sheath boundary given by the Bohm criterion
[21—25]. Thus it can easily be shown that, according to
the presheath mechanism, this ansatz gives only an
insignificant or qualitative improvement in the frequency
range of interest. This analysis suggests that, if the dis-
placement cannot be neglected, it can be approximated
by the pure electronic displacement current. Analytic es-
timations [26—28] and numerical [29] results confirm this
assumption. An exact treatment requires a rigorous ki-
netic theory including the plasma body [25]. Simplified
solutions of Boltzmann and Poisson equations show that
the ionic convection current is modulated [29]. The ob-
tained modulation is especially due to the fact that the
ionic displacement current replenishes the sheath with
ions when the sheath voltage decreases [30].

More important than a special ansatz for the displace-
ment current is the condition that indicates whether the
displacement current can be neglected or not. Because of
strong nonlinearity in the relation between sheath voltage
and conduction current, the usual condition co «co, is
very rough [27]. An exact condition can be given by a
more general and analytical treatment [28].

For co«co;, however, a resistive model assuming a
time-independent ion current should be a good approxi-
mation at least. The effect of the modulation of the ion
current is discussed in the appendix.

In considering sheath and ambipolar diffusion we sup-
pose a planar geometry and the plasma to consist only of
electrons and positive ions [31]. Electrode separation and
sheath width are assumed to be small compared to any
other relevant geometric length. From this point of view
the following assumptions will be made.

(a) The plasma density is constant in time. For a sta-
tionary plasma the frequency of ambipolar diffusion vD is
equal to the ionization rate [32,33]. Thus a constant plas-
ma density or current density, in particular in the neigh-
borhood of the planar sheath boundary, requires a rf fre-
quency ru exceeding vD by far. Experimental results
confirm this approach [6,34].

In most cases charge exchange collisions are most im-
portant for the ion motion. At low ion velocities found in
the bulk plasma of a gas discharge, the cross sections
exceed those of other collisions, and they depend only
slightly on velocity [33,35,36]. Hence, taking into ac-
count only such collisions, the free mean path A, + of the
ions can be assumed as constant. Here the condition of
constant plasma density can be expressed as
[22,28, 37-39]

A, +kT,
m+2 3

where u is the sheath voltage, and Ur =kT, /e is the elec-
tron temperature in potential units. On the right-hand
side of this equation the normalized sheath voltage

g =u /Uz and the normalized Aoating potentia1I„j„1 m+
7jf ln ln lnj$2 27TK m

(3)

have been introduced. ~=1.247 is the eigenvalue of the
kinetic presheath theory for planar geometries assuming
charge transfer collisions to be dominant [22,23]. The
classical (hydrodynamical) Bohm criterion requires i~= 1

[24,47,48].

B. Basic equations

For the quantitative investigation dimensionless quan-
tities with assumed positive directions are introduced in
Fig. 1,

I(o)r =
T 1$

where I,.', ' is the ion current of the powered electrode.
The ion current ratio az (ap= 1) is defined as

I(k)
1$

I(o)
1$

W„(n~"' &, U,„
(n p'& p„Urp

1/2

(5)

the ratio of the area averaged current densities ( j;, & ~ at
the sheath boundary and the geometrical area ratio. no '

denotes the density at the sheath boundary of the kth
electrode.

Accordingly the current at the kth electrode may now
be written as

L, is the half separation of the electrodes, T, is the elec-
tron temperature, and m+ denotes the ion mass.

(b) The electron temperature T„as a measure of mean
electron energy, is constant in time. For rf frequencies
well above the total energy dissipation frequency v„har-
monics of the isotropic electron distribution function can
be neglected and T, assumed to be independent of time.
A sufhcient reduction of harmonics can be expected for
co/p &10 s ' Pa '

(p is pressure in Pa) [6,40—43].
(c) Being mostly repelled, the thermal electrons are

only slightly disturbed by wall losses and can be assumed
to be in Boltzmann equilibrium. Electron density and
current density in the sheath are therefore given by the
Boltzmann relation. This assumption implies an electron
distribution function similar or equal to the Boltzmann
distribution and sheath voltages which do not fall below a
critical value essentially [44—46]. Secondary electrons
emitted at the electrode surface can be treated as a slight
increase of the ion current which can be involved addi-
tionally (see Sec. III E).

According to the time-independent saturation current
of ions I,, and electrons I„,the current drawn by an elec-
trode is

i =I;,+I„exp( —u/Ur)=I, , [1—exp(g& —g)], (2)
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() &s
)go

I I
0= I *+ g ak —g akexp(gf gk ) .

k=0 k=O

Combining with (9) and (7) provides the equation

0=1+a —exp(gf —go)[1+a exp(rl )],

(10)

6&.

IH~ ()
~~I;

FIG. 1. Schematic outline of a rf discharge. The potential
applied at I electrodes on the lower side is arbitrary, but fixed.

where a is defined in terms of the electrode potentials
(k)

IH ~

I

~ = & akexpnH(k)

k=1
(12)

and g =g~+g, f is the potential of the driven electrode,
a and a are integral symmetry parameters of a rf
discharge, as shown in Fig. 1, determining both bias and
sheath voltage.

Ik =1—exp(gf —rik) .
CX

(6)

C. Arbitrary rf voltages

For the discharge current I = I o, one obtains from (6)
and (11)

The validity of the Boltzmann relation requires gk )2
[see assumption (c)].

The potential gH in Fig. 1 is the time-independent elec-
trode potential given by an external voltage, or a fixed
mean electrode current, and remaining boundary condi-
tions. Finally, the model is completed by an electrode
carrying a constant current I * and the time-dependent
potential g" (see Fig. 1).

An integral symmetry parameter is the sum of all ak

Defining

1+a
I+a exp(g~ )

8 =gz+lna

and rearranging (13), one obtains

(13)

(14)

I
a= g ak+I * .

k=1

1

1+exp(q, f+B )
(15)

Thus we can also take into consideration different ion
current densities. This is just important for discharges
which are not confined radially, and where the plasma
volume varies with power, gas pressure, and gas type.
Further on the power dissipated in the plasma and addi-
tional dc currents are scaled by the ion currents of the
discharge. Thus the current density ratio a is a natural
value for the characterization of rf discharges and should
not be introduced as a pure geometrical area ratio which
can be found in other investigations [10,12—15]. Due to
the geometry of the chamber, the ion current ratio a ap-
pears to be dependent on pressure and rf power above all.
Usually a decreases with higher pressures and lower
power values [12,49].

Due to the quasineutrality of the plasma, a discharge
system consisting of I+ 1 electrodes can be described, in
conjunction with (6), by the following equations:

Inserting (9) into (10) yields

0=1+a—exp(rlf —g —g'H ')[a+exp( ri~)] . —(16)

From Eqs. (6) and (13), one obtains a linear relation

exp( riH )=1— —exp( —
gH )=(m) k (k) ca+ I

(17)

between the currents drawn by arbitrary electrodes with
fixed potential and, on the other hand, between these
currents and the discharge current I = I 0. Time averag-
ing and rearranging yields for lna,

I
O=r*+ y I „,

k=0
(8) 1na =ln g akexp(g~') =g'pP'+in

1 —I /a
(18)

Iq 90+ 9k + 9H
(k)

O=g„'"'+g„—rig'' —g, k,p, r =1, . . . , l .

Inserting (6) and (8) yields

that this value is already determined by the average
current 1 =I"0, potential, and the mean current of an ar-
bitrary electrode m. Therefore the potential may be ex-
pressed as
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(m) (k)
1 —I /a

gH =ln g akexp(AH )+ln
k=1 a —e +I +I"
kWm

(19)
d I d(x Irf

d 7/g d gg 3'gg
(20)

It is very interesting to consider the usual case when bias
current, ion current ratio, and rf voltage are independent
of bias voltage:

Capacitive coupling is included by I =0. Integrating in
time y =cot and taking the derivate with respect to qz of
(15) provides

d 1 —I 1 d lna
—

exp[ran~(V )+lna ]dp0= = 1+
d'gg 1+a 2~ drip 2~ [1+exp[+re (q&)+1na]]

(21)

if we assume a functional dependence of gs and ina [see
Eq. (12)]. Due to the non zero integral, one obtains, final-

ly,

d lna
d 7j'g

(22)

This is an important relation between the electrode po-
tentials gH™(m ~1) included in a and the bias voltage
IB'

Using Eq. (11), the sheath voltage of the driven elec-
trode gp may be written as

rio=qf —ln(1+a)+ln[1+e xp(q +lna)]
= ref

—1n( 1+a ) +g,r+ B + ln [ 1+exp( —ri,&
B)I—

voltage decreases. Looking at another electrode m with a
fixed potential gH™,the sheath voltage grows as much as
the bias voltage declines. Consequently, the bias voltage
is a linear measure for the increase of the sheath voltage
caused by a difFerent electrode with growing potential.
According to (25), the sheath voltage go will not be

influenced.

III. SINUSOIDAL rf VOLTAGES

A. Mathematical solution

If we suppose, in agreement with experimental experi-
ence [6,41,43], the rf voltage to be a sinusoidal function
of reduced time y =cot,

(23) (tp) —'g~f+ gg —'g cos(p+ gs (27)

and for g (m&0)

= ref AH™+ln — + ln [ 1+exp( —g —lna ) ]

=gf —AH™+ln + ln [ 1+exp( g,f B)I . (24)— —

d 'gp =0Y)p

~ IB d9B

Before a detailed calculation of the sheath voltages, gen-
eral results can be derived by using (22) and appropriate
boundary conditions (20). The derivate of go according
to (23)

the right-hand side of (13) can be represented by the
Fourier expansion

G„exp(in y ),1+a
2

n = —oo

(28)

2 ~ cosng dg
1+exp g cosy+B

(29)

At bias voltages, which does not exceed the rf peak volt-
age, strictly speaking ~B~ g, it is convenient to intro-
duce the angle of (positive) current fiow according to
Fig. 2,

where the coeScients G„of the complex Fourier series of
the discharge current are defined by

exhibits that the sheath voltage gp as a function in time y
(and so also on average) does not depend on alteration of
the bias voltage caused by alteration of electrode poten-
tials ri~™(m %0).

Using (9) and (25) or (24), for all m %0 one obtains

g=arccos( B/g), —

and to split integrand and integration interval

(30)

d(q +q™)
17 ——1.

'fIB
(26)

To give a clear idea of the results of this very formal
analysis, the case of vanishing average discharge current,
so that I =0, should be discussed. This case can be real-
ized by the usual capacitive coupling of the powered elec-
trode. A slowly variable potential is applied to an arbi-
trary electrode. If this potential is increased, the bias

2 y cosng dg
1+exp q coscp+B

2 ~ exp g cosy+B
1+exp g cosy+B

cosn
cjoy d+

(31)

Carrying out the first part of the second integral yields



RESISTIVE MODEL OF THE rf DISCHARGE INCLUDING. . . 595

If 21~~ and B/2) &1, so that y&[0,7r], the integrands
are vanishing excluding one single point at y=y. Hence
we obtain the asymptotic representation of G„ immedi-
ately:

1 w 1 B—Gp = 1 — =—arccos —,
2 ' 7l

(33)

G„=—2
sinner, Un&0 .

mn
(34)

For ~B~ )ri the asymptotic representation can be taken
from (29) directly,

-K 0 m

normalized time cp ~t
Gp 0, VB)g
2 1, VB& —q. (35)

FIG. 2. Discharge current I, sinusoidal discharge voltage

gq, and sheath voltage go for B)0 (qualitative).
For ~B

~
) ri and n %0, Eq. (29) provides G„=O.

Supposing ~B~(ri and finite 2), the error estimation
AGp for the asymptotic representation of Gp is given by

2 sinn'
n

cosn y dye

1+exp q cosy+B

«0
I+exp g cos y — +B

f 71' gl dg
1+exp( rico—s[qr+ g] B)— (36)

cos71 g dip

1+exp( —g cosy —B )
(32) For the sake of further simplicity the conditions

n /2~&rr—/2 and 2))) 1 are supposed.

~GQ 1 m/2 —
~ p —~!2~ —sinh j B( 1 —cosg) ]d P

2 1T 0 cosh [B(1 cosg—) ] +cosh I g sing sing]
(37)

Finally, a Taylor expansion for small y and ~B/g~&1
provides the error correction AGp,

1, Vk=l
0, Uk&1 . (40)

~Gp 2B
m. (21 sin@ )

2B
(

~2 B2)3/2
(38) In order to obtain an asymptotic representation, Eq. (29)

can be expanded into a Taylor series

for finite g and B. This relation shows the essential prop-
erties of the asymptotic representation of Gp. At B=0
there is no error. Only close to the matching point of (33)
and (35), at ~B =2)(~y —m/2~ =~/2), the error correc-
tion AGp indicates an error worth mentioning. At large
~B ~

) 21 the asymptotic representation approaches the ex-
act solution rapidly. An improvement of the asymptotic
solution appears to be required in the neighborhood of
the matching point only. In agreement to the asymptotic
representation of G„,

G„=—1 exp( 2) cosy B —in y)——
1+exp( ri cosy B)— —

=—f g (
—1) 'exp[ k(ricosy+B )—in']dp, —

7T 2'

(41)

where the integral can be replaced by the integral repre-
sentation of the modified Bessel function of the first kind
I„. The asymptotic expansion of I„ is

1 exp —in' dy
2~ 1+exp g cosy+B

( —1)"f exp( in')dlI2—
~ 1+exp( jcosy' —B )

[sgn(z)] "exp~z
~

1
(42)

it is sufficient to derive the solution for B q&0 alone.
5kr designates the Kronecker symbol which is usually
defined to be

The sign of z is given by sgn, and n designates the order
of the Bessel function. Using the known integral repre-
sentation of I„and (42), the integral in (41) can be re-
placed by g)&1.
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G„=2(—1)" g ( —1)" 'exp( k—B)I„(kri)
k=1

dHn 1 exp( —in y )d g
2~ 1+exp(2) cosy+8 )

(51)

CX2 1)k —1

=2( —1)" g exp[k(l) —8)]
&2~kg

This alternating series is convergent if

D =exp(r) —8 ) ~ 1 .

At D = 1 one obtains numerically (rounded)
oo

( 1)k —1

K, = g — =0.6049 .
k=1

(43)

(44)

(45)

the calculation of the coefficients H„can be reduced to
the derivation of G„(C„ is the integration constant)

H„=—fG„dB+C„. (52)

It can be shown that the validity of this relation is not re-
stricted to a sinusoidal rf voltage. Inserting (34) yields
the asymptotic representation (2)~ ~ )

H„= f sinnydB+C„= 2

n7T

oo
( 1)k —1

&k
Dk

k=1

1

Ei +1/D
(46)

The series in (43) converges very slowly. An approxima-
tion using the first two terms is only useful for D &0. 1.
The limiting value of (43) can be approximated by that of
the similar geometric series which is obtained by remov-
ing the square-root term. This interpolation

~ f sinn y sin@ d y+ C„,n~
(53)

where ~n ~WO and pH [0,1r]. The asymptotic representa-
tions of (50) and (52) are steady with respect to 8, includ-
ing ~8

~

=2). Therefore the integration constant C„van-
ishes for all

~
n ~&1. Bearing this in mind, one obtains for

6„= 2( —1)"

+21r(2) —1/3) [K &
+exp(B —

2) ) ]

Hence, in conjunction with (39), for —8 )2) )0

(47)

G„=25 „—
(/2vr(ri 1/3)[IC1 +—exp( 8 —2))]—(48)

where K*, =1/K, —1=0.6532, gives the exact value for
r)=8(D = 1) and 8/2)~ ~(D ~0). An additional
correction for finite values of g was obtained numerically
and replaces g by g —

—,'. The solution for B g&0 can
be expressed as

for ~n =1

sln2y
l7

and for n =0 from (33) and (52)

0 j sing1 — cosg+
2 7T vr

r

sin(n —1)y sin(n+ 1)@
nor n —1 n+1 (54)

(55)

These relations show that the error of the asymptotic
solution for ~B~ (2) is, instead of O(1) ) given by (38)
for ~8~ (2), of O(2) ' ). Finally, the matching point 8*
with the asymptotic representation (33) and (34) have to
be determined. The asymptotic representation supplies
G„=O for 8 =1) incompatible with (47) for finite 2). For-
tunately, formula (47) is also a good approximation out-
side the convergence domain (8 )1)) given by condition
(46). A conventional matching is obtained for 8*=2)—1

which was confirmed by a numerical calculation. For
B & 0 the analogous point is B = —B*.

In considering the sheath voltage, the term depending
on 1) (y) in (23) and (24) can be represented by the
Fourier series

( g 8)' Ba—rccos ——
7r

(56)

In the case of ~B ~
) 2), the asymptotic representation fol-

lows from (35) or (50). At n =0 the coeKcient H„be-
comes

0, VB)g
2 —B, V —B&q (57)

and vanishes for nAO Substitu. ting from (38) into (52),
we find the error correction AHO of the asymptotic solu-
tion for finite g

QO

ln [ 1+exp( ricosp 8) J
= ——g H—„exp(in p)

2 .=-. (49)
~Ho 2 p B dB

~ J
(

2 82)3n
2

rr(~~2 82)1/2

Note that b,HO is of O(2) '). Analogous to EGO given
by (38) this relation indicates essential properties of the
asymptotic solution. At B=0 the error becomes minimal
and grows essentially only if ~8~ =2) (jy —1r/2~ =1r/2).
For ~8

~
) 2) the asymptotic solution approaches the exact

one. For the correction of the asymptotic solution at
~8 ~

=2) an equation analogous to (39) can be derived:

and

(50)

By differentiation with respect to B

=1H„=— ln j 1 +exp( —ri cosy 8) ] exp( in y )d y . — —
7T 277
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1—f ln I 1+exp( g—cosy B—) ] exp( i—n p)dy = in [1+exp( r—icosy+B ) J exp( i—n y)dy 2—50„B—51„il .( —1)"

(59)

Therefore the following derivation can be restricted to
the range B ~ g & 0.

Expanding the integrand in (50)
oo

( 1)k —1

H„=—f k

2( —1)"

+21r(g —I/3)[ICz +exp(B —i) )]
(64)

where Ez =1/K2 —1=0.3069, and provides, finally, for
finite g and B ~ g

X exp[ —k(7) cosy+B ) in—p]dy, (60)

results in a Taylor series converging by validity of (44).
The following derivation is analogous to the correction of
G„,

and, for B)—r) )0 using (59),

H„= —25O„B—6,„g

+
"(/2~(ri I/3)[—K2 +exp( B—g—)]

(65)

oo
( 1)k —1

H„=2( —1)" g Io(ki))
, kexp kB

2( 1)n oo 1)k —1

exp[k(i) —B )]
2'll'g k = 1 k 3/2 (61)

At D = 1 the series was evaluated numerically (and
rounded),

These relations show that the error of the asymptotic
solution for ~B

~
&i) is, instead of O(ri ') given by (58)

for ~B
~

& r), of O(r) ' ). Analogous to the improvement
of G„, formula (64) is a suitable approximation outside
the convergence domain (B) il ) also. Hence, the match-
ing point B* can be taken from the derivation concerning
G„, so that B*=g —1.

oo
( 1)k —1

X2= g 3
=0.7651 .

k=1
(62) B. Discharge current

1

K2 +1/Dk=1

The approximate formula, giving exact values for g=B
(D = 1) and B /r)~ ~ (D ~0) analogous to (46), can be
expressed at intermediate values of B by

oo
( 1)k —1

(63)

For ~B
~

& i) the discharge current (13) consists of near-
ly two rectangular waves with a height of 1 and —a, and
a pulse duty factor depending on B (see Fig. 2). Due to
the jumps, the amplitude of the harmonics decreases with
1/n in agreement to (34). The periodic averaged
discharge current, including the correction at B=g,

—a+, VB (1—g,
t/2~(ri 1/3) [K1 +ex—p( —i)~ —lna —g) ]

1++r=. 1— qz + lna
arccos —O(q-'), V~B~&q —1

1— 1++
VB &q —1

+2m(il —I /3) [K1 +exp(i)~ +Ina —g) ]

follows from (28) and Go/2 according to (33), (47), and
(48) (E1 =0.6532). The dependence of I on ilz is shown
in Fig. 3, for a pure diode configuration (a=a, =3). The
error of the corrected asymptotic solution (66) is, even for
small rf amplitudes (g =20), less than 1%.

In the inner interval ~B
~

& r) —1, Eq. (66) reduces to
r

I =1—(1+a) 1— (67)

where the angle of current fiow p is defined by (30) and
results in

++I
CP

—K (68)

Equation (17) yields in conjunction with (28) and the
Fourier series G„(see Sec. III A) the frequency spectrum
of the current drawn by an arbarity electrode. Particu-
larly the dependence of the periodic averaged currentI, Eq. (17), in time average, and of the potential AH™,
Eq. (19), on the bias voltage ri~ can be shown. From (28),
(34), and (68) the Fourier series of discharge current can
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be written in terms of the average discharge current I, C. Bias voltage

2 1 . a+II —I =(1+a)—g —sin nor cosny .
n a+1 (69) The inverse relation of (66) provides the bias voltage

g~ as a function of the average current I,

—g —ln
1+a

( 1 I ) 1—/2'( ri 1/3—)

—lna, VI (I"*

a a —1+2I' 'g sin
2 a+1

—Ina+O(g '), VI E [I *,I +] (70)

rl
1+a

(1—I )+2'(ri 1/3)—
—lna, Vl" (I + .

At the matching point B= 1 —g the average current is

1+a
'1/2~( rj —1/3 )[IC,* +exp( —1)]

1+aa+
&2~g

(71)

where the angle of current Aow y can be calculated by us-

ing (68). The term 1na, which was introduced to be a
function of the electrode potentials, can be replaced by
(18).

For a discharge without dc current I =0, e.g. , capaci-
tive coupling, Eq. (70) reduces for

and at B=q —1

1+aI +=1-
'1/2m( g —1/3) [K*, +exp( —1)]

&2~q —1

& a & t/2rrrI 1— (74)

to the linear relationship

Reduction to the inner interval provides for the bias volt-
age 'gg a 1

x/g ='g sin
2 a+1

—lna (75)

gz = —q cosy —lna, (73)
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FIG. 3. Mean sheath voltage and mean discharge current vs
bias voltage (g= 100, gf =4.7). The ion current ratio n was
supposed to be independent of the bias voltage (a=3).

of bias voltage and rf amplitude in agreement to experi-
mental results given in Ref. [13]. Using I =0 Eq. (70)
yields the complete representation.

Only pure configurations (a=a=a, ) without dc
current (I =0) have been treated by the known models.
Kohler, Horne, and Coburn have presented a similar for-
mula based on a simple derivation [13]. Other solutions
or approximations are not satisfactory. Suzuki and co-
workers gave an approximation based on a Taylor expan-
sions without proof of convergence [16]. For analogous
expansions the convergence domain was located outside
the interval (74) which does not appear realistically for a
pure configuration excluding additional dc currents and
electrodes. Pointu presents incomplete approximations
only [14]. The approximation given by Vallinga and de
Hoog [15], which is an improvement of the relation used
by Godyak and Kuzovnikov [10], are not suited for the
whole parameter region. Furthermore, it does not excite
the infiuence of the symmetry parameter a =a and the
electron temperature [here by lna = lna in (75)]
sufficiently. Using Eq. (38) estimates the small error of
(75) to be
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2B 2 . ~a —1 2m a —1
sin — /cos—

2 cx+ 1 2 cx+ 1

= 2n' 3-H2= sin y,3' (78)

(76)

and leads to the relative error b, rj~ /i)~ = —O(i) ).

D. Sheath voltage

sln2+
H, =g —1— (77)

Before discussing the time-averaged sheath voltages,
the first harmonics of g are presented. For a pure di-
pole configuration (1=1) il& will be called plasma poten-
tial. Using Eq. (9), the harmonics of i)0 can be derived
easily. For ~B

~

~ i) —1, or by the validity of (74), and for
pure configurations, the first harmonics of i) (m ) 1)
can be expressed as follows:

H3 = sin2y(1 —cos2y) .
6m

The following harmonics can be calculated from (54).
Since, for g~~, the sheath voltage is not smooth with
respect to y (see Fig. 2), the Fourier coefficients H„de-
crease roughly with n . The maximum and the
minimum of the sheath voltage determine the upper and
the lower bounds of the ion energy distribution. They
can be calculated from Eqs. (23) and (24). For example,
the maximum of gz is located at y=O and can be approx-
imated by maxg0=maxgq+lna =g+gz+lna, as can be
seen from Fig. 2. The qualitative oscillogram of g0
shown in this figure is in agreement with experimental re-
sults given in Ref. [6].

From (49) and Ho according to (56), (64), and (65), the
mean sheath voltage can be written as a function of the
bias voltage

i)f —1n(a+1)+, VB (1—il
1

't/2m(i) —I /3) [E2 +exp( B—il )]—

i)f —in(a+ 1)+—(i) B)' +B—arccos ——+O(i) '), V ~B
~

~ il —1

7l

i)f —in(a+ 1 )+B+ 1

+2'(rj I/3)[Kz +—exp(B —i))]
VB)q —1,

where B =rj~+lna and Kz =0.3069. From (9) the
analogous representation for g can be obtained by time
averaging (9).

To verify that the corrected asymptotic solution
satisfies the general relation (25), it suffices to prove that
dB/di)z =0 using (22).

The dependence of the sheath voltages, both g0 and g&,
on the bias voltage gz is shown in Fig. 3 for a pure diode
configuration (a=ai=3). The Fourier spectrum nor-
malized by the rf amplitude (peak voltage) from the ion
current ratio u is shown in Fig. 4. This representation
does not depend on the rf amplitude g.

Substituting the bias voltage i)ii by (70), one obtains an
appropriate function in I . At moderate values of gz,
strictly speaking ~B ~

~ i) —1, and large rf voltages
i) 'r ))1, Eq. (80) can be reduced to the asymptotic solu-
tion (see Sec. III A) without substantial loss of accuracy,

where y is defined by (30) again. For pure configurations
(a =a=a, ) without an additional dc current (I =0)
similar solutions have already been presented [13,15].
These solutions and other approximations [14,16], how-
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FIG. 4. Fourier coefficients of the first harmonics vs ion
current ratio a=a. In this case, g=gf —1na/(a+1)+Ho/2
[see Eq. (82)].
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ever, are not based on an asymptotic solution as given in
Sec. IIIA. Due to the general relation between the
Fourier expansions of discharge current and sheath volt-
age (52), the properties of (80) and (81) are substantially
the same as that concerning discharge current and bias

voltage.
From (68) the corresponding relation in terms of I can

be obtained easily. If there is no additional dc current
(I =0), and the weak condition (74) is satisfied, the final
result is

1 1 ~ e —1+ln +g —cos
1+ex 7T 2 cx+ 1

e . m a —1
sin

1+(x 2 a+1
(82)

( ) a, 1 ~ e —1
g gf YJH + ln +q —cos1+a m. 2 o.+1

1 . m a —1
sin1+a 2 ++1

The term lna involves the electrode potentials. Writing
in terms of the average discharge current I =I 0 and
average current of an arbitrary electrode I, the term
lna can be replaced in conjunction with (18). For the
electrode with constant current I * the sheath voltage

If we assume the secondary electrons to be the main
source of ionization [50], we can neglect power dissipa-
tion and ionization by bulk electrons. At the right-hand
side of the inequality following from the power balance of
secondary electrons

q*=qf —ln 1— P, = y;U (I' '+I'")cos— ) U (I' '+I'")
&s &s 2 + 1

I is is

+gH™—gf + ln 1 ——
A

(84)

is constant in time and gives rise to the time-dependent
electrode potential

we have taken into consideration energy losses due to
ionizing collisions using the ionization potential Uz.
Thus we only regard inelastic collisions which are direct-
ly coupled to particle losses at walls and electrodes. This
results in a lower bound of the rf peak voltage

reduced to the sheath voltage of an arbitrary electrode
m WO.

U
U& ~ a —1

2 (x+1 (89)

E. Power balance

P= U I, '(1+y;)(r) +ai), ) . (85)

y; is the (second Townsend) coefficient of secondary-
electron emission which here is supposed to be indepen-
dent of the ion energy. By using the conditions
illilf )) 1 and (74) the Aoating potential can be neglected
in (81). The expression i)&I in the relation for the time-
averaged power, obtained from (68) and (81),

P= —I,', '(1+a)(1+y;)sin rr +r)iiI (86)

can be identified as the dc power imparted by the external
bias-voltage source.

For the sake of simplicity„we now consider only the
pure case of no external dc current (1 =0). Replacing a
[compare (5) and (75)] leads to

(87)

Knowing the mean sheath voltages, we can directly
calculate the total power imparted to the plasma. To in-
vestigate this quantitatively, we restrict ourselves to the
simple case of a diode system (1=1). Usually the rf peak
voltage is much higher than the Aoating potential
(r)/iaaf ))1). Therefore the thermal (but not the secon-
dary) electron current can be neglected, and the power is
given by

Obviously, a symmetrical discharge (a = 1) is most
efficient. For example, for an Ar discharge ( Uz = 15.8 V),
y; =0. 1 [35,51], and a = 1, we obtain 0) 500 V.

Since we have excluded other inelastic collisions of
electrons, e.g. , excitation, and electrons traversing the
plasma without full loss of their kinetic energy, the valid-
ity of (89) for a self-maintained discharge is only neces-
sary, but not sufficient. Note that (89) can be violated, if
ionization by thermal electrons cannot be neglected [50],
e.g. , for high electrode spacing 2L or high pressure.

IV. EXTENSION OF THE RESISTIVE MODEL

The above model is not intended to imply that, depend-
ing on discharge conditions, the assumption of the same
electron temperature at every sheath boundary can be
violated. Experimental results from unsymmetrical
discharges ( ~i)ii/71 ~

—1) exhibit a higher electron temper-
ature according to a larger sheath voltage at the smaller
electrode [6,28,49,52,53]. Since this problem can hardly
be involved in the general solution, it is treated separate-
ly.

Already being included in the ion current ratio ai [see
Eq. (5)], different densities do not require an extension of
the resistive model given in the last section.

We assume equal electron temperature on the lower
side in Uzk =

Uz-& and, usually, a higher one on the upper
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Uro Urt Uz—1—
Uro Uzo

(90)

side Uro+Ur& in Fig. 1. Defining the temperature pa-
rameter 8

which can be written as

i)o=ilf —1n(1+a)+i),r+B+ln [1+exp( g,—r B—) J .

(99)

and normalizing the sheath voltages with respect to Uzp,
instead of Uz in (4), yields in extension of (10)

0= I'+exp(iaaf —ih)

Qk+ g a„—g a„exp
p k ) 1 —0

(91)

The definition of the integral symmetry parameter a can
now be extended

In conjunction with (6) this asymptotic representation
yields Eqs. (13) and (23) again. Thus the Fourier
coefficients for the discharge current in (28} and for the
sheath voltage in (49) can be calculated by using B ac-
cording to (96). For bias voltages, which do not exceed
the rf peak voltage, strictly speaking ~B~ ~i) —1, the
mean sheath voltage can be expressed as

7)o= iaaf
—ln(1+ a)+ i) — cosy

(100)

I (k)
9H

a = g akexp
k=1

where i)H"'/(1 —0)=uH"'/Uz i. The current of an arbari-
ty electrode, in extension of (17),

=(1—0) i)f —i)H™+ln1+a

sing+g + 1 — cosy
7T 7T

~m a+r na(m)

=1— exp
a 1 —0

The equation can now be used to express lna as

9H a+I
lna = +ln

1 —I /a

(93)

(94)

As the last equation shows, only the dc part of sheath
voltage, concerning particularly the Boating potential, de-
clines with lower electron temperature (8)0). In the
case in which i) ))i)f, e.g. , suggested by (89), the rf part
is not influenced compared to 0=0.

A discharge without an additional dc current (I =0)
provides in conjunction with condition (74)

Instead of Eq. (11),one obtains an indirect representation
of the sheath voltage go,

m. a —1
'gg ='g sin

2 a+1
a—lna+0 gf +ln 1+o.

(101)

0=1+a—exp(i)f —i)0) 1+a exp (95)

a8=g +lna —0 g +ln 1+a (96)

which cannot be resolved analytically. Therefore, as fol-
lows from (6), the analogous equation for I = I o can only
be resolved numerically also. Extending the definition of
B according to (14)

a linear relation between rf peak voltage g and bias volt-
age i)~ again. For 0—+0 we recover (75), as expected.

Different electron temperatures (8%0) cause only
different Aoating potentials essentially. It is not difficult
to show that also the assumption of the Boltzmann rela-
tion and a possible modulation of electron temperature
are not substantial from this point of view. The non-
normalized Aoating potential yf = Uz-gf can be approxi-
mated by the time-averaged electron temperature.

and rearranging (95) V. RESULTS AND DISCUSSION

0~

i)o=i)f —ln(1+a)+ln 1+exp +lna

(97}

gf —ln(1+a)+i),&+B, VyH 0,

i)f —ln(1+a), trpb
(98)

the sheath voltage can be represented, for sufficiently
large rf voltage, strictly speaking il ~ oo and 0%1,by the
steady asymptotic function

The asymptotic solution is shown to be a suitable ap-
proach and of high accuracy. At large rf amplitudes g
(peak voltage) and without dc current, the linear depen-
dences of bias voltage and sheath voltage on the rf ampli-
tude, already known for pure configurations without dc
current and additional electrodes, are found. For bias
voltages below a critical value the error was estimated to
be of O(i) ) for the discharge current, and of O(i) ')
for both bias and sheath voltage. The relation of the
average discharge current and an external bias voltage
shows the strong nonlinearity of the rf discharge and the
possibility of controlling of the average sheath voltage
(see Fig. 3). For a capacitivly coupled discharge, the non-
linearity can be well demonstrated by the Fourier spec-
trum in Fig. 4.
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In the case of one auxiliary electrode, and if the driven
electrode is coupled capacitivly, the average current is
essentially the same as found in theory and experiment in
the range well above co&,. [3,28]. In this case Eq .(17)
reduces in time average to

a&++2

a,exp( —
riH )+a2

(102)
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APPENDIX

I

y I,',"'+I*
k=&

I+exp(g +lna )
(A 1)

this sum appears as constant factor. The non-normalized
constant current I* refers to I * in Fig. l. After time
averaging (dc current, bias voltage) only the average ion
current has to be taken into account. The remaining
weak logarithmic dependence in gf and lna, e.g. , for the
sheath voltage, can be neglected. Thus all expressions
remain valid, at least approximately.

In particular, the modulation of ion current has to be
considered in (13) for the discharge current. Because of
the time-independent plasma density, see physical as-
sumptions, the sum of the ion currents is only weakly
modulated and can assumed to be constant [29]. Rewrit-
ing the non-normalized Eqs. (13) and (7),
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