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A recent model treating the structure of "simple plasmas" as that of high-temperature liquid metals is

used here to calculate the equation of state of dense beryllium plasmas, for values of compression be-

tween 0.2 and 6, and temperatures up to 100 eV. This model gets rid of the standard simplified descrip-
tions of ionic distributions {isolated ion sphere, uniform positive background, etc.); it applies when the
electronic structure justifies the use of a binary pair interaction. This interaction is calculated, for every

density and temperature, using the self-consistent electronic charge density obtained in a density-

functional-theory calculation. The statistical mechanics of the ion Quid is treated via a modified

hypernetted-chain integral equation. The various contributions to the equation of state are presented
and discussed, and comparisons with other theories are made.

PACS number{s): 52.25.Jm, 05.70.Ce, 52.25.Kn, 61.20.Ne

I. INTRODUCTION

The general method for constructing an equation of
state (EOS) in a wide domain of densities and tempera-
tures consists in adding three contributions: (i) a term
representing the zero-temperature isotherm, (ii) a thermal
electronic component, and (iii) a thermal ionic part.
Though more or less sophisticated models can be chosen
for calculating these various pieces, they are in general
derived independently and without intrinsic coherence
[I]. For instance, the zero-temperature part is calculated
using solid-state band-structure theory, and the thermal
electronic part is obtained in a statistical Thomas-Fermi
model (possibly with corrections). Then, a thermal ionic
free energy interpolating between those of the hard-
sphere (HS) Iluid and the Coulomb one-component plas-
ma (OCP) is added. The problem to solve is so difficult
that this kind of approach is often the only tractable one
and may be of great practical interest if fitted parameters
are included.

The INFERNO model of Liberman [2] improves the
internal coherence of these calculations, at least for me-
tallic systems, by applying the same theory to the elec-
trons, on the 0-K isotherm and for any finite tempera-
ture. But the description of the average environment
around an atomic sphere leads to difticulties in the
definition of thermodynamic functions. The notion of
ion-ion interaction is not included in this model, which
has become a reference in the field of EOS calculations.

An alternative approach to the treatment of the in-
teraction between an atom and its environment is possi-
ble, at least in a large part of the density-temperature
domain of interest, in cases where the electronic structure
of the material is "simple, " that is, when the conduction
electrons are all free-electron-like and do not hybridize
with localized states. In this work, we use this approach
for Be plasmas.

The treatment of the effective ionic interactions is at
the center of this study. We have applied a model origi-
nally proposed to describe the solid phase of simple met-

als [3], also applied to the liquid phase of these metals [4],
and extended to the domain of dense plasmas [5] where
the ionization changes with density and temperature.
The model deals with constructing the effective ion-ion
interaction, for any set of density and temperature pa-
rameters, starting from the self-consistent electron charge
density previously calculated using density-functional
theory for a single neutral pseudoatom.

The model is applicable to plasmas with densities in
the metallic range, temperatures higher than a few eV,
and intermediate ion-ion coupling (for strong coupling,
the common isolated ion-sphere model is expected to
work well, and for weak coupling the ionic nonideal con-
tribution is not very important).

The paper is organized as follows. In Sec. II we recall
the most important features of the model, presented and
discussed at length in Ref. [5]. In Sec. II E we shall de-
scribe a modification of the model that we found relevant
to include: we now solve a modified hypernetted-chain
(MHNC) equation, instead of a HNC equation, for the
ionic structure. Including bridge terms is known to be
important in regimes of strong ionic coupling, in particu-
lar for the liquid metal close to freezing, where the model
will be shown to give reasonable results. In Sec. II F we
derive specific formulas for the internal energy E and the
pressure P from the Helmholtz free energy F which is the
basic quantity of the theory. This derivation was absent
in Ref. [5] where results for F only were given. E and I'
are to a large extent calculable explicitly, as a conse-
quence of the variational properties of the model. But a
part of the free energy, the variations of which being
made as weak as possible, must be differentiated numeri-
cally. This is the price to pay for the treatment of the
temperature-dependent effective interaction. Section III
is devoted to estimating the accuracy of the method
through a comparison between its results on the 0-K iso-
therm and those of other theories and measurements. A
test case for liquid Be at freezing is also presented. The
dense beryllium plasma phase is the subject of the last
section, for compressions going from 0.2 to 6, and tem-
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peratures between 2.5 and 100 eV. The numerical results
are discussed; the thermal electronic component is com-
pared with other estimates. Values of the total thermo-
dynamic functions are tabulated and their changes with
respect to a simple Be EOS are shown. Finally, some re-
marks on the validity of the model are given as a con-
clusion.

II. THE MODEL

Although its limitations for dense systems are well
known, the approximation of binary ion-ion interactions
(BIIA) remains the only one that can be practically used,
when justified, for constructing an EOS of wide use in hy-
drodynamic applications. Its numerical implementation
is already rather complex, as will be seen in this paper.
Let us start with a brief description of the physical mod-
el.

A. Physical content

The model has been presented in great detail in Ref.
[5]. Here we only recall the main assumptions and results
of the derivation. The BIIA appears naturally in the
study of simple metals, when second-order perturbation
theory is applied to the electron-ion interaction
represented by a weak pseudopotential. The present
model deals with the same class of systems, but treats the
electron-ion interaction to all orders using density-
functional theory (DFT) [6]. The BIIA implies that the
total electron density of the system is given as a superpo-
sition of rigid one-site densities.

n(r)= gbn(r —R, )= gbn;

Z'=nO, (5)

where 0 is the average atomic volume, so that

Z*=Z —f nb(r)dr= f v(r)dr .

The total charge neutrality implies Eq. (3). Thus the
NPA Fiedel sum is zero: the NPA is a very weak scatter-
er. Let us rewrite Eq. (1) in the following form:

n(r)= n+ gbn;* + gm, n—
I I

(7)

Because the pseudoatoms are weak scatterers, their densi-

ty contributions are additive, so that n+g;b, n, can be
considered as the density of an assembly of pseudoatoms
for which the externa1 potential is

V,*„,= —e g ( —Z5, +v, ) n—
I

The remaining part of the total density in Eq. (7),

g;m; n, is treated —in linear response. The correspond-
ing external potential 5V„, is the difference between the
exact external potential of the system

V,„,=—e g —Z5;=1
I

and V,*„,

f eg =ff(r')g(r —r')dr' .

Z is the nucleus charge and v(r ) a screening charge den-
sity which totally screens the ion. Et carries the net
charge Z*,

An ' and m are chosen in order to fulfill the following re-
quirements. (i) b.n is made of a bound contribution nb

and a delocalized contribution An&. The total charge
carried by hn& is zero.

f bn&dr=0 . (3)

(ii) m is such that the overlap g;m(r —R, )=g, m; is not
very different from the uniform average density n in the
system.

The distribution An * is the electron charge density of
the so-called "neutral pseudoatom" (NPA}. A singIe
NPA results from the external potential

1—+( —Z5+v n), — (4a)

which, when screened by n +An *, becomes

centered on all the sites R;. Such a superposition approx-
imation is kept in the present model, where the individual
density is written

bn(r)=An*(r)+m(r) .
which is weak by construction. Thus

m(r)=(2~) f dq v(q)e
11o q 4m

e(q ) q'
(10)

where ilo(q) is the density response function of the uni-

form electron gas at density n and temperature T, and

e(q ) = 1 — +X IIo(q ),4m.

q

with X the local-field factor consistent with the
exchange-and-correlation (xc) approximation used in the
NPA calculation. Here, we have adopted the local densi-

ty approximation (LDA), with the numerical fit due to
Iyetomi and Ichimaru [7] for the xc functional F„,(n, T ).

The screening charge v(r ) is chosen as a sphere with
uniform density of charge n, so that its radius R is equal
to the average atomic radius in order to satisfy Eq. (5),

n for r(R
V*=—e( Z5+v+bn—*) . (4b)

0 for r~R (12}

6 is a Dirac distribution and the symbol * is used for the
convolution product

The calculation of the NPA density profile hn * is done
by solving the DFT equations, for a spherical scattering
center in a uniform electron gas, using standard tech-
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niques [8]. This can be done either at zero temperature
(Hohenberg-Kohn-Sham equations) or at finite tempera-
ture (Mermin-Kohn-Sham equations). When hn' for a
single N PA is obtained, it is easy to calculate the
"embedding free energy" of a NPA, defined as the
difference between the free energy of the electron gas con-
taining the NPA and that of the uniform electron gas:

F, =G[n+An*] —G[n] ——o(bn*+v)
7

1——'(n —v)o —,(v —m ),2 p
(16a)

center. Equation (15) is not applicable if this condition is
not satisfied. All the above contributions can be rear-
ranged to give, as shown in Appendix B, the total free en-
ergy per atom in a fixed ionic configuration:

F, =FO+F, + —,
' g'P(R )+(n —v)o V*

J

Fo =Z*g(n, T)=Z*[g,(n, T)+g„,(n, T)] . (16b)
+ '(bn *+—v)o —,( bn '+ v) .

2 r

The symbol o stands for integration in whole space,

fog= J f(r)g(r)dr .

(13)
Fo is the free energy of Z* electrons in a uniform elec-
tron gas, with a kinetic part g, and an xc part g„,. F, is
defined in Eq. (13), and P is a binary interaction, the for-
mal expression of which is given in Appendix B.

In Eq. (13), G[n ] is the functional containing the kinetic
noninteracting free energy plus the xc free energy F„,. A
detailed expression of F„readily calculable, is given in
Appendix A.

B. Plasma electronic free energy

+ —n+ g b, n;* o —,n+g b, n*1--
T

J
(14a)

In this section we summarize the derivation of a for-
mula for the plasma (or liquid metal, or solid according
to temperature) free energy, in a given distribution of the
ions (. . .R, . . . ). This free energy is made of (i) the G
contribution, the energy of the electrons in the external
potential V,*„,the electron-electron interaction for all the
pseudoatoms,

G n+ gb, n;* + n+ g bn;* && V,*„,

C. Ionization

The usual definition of the number of free electrons in
a simple metal (or plasma) is given in Eq. (6) which ap-
plies if there is no ambiguity when sharing the spectrum
into bound and free parts. But, for particular values of
the density and temperature parameters, bound levels
cross the zero-energy limit and enter the continuum
(pressure ionization), or vice versa (temperature localiza-
tion of effective eigenstates). In the NPA calculation,
these transitions are associated with the appearance of
resonances in the continuum, which reAect the existence
in the plasma of a band of electronic levels weakly bound
to a cluster of ions ("hopping" states) [9]. The present
model, though it is unable to describe such complex situ-
ations where the BIIA may break down, can nevertheless
apply when bound levels begin to interact weakly be-
tween adjacent sites. It has been shown in Ref. [5] that
this effect may be accounted for by changing the
definition of the bound and free densities:

(ii) the second-order perturbation free energy associated
with 5V„„

1
5F, = n+ Q bn;* o5V,„,+ —g m,. n&&5—V,„, ;

b n *= nb +b nf* =fn& + [(1 f )nt, +b ng ]-
=n„'+ Anf*',

where f is a "cutting" function

(17a)

(17b)

(14b) f= [1+exp( —1/a)]/I 1+ exp[(r —R )/aR ]], (18)

and (iii) the nuclei interaction energy

—,
' g'Z /R; (14c)

The main problem in calculating this free energy comes
from the G contribution, due to the overlap of densities.
The advantage of the NPA is that the following expan-
sion is a fairly good approximation:

G n+ g hn;* =G[n]+ g [G[n+hn, *]—G[n]I

with +=0.05. The charge density nb is now considered
as "truly" rigid, and An&' as responding to external per-
turbations. The ionization is given by Eq. (6) with nb in-
stead of nb, and An& must be replaced with hnf*' in Eq.
(3), without any other change in the model.

When the overlap between bound levels on different
sites becomes too strong, or when too sharp resonances
do appear in the NPA continuum, the model is no longer
valid; examples will be seen below in the numerical appli-
cations.

+—,
' g'G,", (15)

D. Ion-ion interaction

where the third- and higher-order terms in a full cluster
expansion are negligible. The validity of this truncated
expansion, discussed by Dagens [3], comes from the fact
that the overlapping part An& of An * has a vanishing in-
tegrated charge and is displaced by a weak scattering

The interaction defined in Appendix B is not calculable
without further approximation, because the two-body ki-
netic and xc term 6 is not known explicitly. The solution
to this problem is to introduce an auxiliary pseudopoten-
tial u~(q ) which, if used in linear response theory, repro-
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duces the "exact" NPA free-electron density given by
DFT calculation:

w(q)= b.nf '(q),e(q )

IIO q
(19)

with the same e and IIO as in Eq. (11). With such a
definition, the ion-ion interaction is found to be [with
u(q)=4m/q ]

IIO(q )
P(q)=(Z*)'v(q)+ [w(q) —u(q)v(q)]',

~(q )
(20)

a (q ) = —[w(q )
—v(q )v(q ) ]/Z'u(q )

where the quantity in brackets plays the role of the bare
ionic pseudopotential. The approximation is expected to
work if

average

(P) = ,'p f—P(r)dr=—,'pP(q =0) (24)

F. Internal energy and pressure

Next we show how the EOS functions, internal energy
and pressure, may be practically obtained starting from
the total free energy

F=Fo +FI +F&2 +Fld E~t

with Fo given in Eq. (16b), Fi in Eq. (13), and

(25)

will be needed below. These MHNC equations, common-
ly used in liquid metal studies [20—24], recently applied
to Coulombic plasmas with linear electronic screening
[25], have been used systematically in the present work.

is smaller than 1 for any q. More details concerning the
practical aspects of the interaction calculation can be
found in Ref. [5].

F,z =F„„,+(n —v)o V* —
—,'(n —v)o —e (v —m ) .

1
(26)

E. Ionic structure

The last step in the calculation of the total free energy
Fof the plasma is to average the electronic free energy F,
(defined for a given set of ionic positions) on the ionic
coordinates [10]. This requires the knowledge of the ion
pair distribution g(r). Most of the plasma studies with
integral equations use the hypernetted-chain equation
[11—15]; this was the approach chosen in Ref. [5]. But
the HNC approximation can be improved for strong-
coupling regimes by taking a bridge function B(r) into
account in the so-called modified hypernetted-chain equa-
tions [16]. We have adopted this scheme in the formula-
tion of Lado, Foiles, and Ashcroft [17]. These authors
have derived a criterion for selecting the packing fraction
g of an auxiliary hard-sphere system, the bridge function
BHs(r;g) of which is used in the MHNC equations.
They have also given a variational expression of the ionic
free energy F „,. The packing fraction is determined by

BBHs(r;g)0= fdr
'

[g(r) —g„,(r)] . (22)
all

The bridge function of the HS system can be computed
with the help of the accurate numerical fits given by Ver-
let and Weis [18],and Henderson and Grundke [19]. The
free energy is

= T
Z*

az*
aT

(27a)

characterizing the variations of Z* with temperature at
constant volume, and similarly

n az*
z aQ . T

(27b)

These functions may be reexpressed in terms of the
derivative with respect to the input variable n [from
which 0 is defined by Eq. (5)]:

T BZ
rT—z* aT — y"

n

(27c)

)'n= —r;(I —1';) ' (27d)

The internal energy associated with Fo is obviously

a
~

(PFo)=&o I Z*rT— (28)

F;d is the ionic ideal contribution and E„is the energy of
an isolated atom in its T=O ground state, obtained in a
separate calculation with the same xc approximation, and
chosen as reference energy. Since the ionization Z* is a
function of density and temperature, we must introduce
two functions:

PFp„, = 3+PF„[h ]—PF—„[hHs]
(1—q)

+pF [h] —pF [hHs],

PF„[h ]=—,'p fdr[ ———,'h (r)+g(r)c(r)],
(23a)

(23b)

where Eo is the "normal" energy of a constant number
Z* of electrons in an interacting uniform electron gas, to
which a term due to the variations of Z* with tempera-
ture is added; p is the chemical potential of the electron
gas

p= [ng(n, T)] .a
an

pF [h]= — (2') f dq{ In[l+ph(q)] ph(q)], —
2p

(23c)

where h(q) is the Fourier transform of h(r ) =g(r) —1,
c(r ) the direct correlation function, p the ionic density
I/O, and p '=k~T. The definition of the interaction

Similarly, the pressure is given by

aF, =(1 )'n»o —rnFo/& —. (29)
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where PD is the "normal" pressure (at constant Z*) of
the electron gas.

When the energy E& associated with F& is calculated, a
first contribution, E„comes from B(PF, )/I3P at constant
n and Z*. This "normal" term is given in Appendix A.
An additional term comes from the change in n, Z*, and
A. The corresponding variations in F„starting with Eq.
(13), are

5F, =5G[n+hn*] —5G[n]+(5hn "+5v)0 V*

=@5',n* —(5n —5v)o V*, (30a)

which becomes, with the help of Eq. (12),

5F, = —p5Z* —(n —v)o V* +n V*(R )4~R 5R .
n

(30b)

For calculating E, (at constant volume), 5R =0, so that

(PF, )=E, +yz. [pZ" +(n —v)o V*] . (31)

In the expression of the pressure P&, there is no "normal"
contribution at n, Z*, p fixed because there is no explicit
volume dependence in F, other than those shown in Eq.
(30b). Thus P, is

aF,
an

=yniMZ* —(1 y„)(—n —v)o V*

—Z*V*(R ) . (32)

E=E,+E, +E»+E,,—E„,
Po+Pi+P»+

Ei =Ei —yz-P, A,

P, =P, +(1—yn)Pb,

= a
Eiz =

&
(PFi2)n

(33a)

(33b)

(34a)

(34b)

(35a)

The last term in the free energy, F,2 is resistant to expli-
cit derivation because of the complex implicit T depen-
dence of the pair interaction. As a consequence, the cor-
responding E» and P,2 must be computed numerically.
Fortunately, F,2 varies much more slowly with n and T
than F~„., alone, so that the accuracy on E» and P»
does not suffer from numerical differentiation. Gathering
all the results of this section, we obtain

III. ZERO- TEMPERATURE ISOTHERM
AND LIQUID METAL

The method described in the preceding section has
been applied to beryllium. The extremely stab1e electron-
ic structure of this material is favorable in the treatment
of the Quid phase: there exists a wide domain of densities
and temperatures where the only bound leve1 is the 1s
level, the continuum states coming to a large extent from
the delocalization of the 2s level. On the contrary, the
solid phase band structure, less free-electron-like than
that found in alkali metals, and the low density of states
at the Fermi level, make of Be a nontrivial candidate for
applying the present method. In this section we report
the results obtained at T=O K as a test of the model.
The reference electron density is no =0.038 48 a.u. corre-
sponding to the volume GO=51. 9751 a.u. and to the ma-
terial density po= 1.9438 g/cm .

A. Pair interaction energy

At zero temperature, F „,reduces to

E „„=—,
' g'P(X),

x

TABLE I. Pair interaction energy E~„, (Ry) at T =0 K in
Be, for various structures.

Structure e/a n/n, =1 n /no=3 n /no =0.8

where the X are the lattice vectors. This sum can be cal-
culated more accurately in reciprocal space. The
difficulty of the calculation is that it requires the deter-
mination of the most stable lattice. We have compared a
limited number of structures: fcc, bcc, and hexagonal
with a variable ratio c/a. It was found that, at normal
density, the hcp structure [c/a=2( —', )' =1.633] is the
most stable, in agreement with experiment [26] (but the
measurements give a e/a ratio slightly smaller, 1.579,
than the ideal value). Computations indicate that the hcp
structure remains the most favorable up to compression 3
where the bcc lattice begins to be more stable. The most
recent experiments indicate a transition from hcp to-
wards a hexagonal phase with c/a =0.9 at p/po=1. 17
[26]. Such a transition has not been found in the calcula-
tions. There is no experimental result at p/p0=3 on the
0-K isotherm, and the only possible comparison is with
other theoretical estimates. It has been found, using the
augmented-spherical-wave (ASW) method [27] that the
hcp~bcc transition occurs for compression 1.55, a value
significantly lower than that predicted by the present
work.

(35b)

P, Q= (n —v)0 V*, —

Pi, A= —Z*V*(R ) .

(36a)

(36b)

Eo and Po are relative to Z* electrons in a uniform elec-
tron gas. A detailed form of E& is given in Appendix A.

fcc
bcc
Hexagonal 1.4

1.5
1.6
1.7
1.8
1.9

—0.021 56
—0.020 64

—0.028 24
—0.028 78
—0.028 58

0.3620
0.3385

0.3427
0.3387
0.3418

—0.031 75
—0.027 74
—0.035 05
—0.035 66
—0.035 68
—0.035 90
—0.036 60
—0.037 30
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For densities lower than the normal value, calculations
show that the hexagonal phase is also the most stable.
But the value of c/a minimizing the energy increases
very fast with decreasing density. This ratio exceeds 2 as
soon as compression reaches 0.8, as if the material were
developing a tendency towards a more and more planar
structure. But here again, no experimental evidence is
available, so that this result must be taken with care.

As an illustration, Table I shows a comparison of the
energies in various structures for the three densities
n /no = 1, 3, and 0.8.

Owing to the particular behavior found for compres-
sions lower than 1, and because we do not have the
answer to the question of whether there is any other
structure which could be more stable, we have chosen to
use the pair energy of a hexagonal lattice with c/a =1.9
in the zero-temperature tabulations (Table II). This
choice has no important consequence since these densi-
ties are never reached in the solid phase.

B. Equation of state at 0 K

In Table II we show the various contributions to the
Be EOS at T=O K, for compressions in the range 0.2—6.
In this range, Z* varies from 2.000 to 2.033. The isolat-

ed free-atom energy taken as reference is E„=—28. 8921
Ry. The results may be compared with those obtained
using a band-structure method, the linearized muffin-tin
orbital (LMTO) method [28]. The pressure given by this
method has been integrated to get the energy E, with an
integration constant chosen to give the experimental
cohesive energy at compression 1 [29]. The zero-point
energy (0.011 Ry at normal density) is not included.
Good agreement can be noticed, on both E and I'. We
can also remark that the cohesive energy calculated by
Moruzzi, Janak, and Williams [30], using the KKR
(Korringa-Kohn-Rostoker) method, is —0.310 Ry for the
fcc phase, more different from the experiment, —0.259
Ry [29], than the value found in this work, —0.281 Ry.
The bulk modulus at zero pressure found here is 1.30 Mb,
to be compared with 1.31 Mb computed by Moruzzi and
1.01 Mb, experimental value (both corrected for the vi-
bration contribution).

Finally, we display in Fig. 1 the effective pseudopoten-
tial used for calculating the pair interaction, as defined in
Eq. (21), for compressions 1 and 3. One can see that a(q )

remains smaller than 1 in magnitude. This is the condi-
tion required for the validity of the approximation.

The comparison of the results obtained here with those
of other methods, and also with experimental data, indi-

TABLE II. Beryllium equation of state at T=O K. The tabulated quantities are defined in Eqs. (33a)
and (33b). The LMTO data are those of Ref. [28]. II and n correspond through relation Z* =On, and

0& =52.0952 a.u. is the LMTO equilibrium volume. Energies are in Ry and pressures in Mb. The elec-
tronic density n is in a.u.

0.200
0.401
0.601
0.802
1.002
1.203
1.403
1.603
1.803
2.003
2.998
3.983
5.917

Eo

—0.2781
—0.1836
—0.0796

0.0251
0.1286
0.2304
0.3304
0.4285
0.5250
0.6198
1.074
1.S03
2.313

E —E

0.1398
—0.0656
—0.2228
—0.3446
—0.4406
—0.5182
—0.5832
—0.6392
—0.6882
—0.7313
—0.8718
—0.9458
—0.9999

E12

0.0853
0.0862
0.0666
0.0480
0.0309
0.0153
0.0028

—0.0072
—0.0152
—0.0211
—0.0308
—0.0231

0.0245

—0.0531
—0.1630
—0.2359
—0.2715
—0.2811
—0.2725
—0.2500
—0.2179
—0.1784
—0.1326

0.1714
0.5339
1.337

LMTO

—0.2592
—0.2508
—0.2297
—0.1991
—0.1603
—0.1149

0.1787
0.5332
1.347

0.007 70
0.015 39
0.023 09
0.030 78
0.038 48
0.046 18
0.053 87
0.061 57
0.069 26
0.076 96
0.11544
0.153 92
0.230 88

Po

0.0455
0.2303
0.5331
0.9421
1.450
2.050
2.738
3.511
4.365
5.298

11.07
18.54
38.06

—0.1297
—0.4094
—0.7088
—0.9845
—1.224
—1.449
—1.677
—1.913
—2.085
—2.214
—2.425
—1.828

1.632

Pi2

0.0129
—0.0293
—0.0969
—0.1605
—0.2298
—0.2825
—0.3085
—0.3228
—0.3150
—0.2847

0.0244
0.6805
3.149

—0.0713
—0.2085
—0.2727
—0.2029
—0.0042

0.3185
0.7524
1.276
1.965
2.799
8.668

17.39
42.84

LMTO

0.0028
0.3230
0.7207
1.269
1.943
2.745
8.516

17.20
43.42
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TABLE III. Thermal electronic internal energy and pressure, in the present model (left column), and in the Thomas-Fermi model
(right column). The ionization Z* is also shown.

n /lip Z* phE, PQBPs Ze pnaps

0.4
0.8
1.2
2.0
4.0
6.0

2.0000
2.0001
2.0003
2.0019
2.0131
2.0329

1.255
0.960
0.758
0.537
0.352
0.270

2.5 eV
1.307
0.972
0.786
0.585
0.384
0.300

0.944
0.762
0.542
0.408
0.249
0.187

0.726
0.576
0.476
0.362
0.242
0.190

2.0000
2.0001
2.0004
2.0020
2.0132
2.0330

1.955
1.727
1.559
1.314
0.959
0.774

7.5 eV
2.596
2.171
1.907
1.560
1.106
0.880

1.308
1.212
1.079
0.927
0.665
0.531

1.309
1.203
1.105
0.943
0.692
0.558

0.4
0.8
1.2
2.0
4.0
6.0

2.0019
2.0089
2.0077
2.0075
2.0165
2.0353

2.480
2.230
2.076
1.866
1.534
1.322

15 eV
3.670
3.169
2.876
2.493
1.945
1.626

1.534
1.449
1.357
1.241
1.018
0.873

1.768
1.670
1.591
1.454
1.196
1.020

2.3818
2.2939
2.2481
2.1962
2.1405
2.1243

4.684
3.983
3.609
3.166
2.593
2.269

30 eV
5.035
4.414
4.067
3.635
3.037
2.675

2.000
1.871
1.778
1.657
1.454
1.319

2.353
2.227
2.147
2.026
1.804
1.636

0.4
0.8
1.2
2.0
4.0
6.0

3.0547
3.1689
3.0606
2.9215
2.7301
2.6208

7.726
6.848
6.275
5.577
4.662
4.141

60 eV
6.378
5.823
5.450
4.982
4.345
3.964

2.934
2.766
2.640
2.474
2.239
2.088

3.012
2.883
2.792
2.670
2.474
2.333

3.6729
3.4929
3.6316
3.5099
3.3127
3.1819

8.216
7.617
7.279
6.741
5.943
5.451

100 eV
6.972
6.482
6.223
5.823
5.247
4.893

3.520
3.362
3.276
3.125
2.900
2.752

3.426
3.301
3.232
3.122
2.946
2.825

TABLE IV. Comparison of the thermal electronic pressure pQEPs as obtained in the present model,
in the INFERNQ model [2,31], and in Thomas-Fermi theory lTF).

n /np

04
0.8
1.2
2.0
4.0
6.0

This work

0.944
0.762
0.542
0.408
0.249
0.187

INFERNO

2.5 eV
1.055
1.006
0.749
0.488
0.329
0.235

TF

0.726
0.576
0.476
0.362
0.242
0.190

This work

1.178
1.056
0.879
0.724
0.482
0.369

INFERNO

5 eV
1.028
1.284
1.105
0.822
0.611
0.452

TF

1.078
0.953
0.844
0.684
0.476
0.378

0.4
0.8
1.2
2.0
4.0
6.0

1.400
1.311
1.199
1.063
0.808
0.665

10 eV
1.407
1.445
1.344
1.146
0.989
0.794

1.488
1.390
1.301
1.147
0.884
0.726

1.534
1.449
1.357
1.241
1.018
0.873

15 eV
1.544
1.544
1.446
1.290
1.205
1.026

1.768
1.670
1.591
1.454
1.196
1.020

04
0.8
1.2
2.0
4.0
6.0

1.644
1.574
1.487
1.376
1.174
1.035

20 eV
1.649
1.647
1.547
1.391
1.350
1.194

1.992
1.886
1.809
1.682
1.438
1.261
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sphere so that, according to Eq. (17), Z* increases. The
effect is not very pronounced in the range of densities
studied here, but it was shown in Ref. [5] that the com-
plete delocalization of the 1s state occurs around
compression 50. When T increases, Z* also increases at
constant density. But for a given temperature, a higher
density, starting from compression 0.2, causes first a de-
crease of Z* because the ls population increases (the
quantity c.&,

—p in the Fermi-Dirac statistical factor goes
smaller). For a particular density, which is the limit of
the degenerate domain for that temperature, p becomes
positive, c&,

—p starts to increase, and Z' also increases.
This behavior is typical of all the "average atom" models.

In Fig. 3 one can see a fast change in ionization for
temperatures higher than 20 eV around a density going
from 0 2no (2. 0 eV) to no (100 eV). This is a consequence
of the new levels 2s and 2p appearing in the bound spec-
trum. As discussed in Sec. II C, the present model can-
not follow entirely the transition of a level from a free to
a bound state. The localization of the n =2 shell is anti-
cipated by the formation of resonances in the free spec-
trum. Resonant states are expected to bring some contri-
bution to the bound density. When they have crossed the
zero-energy boundary, and as long as they are not well lo-
calized within the atomic sphere, they interact with
neighboring bound states and may form molecular states

that the model cannot take into account. The interac-
tions involving more than two atoms may become impor-
tant in such cases. For all these reasons, the model is
thought to be inapplicable in the corresponding regions
of the p-T plane. In the tabulations, blank rows will
denote this situation.

PAEAN(O,

T) =P[Es (A, T)—Es(Q, O)],

PQbPs(O, T) =Pfl[Ps(O, T) Ps(Q„O)], —
(38a)

(38b)

B. Thermal electronic contribution

The free energy F~ =Fo+F, may be interpreted as
that of a single atom, immersed in an electron gas, the
ions being modeled by (i) the central ion in its cavity and
(ii) a uniform background for the field ions. The last term
F,2 is the correction due to the more realistic description
of the ionic distribution. Thus one can consider F& as an
electronic contribution comparable to that of other mod-
els using a simplified ionic distribution (isolated ion
sphere, jellium with cavity, etc.). In Table III we com-
pare the thermal part of the internal energy E& and of the
pressure P~ associated with F~ as obtained in the present
model and in the Thomas-Fermi (TF) model. These
thermal parts are

TABLE V. Comparison between the quantity —[F„;„—(P)], obtained in the present model (Be), Eqs. (23) and (24), and for a
one-component Coulomb plasma (OCP) with same coupling I using the analytical fit of Ref. [32]. Energies in Ry. no =0.03848 a.u.

n /no

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
6.0

5.499
6.928
7.931
8.729
9.404
9.995

10.52
11.01
11.45
11.87
13.63
15.09
17.56

Be

5 eV
0.1916
0.3414
0.4694
0.5843
0.6874
0.7838
0.8741
0.9596
1.040
1.117
1.458
1.7S1
2.251

OCP

1.316
1.719
2.007
2.238
2.435
2.608
2.764
2.907
3.038
3.162
3.689
4.128
4.876

2.750
3.465
3.966
4.366
4.703
4.998
5.263
5.504
5.726
5.934
6.817
7.546
8.780

Be

10 eV
0.2107
0.3282
0.4301
0.5224
0.6075
0.6867
0.7618
0.8328
0.9006
0.9657
1.260
1.519
1.971

OCP

1.153
1.525
1.792
2.008
2.192
2.354
2.501
2.635
2.759
2.876
3.375
3.792
4.506

1.841
2.086
2.282
2.447
2.592
2.721
2.839
2.948
3.049
4.560
3.836
4.439

Be

20 eV

0.3496
0.4272
0.4976
0.5627
0.6244
0.6828
0.7389
0.7925
0.8443
1.082
1.294
1.675

OCP

1.404
1.641
1.834
1.999
2.145
2.276
2.397
2.509
2.614
3.066
3.444
4.095

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
6.0

1.077

1.607
1.705
1.785
1.854
1.915
1.969
2.018
2.063
2.249
2.395
2.635

40 eV
0.5321

0.6843
0.7430
0.7964
0.8463
0.8929
0.9372
0.9808
1.020
1.204
1.365
1.652

1.414

2.364
2.548
2.701
2.833
2.949
3.054
3.149
3.237
3.602
3.893
4.376

1.075
1.170

1.566
1.635
1.692
1.741
1.784
1.822
1.866
1.991
2.089
2.234

60 eV
0.8272
0.9306

1.089
1.148
1.199
1.248
1.292
1.334
1.374
1.550
1.699
1.952

2.115
2.361

3.434
3.626
3.787
3.925
4.047
4.156
4.255
4.465
4.931
5.359

0.806
0.954
1.037
1.105

1.350
1.399
1.441
1.479
1.512
1.641
1.731
1.852

100 eV
1.022
1.298
1.403
1.504

1.694
1.763
1.825
1.881
1.933
2.149
2.319
2.589

2.412
3.015
3.362
3.656

4.736
4.956
5.148
5.320
5.474
6.071
6.492
7.072
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with Q=Z (n, T) ln. At T=O, the electronic density is
such that n'=Z(n', 0)IQ Both quantities are, at tem-
peratures T and 0, calculated with the same volume, but
different electronic densities. One can see that PEED of
this model is smaller than its TF counterpart for T lower
than 30 eV, and then larger for higher T. At 100 eV the
two series of estimates are still not equivalent; the
difference amounts to 18% for compression 0.4, and to
11% for compression 6. Up to 7.5 eV, the pressure is
larger in this model, then weaker for higher T. The max-
imum difference reaches 20% around 30 eV, but at 100
eV the two series of results are very close. It appears
from this brief comparison that the largest discrepancies
between the two models affect the energy.

In Table IV we compare the thermal electronic com-
ponent with that of the INFERNO model [2], computed by
Pelissier [31]. Examination of the results does not reveal
any general rule relating the differences between this
model, INFERNo, and TF.

1.5

1.0

0.5

0.0
Q2

I I ~ I i ~ s ~ I I I

1.0 2.0 4.0
Fl/A~

FIG. 5. Pressure PAP, z vs n /no for several temperatures la-

beled as in Fig. 4.

C. Ionic contribution

This component of the free energy requires the calcula-
tion of the pair interaction and the solution of the
MHNC equations. In the domain studied here, the stan-
dard coupling parameter I =(Z') l(k~ TR ) varies in the
range 1 —35.

Table V reports values of F~„,—(P) [see Eqs. (23) and
(24)] for all the densities of the grid and the temperatures
5, 10, 20, 40, 60, and 100 eV. They are compared with
the same quantity for the OCP with the same coupling
parameter I [32]. The differences are very important,
due to strong electronic screening: the density parameter
rz goes from 3.14 to 1.01.

Figure 4 displays the free energy F&z versus n for
several temperatures. The variations of this quantity
have a much smaller amplitude than F „,: at T=2.5 eV,

CL

C4
Lt

2

for instance, F „, varies between 0.022 and 1.78 Ry,
while F&2 varies between 0.088 and 0.644 Ry only. Simi-

larly, at n =no, F„„,goes from 0.264 to 11.25 Ry for T
between 2.5 and 100 eV, while F,2 varies from 0.293 to
3.10 Ry only. This proves that F,2 is a "good" quantity
to deal with for computing numerical derivatives in order
to get internal energy and pressure. Figure 5 shows the
variations of P&2, the pressure associated with F,2. For
the lowest temperatures, /3QP, z reaches values of the or-
der of 1, so that the total ionic contribution is twice the
ideal contribution. It is not possible to detail here all the
results, but we can say that, concerning the energy, PE,2

can be as large as 2 at low temperature.

D. Complete EOS

Table VI gives results for the full EOS, including the
ionic ideal contribution, for some densities and tempera-
tures. In each case, comparison with a reference EOS is
made. This reference EOS is made of the LMTO 0-K iso-
therm shown in Table I (with a rescaling on experiment
around compression 1), together with the thermal TF
electronic part and the ideal ionic part. The relative
difference is

[E(this work)/E(reference) —1]X 100

and there is a similar quantity for pressures. These rela-
tive differences reach 50% at T=2.5 eV, do not have a
constant sign, and decrease when the temperature rises.

V. CONCI. USION

0
0.2

I s i ~ a I I

1.0 2.0 ~~~ 6.0

FICx. 4. Free energy F&2, Eq. (26), vs n/no for various tem-
peratures, in following order: 1, 2.5 eV; 2, 5 eV; 3, 7.5 eV; 4, 10
eV; 5, 15 eV; 6, 20 eV; 7, 30 eV; 8, 40 eV; 9, 50 eV; 10, 100 eV.

We have described an EOS model which attempts to
treat the electronic and ionic terms in a coherent manner.
This first-principles model makes use of well-known
theories for the quantum-mechanical calculation of the
electronic structure (DFT) and for the statistical mechan-
ics of the ion subsystem (MHNC). Its validity is the same
as that of the binary-force approximation between ions:
it is warranted only if the electronic structure is "simple"
and produces a metallic binding similar to that existing in
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TABLE VI. Full equation of state for Be, Eqs. (33)—(36). For each temperature, the first column gives the compression, the second
column gives PE in the present model, the third the difference with respect to the reference EOS defined in Sec. IV, in percent. The
fourth and fifth columns are identical with the second and third columns, but for pressure PAP. The compression is c =0, /0, with

Q& =52.0952 a.u.

n /no

0.4
0.8
1.2
2.0
4.0
6.0

0.401
0.802
1.203
2.003
3.983
5.917

1.787
1.579
1.755
2.682
6.442

10.78

2.5 eV
19.0
54.0
59.0
45.0
24.0
17.0

1.744
2.507
3.413
5.364

10.57
15.58

51.0
41.0
28.0
19.0
12.0
9.2

0.401
0.802
1.203
2.003
3.983
5.916

3.197
3.028
3.055
3.322
4.452
5.799

7.5 eV
—14.0
—2.1

5.6
14.0
19.0
18.0

2.236
2.515
2.821
3.447
5.035
6.597

PAP

9.6
14.0
14.0
15.0
13.0
11.0

0.4
0.8
1.2
2.0
4.0
6.0

0.399
0.798
1.198
1.997
3.976
5.910

3.890
3.669
3.623
3.697
4.179
4.786

15 eV
—27.0
—19.0
—14.0
—5.2

5.5
9.8

2.502
2.604
2.740
3.033
3.783
4.526

—4.9
—1.8
—0.4

2.8
6.3
7.7

0.337
0.699
1.070
1.826
3.746
5.662

6.088
5.343
5.013
4.707
4.558
4.675

30 eV
—5.7
—8.0
—8.3
—7.6
—4.2
—1.0

2.977
2.919
2.929
3.004
3.292
3.618

—10.0
—9.6
—9.2
—7.7
—4.2
—1.3

0.4
0.8
1.2
2.0
4.0
6.0

0.262
0.506
0.786
1.372
2.937
4.589

9.171
8.282
7.711
7.037
6.264
5.923

60 eV
15.0
12.0
11.0
8.7
6.0
4.7

3.923
3.780
3.682
3.591
3.550
3.599

—13
—1.9
—2.8
—3.8
—4.2
—3.8

0.218
0.459
0.662
1.142
2.421
3.780

9.837
9.201
8.846
8.294
7.534
7.115

100 eV
14.0
14.0
13.0
12.0
10.0
9.2

4.565
4.391
4.322
4.200
4.061
4.008

3.5
2.5
2.3
1.4
0.3

—0.1

a simple metal. Although some delocalization of the
bound electronic levels can be accounted for by the mod-
el, complex effects such as molecular- or cluster-level for-
mation, which involve charge redistribution and three (or
more) ion interactions cannot be dealt with. The model
reveals these effects through transitions of levels across
the zero-energy boundary, and appearance of resonances
in the free spectrum.

The model has been tested for Be on the 0-K isotherm
where it gives good results, and at melting under normal
pressure with a moderate degree of success similar to that
of any first-principles theory in these conditions. It
should be satisfactory in the plasma phase, when binary
collisions are dominant. As with any theoretical EOS
model, the global accuracy of the calculated thermo-
dynamic functions is very difficult to assess. Only the use
of the tabulations presented here in various numerical
simulations of experiments will allow one to judge this
accuracy.

It has been shown that there are several points in the
density-temperature grid where the model is inapplicable.
Examining the total energy and pressure curves does not
allow one to detect any accident in the behavior of the
thermodynamic functions around these points: the vari-
ous components of E and P show irregularities but their
sum is regular. Thus a normal interpolation should corn-
plete the tables without any particular difficulty. Finally,
let us remark that, even for materials having a complex
electronic structure in normal conditions, one can find
domains in the p Tplane where this s-tructure (with here

the meaning of "NPA average electronic structure") be-
cornes simple and lends itself to the use of the present
model.

APPENDIX A: DETAILED EXPRESSION
OF THK FREE ENERGY

FOR EMBEDDING A NEUTRAL PSEUDOATOM
IN THK FRKK-ELECTRON GAS

The starting point is the expression of Fi in Eq. (13). G
is obtained from the kinetic internal energy and the en-
tropy. The electron density is calculated by solving the
effective one-particle equations for the potential V,',

V,*=V*+ V„,(n+An") —V„,(n ) .

The eigenvalues are s& (bound) and e=k /2 (free). The
occupation numbers are fb (bound) and fk (free). In the
continuum the density of states is

JV(e) =JVo(e)+b,A'(e), (A 1)

EJV(c, )de= —g (21+1) dk .=2 d 'g I

7T dk
(A2)

The change in kinetic energy with respect to the uniform
case is

where Ao(e) is the density of states of the uniform elec-
tron gas, and EJV(s) its change due to the potential V,",
which can be written in terms of the phase shifts g& of the
eigenfunctions
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4T= +2(21„+1)fbEb+J QJV( E)f„ed e
b

(—n +b n ' )o V,
*

and the change in entropy

(A3)

+k&T(1 fb) ln—(1 fb)],— (A5)

E, dE, kC+kgT k ln

hS = —kz g 2(21b+1)[fb lnfb+(1 fb ) —ln(1 fb—)]
b

—k~ 1 bJV(e)dE[fzlnfk+(I fz)ln—(1 fk)—] .

(A4)

The change in the functional G is then obtained as

6G =Fb +Fk —( n +b n *
)o V,

' +F„,( n +b n '
) F„,—( n ),

Fb = g 2(2lb+ 1)[fbeb+kq Tfb lnfb
b

F, =Fb+Fk+ W+F„,(n+hn*) —F„,(n)

and for the internal energy

E, =Eb+Ek+ W+E„,(n+bn') —E„,(n ),
Eb= /2(2lb+1)fbEb,

b

(A15)

(A16)

(A17)

APPENDIX B: EXPRESSION
OF THE TOTAL FREE ENERGY

(FOR A GIVEN SET OF IONIC POSITIONS)

This expression is established by summing the contri-
butions in Eqs. (14a)—(14c), using the expansion of Eq.
(15),

F, =G[n]+ QG, + —,
' g'(Z'/R, J+G,J)

Ek = ——g 2(21+1)J g((k)[1 —pE(1 fk)]f—kk dk .
7T 0

(A1S)

+k~ T( 1 fk ) ln( 1 f—k ) ] . —

Using the expression of the Fermi-Dirac occupation
number with g=PP[P =p —V„,(n )], one arrives at

Fb =pZb —k&T g 2(2lb+1) in[1+ exp( pub—+g)],
b

(A6)

+ n+ +An, "o—e . g —Z5
J

+ —n+ ghn;* o —e n+ +An*2 J
L J

(B1)

Fk =p Qk
——+2(21+1)f kgb(k)fkdk,

1

I

with

(A7)
Isolating the diagonal terms i =j in this expression, using
Eq. (13) for F„it is easy to show that

F, =G [ n ]+g F
~
+ —,

' g' P; + —,
' g ( v; n)&& —e ( v,. —m—

,
. )

1

lJ l

Zb= +2(2lb+1)fb,
b

(AS) + g (n —v;)0 V,*, (B2)

The total neutrality of the system imposes
Qk =Z —Z —Zb when the self-consistent solution is ob-
tained. Zb is the number of electrons in the bound part
of the spectrum. Then the electrostatic terms contained
in F

&
have to be evaluated together with the term

—(n+bn*)o V,
* in G. They are reexpressed

where V; is defined in Eq. (4b); P;. is a binary interaction

P;J. =G;~ +( —Z5,.+ b n. ,
' )o —e ( —Z5. + b, n *

)
1

—~-0 —Q ~.
l J (B3)

One can see that all the one-center terms are equal, so
that

with

—3(Z') /5R+bZV„, (n)+M„, , (A10)

W= ——'(2n +An *)o U —'bZ —o bn * —3bZZ*—/2R
2 2 r

F, /X=FO+F, + —,
' g'P(R )+(n —v)o V*

J

1——'(n —v)o —e (v —m ),2 po

with, as in Eqs. (13) and (16b),

(B4)

EZ =Z —Z*,
AZ 1U= — +—ebn*,

T 1'

V„,(n )=dF„,(n )/dn,

(Al 1)

(A12)

(A13)

Fo =Z*g (n, T ),

F, =G[n+bn*] —G[n]+ ——o(bn*+v)
7

+—'(b, n*+v)o —e(bn*+v) . .
2 r

(B5)

(B6)

M„,=(n+An*)o V„,(n+An*) n&& V„,(n)—. (A14)

Finally, one gets for the embedding free energy
The quantity g'P(R ) is the only one depending on the
ionic structure.
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