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Negative-energy waves in an inhomogeneous force-free Vlasov plasma with sheared magnetic field
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The conditions for the existence of negative-energy electrostatic waves (which could be nonlinearly
unstable and cause anomalous transport) are investigated for the case of an inhomogeneous force-free
Vlasov-Maxwell equilibrium with sheared magnetic field. The method of investigation consists in
evaluating the general expression for the second-order wave energy derived by Morrison and Pfirsch
[Phys. Rev. A 40, 3898 (1989); Phys. Fluids B 2, 1105 (1990)] in the form given by Correa-Restrepo and
Pfirsch [Phys. Rev. A 45, 2512 (1992)]. In Cartesian coordinates, the equilibrium magnetic field is given

by B' '=B' '(sinaye„+cosaye, ). In this case, there is an electric current parallel to the magnetic field,
and the charged particles of any species belong (according to the values of their constants of the motion)
to either one of two essentially different groups, either to the group of gyrating particles (the overwhelm-

ing majority in all cases of interest), which move around the field lines, their motion being confined to a
certain y region around y =P, or to the group of swinging particles, which move freely in the y direc-
tion. The two groups of particles must be investigated separately. Owing to the presence of the electric
current associated with nonvanishing a, the equilibrium distribution function f'„o'=f' '(&, Vl) [with
&(v) the energy and Vl(v, y) a certain velocity variable] of at least one particle species v must be aniso-
tropic, unlike in the homogeneous case. If any f' ' has the property vr 8f ' '

/BU~ )0 for some & and Vl,

negative-energy waves exist for any wave number k, irrespective of its magnitude and orientation. If
U~(8f ', '/c)U~ ) & 0 holds, only the waves with a component klo of k in the direction of B' '(yo) can possess
negative energy. If Ur(Bf'„'IBU ) &0, but A =k~~o(wlo)(ee(yp)'(r)f IBv)) )0 (wlo is a parallel veloci-

ty, the ( ) represent a certain averaging process), there are negative-energy waves with no restriction im-

posed on either k~~o (other than k~~o&O) or the spatial variation of the perturbation perpendicular to B' '.
This result agrees with that obtained for a homogeneous plasma by Morrison and Pfirsch [Phys. Fluids B
3 (2), 271 (1991)] in the context of drift-kinetic theory. If both U~(Bf', '/BU ) &0 and A &0, negative-

energy modes also exist. In this case, the characteristic length for the variation of the perturbation per-
pendicular to B' ' is ~a ', which, since a ' is the shear length and is usually very large, is not an im-

portant restriction, and the possible parallel wave numbers are generally limited to a certain interval re-
lated to the magnitude of the gyroradius of the gyrating particles, this also being so in the homogeneous
case. The results of that case are of course regained by taking the limit of vanishing shear, a~0. The
present results show that large perpendicular wave numbers k& are not necessary for the existence of
negative-energy waves in the system under consideration, a feature that enhances the relevance of these
modes.

PACS number(s): 52.35.Mw

I. INTRODUCTION

Considering arbitrary perturbations of general Vlasov-
Maxwell equilibria, Morrison and Pfirsch [1,2] derived
expressions for the second variation of the free energy
and concluded that negative-energy perturbations (which
are potentially dangerous because they may become non-
linearly unstable and cause anomalous transport [3,4]) ex-
ist in any Vlasov-Maxwell equilibrium whenever the un-
perturbed distribution function f ', ' of any particle
species v deviates from monotonicity and/or isotropy in
the vicinity of a single point, i.e., whenever the condition

r

(o)

(v k) k.
Bv

holds for any particle species v for some position vector x
and velocity v and for some vector k. The proof of this
result obtained by Morrison and Pfirsch was based on
infinitely strongly localized perturbations. This raises the

question of the degree of localization actually required
for negative-energy modes to exist in a certain equilibri-
um. Studying a homogeneous Vlasov-Maxwell plasma
with constant magnetic field, Correa-Restrepo and
Pfirsch [5] showed that negative-energy waves exist for
any deviation of the equilibrium distribution function of
any of the species from monotonicity and/or isotropy,
without having to impose any restricting conditions on the
perpendicular blaue number k~, i.e., without requiring
large k~. These investigations are extended in the present
paper to the more interesting case of an inhomogeneous,
y-dependent, force-free equilibrium with a sheared mag-
netic field. Although the calculations are considerably
more involved than in the case of the homogeneous mag-
netic field, substantial simplification of the problem is
achieved by the introduction of appropriate coordinates
in v-y space and by a convenient representation of the
perturbations. It is concluded that negative-energy
modes exist in this particular inhomogeneous plasma as
well whenever any of the equilibrium distribution func-
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tions deviates from monotonicity and/or isotropy (in fact,
owing to the inhomogeneity of the configuration, the
equilibrium distribution function of at least one particle
species must be anisotropic), and that large perpendicular
wave numbers are not required in this case either. If
there is only anisotropy, the presence of shear merely re-
quires that the perturbations have a characteristic varia-
tion length perpendicular to the equilibrium magnetic
field B' ' of the order ~a ', which is not an important
restriction; i.e., negative-energy modes persist without
any major modification in the presence of shear, a feature
which enhances their importance.

The equilibrium electromagnetic field is introduced in
Sec. II, and the constants of the motion of the particles,
from which the equilibrium distribution functions can be
constructed, are derived. In Sec. III, the expression for
the second-order wave energy from Refs. [1,2,5] is put in
a simpler and more concise form by introducing a repre-
sentation of the perturbations which is particularly ap-
propriate to the equilibrium under consideration. The
minimizing perturbations are obtained in Sec. IV, where
the expression for the minimized energy is also obtained.
In deriving this expression, the difference between gyrat-
ing and swinging particles plays a major role. Section V
is devoted to an extensive discussion of the energy expres-
sion. This discussion leads to the main results, which are
then summarized in Sec. VI.

A considerable part of the calculations is carried out in
the appendices. Particularly convenient v space coordi-
nates are introduced in Appendix A. The motion of the
charged particles is exhaustively treated in Appendix B,
and the two essentially different groups of particles,
namely the gyrating particles (GP's) and the swinging
particles (SP's) are introduced. In Appendix C, a first-
order partial differential equation which appears in the
minimization problem is solved by the method of charac-
teristics. Appendix D introduces two different coordi-
nates systems in v-y space which are particularly ap-
propriate to the treatment of the two different groups of
particles. In Appendix E, several quantities which ap-
pear in the expression for the minimized wave energy are
calculated, in particular several mean values along the
particle orbits. Finally, in Appendix F, an expression is
derived for the perturbed electric charge density, and it is
shown that this can be made to vanish by an appropriate
nontrivial choice of the perturbations.

II. EQUILIBRIUM ELECTROMAGNETIC
FIELD AND DISTRIBUTION FUNCTIONS

The magnetic field of the equilibrium under considera-
tion has constant magnitude and straight field lines which
have a constant twist as one proceeds in a given direc-
tion. Associated with this shear of the magnetic field,
there is an equilibrium electric current.

In Cartesian coordinates x, y, and z with unit basis e,
e, and e„the equilibrium vector potential A' ' and the
corresponding magnetic field B' ' are given by

The y-independent part of the vector potential is such
that A' ' remains well defined in the limit a —+0.

The electric current density associated with this mag-
netic field is

( '= — aB( )

4~ (4)

where c is the velocity of light. j' ', of course, vanishes as
a ~0 and the equilibrium magnetic field becomes homo-
geneous.

It is assumed here that there is no equilibrium electric
field E' '. The Lagrangian of a particle of species v with
electric charge e, and mass m is then given by

m e
L,= (x +y +i )+ v A''

2 e

p =m x
CO

sinay,

p =my,
m ~ct)~

p, =m z+ (1 —cosay),

and the Hamiltonian is therefore given by

1H =
2m

m cop„+ sinay +pa
2

+ p, —m u
(1 —cosay)

Since the Hamiltonian does not depend on either x, z,
or t, the canonical momenta p„and p, and the energy
gf =(m /2)(x +y +z ) are constants of the motion.

The equilibrium distribution function f(„'for particles
of species v can be constructed from the constants of the
motion &, p„„andp„.The presence of an electric
current, Eq. (4), requires f'„'to be anisotropic for at least
one particle species v.

Generally, the current density, as derived from the par-
ticle motion, is

j(0) y e Jd3v vf(0) (10)

which, taking into account Eqs. (3) and (4), yields

aB' 'sinay = g e Id v xf ' ' = g e N (x )„,

2
(x +y +i )

m ~co~+ [ —x sinay+i(1 —cosay)],
a

where we have set co =—e 8' '/m c. The canonical mo-
menta derived from Eq. (5) are

(O)

A = [ —sinaye +(1—cosay)e, ],(0)

O' '=B' '(sinaye +cosaye, ) .

(2)

(3) and

0=pe J d vyf' '=pe N (y) (12)
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aB( 'cosay = ge, f d u zf' '= pe, N, (z)
7T

V V

(13)

a
y +x sinay +z cosay2'

2 . 2visin P+u~(,
2' v

(14)

with N the density of particles of species v and (x )„,
(y ), and (z ) the mean values of the components of the
velocity. Equation (12) is automatically satisfied since
f', )(&,p,p, ) is symmetric in y. Equations (11) and
(13), however, impose constraints on f' )(&,p,p, ). In
particular, these equations imply invariance under the
transformation sinay cosay, x z. A combination of
variables which is invariant under this transformation,
and which suggests itself because it is the parallel particle
velocity along B' ', is x sinay+z cosay. This, however, is
not a constant of the motion. On the other hand, as de-
rived in Appendix C, an appropriate expression is given
by

vt, P, and u)( being the local cylindrical velocity coordi-
nates introduced in Appendix A. That '9 is indeed a
constant of the motion becomes evident when it is ex-
pressed as

(p +p, )+ (15)

The distribution functions we consider are therefore of
the form f' ' =f' )(&,Vl ). [Admissible distribution
functions are, for example f' ' —Vl exp( —constX& ),f ' ' -exp( —const& X& —const2 X Vl ), etc.] More ex-
plicitly, one has

f (0) —~

Plf' ' & = (x +y +z ), VL = y +x sinay+z cosay

rn af' ' & = (vi+u() ), Vl = visin P+v)(
20)v

aB' 'X '

4m

sinay

cosay

sinay 'X+,N (u„)„.(17)
V

Evidently, the density of particles of species v,

N. =ff(,o)(m„,n. )d'u

= ff'„'(&,VE )uidutdPdu(),

and the mean parallel velocity of species v,

Note that in the coordinates (ut, P, u)(,y), f' ' does not
depend explicitly on y, and this is the great advantage of
using these coordinates for the problem under considera-
tion. A functional dependence of the form given by Eqs.
(16), together with the expressions for x(ui, P, v((,y) and
z ( v i P u )(,y ), Eqs. (A 8) and (A 10), derived in Appendix A
yield, when inserted in Eqs. (11)and (13),

gf (0) gf (o) @'(0)
=m, v+ uisinPe +es

gf (o) gf (0)
V + Q V

B&„vl 6) ()Vl„

gf (0)

w —e~ Be. (21)

w=v —ye =v —utsinPe =v)e, +u(~es

=vicosPe)+u)(ei) .

A further useful quantity is

(22)

Here, the projection w of the velocity in the planes per-
pendicular to e has been introduced, i.e.,

= 1
( u)) ) ~

—
N u) f ' '(&,Vl )uidvt d @du

do not depend on y.
The following useful relations can be derived from Eqs.

(16):

gf (o) ~f (o)
=a (x cosay —z sinay ) e

B Be. ~. ~

(0) (o)

2)f( '(A, Q, )=m +
tt cu Ml„

gf (o)
=2

By

III. SECOND-ORDER WAVE ENERGY

(23)

gf (0)

=au& B+ e~,

(ui is the component of the velocity in the direction of
the vector e, introduced in Appendix A),

In the context of Maxwell-Vlasov theory, Morrison
and Pfirsch [1,2] derived expressions for the free energy
5 0 available upon arbitrary perturbations of an arbi-
trary equilibrium. In the absence of an equilibrium elec-
tric field, 5 K can be expressed as [5]



DARIO CORREA-RESTREPO AND DIETER PFIRSCH

(0)~JdxdUv
2m~ Bv

BG BG
, ,

BG
v

Bx Bx Bv

BG BGB"'X +2
m c Bv Bx

e g BG
G v X B(o).

m c Bv Bx

gf (0)

+
BG BG

Bx Bv

aG.
v+(d 6 )

2
ev

(0)

+f', ' 5A —2
c c Bv

d„(6,5A) —G, (v.5A) .+ J d x(5E +5B ),1
(24)

where 6 (x, v) is a generating function for the perturbation of the particle position and velocity, 5 A is the perturbation
of the vector potential, and 5E /8m and 58 /8' are the perturbations in the electric- and magnetic-field energy densi-
ties. The operator d is the equilibrium Vlasov operator, i.e.,

d =v +a' '- a' '= VXB' 'ev

Bx Bv' m c
(25)

(in the absence of an equilibrium electric field). Using velocity coordinates Ul, p, and U~~, one has

and

a(0).
()v (3f X, Ul, U

((

(26)

=v'
U &, lt), V

~ ~

a . 2 a—aU) U~~sing cosP +aU~~ Sill p +au l sin(I) cos()I) Ci)~
a X, U), U)) U

~)

X, V), $ X, V), U~~

(27)

By taking into account the identity

()f', ' e„g,, BG
G vX B —co

Bv m c Bv Bx Bv

BG. ()f '." BG. 9f'„"
~ G ez.

&
X v —co eB ~

Bx Bv Bx Bv

BG
~ vX

Bv
(28)

and Eqs. (20) —(23), the expression for 5 H can be put in a more convenient form, namely,

x d U

2m~

(0)
—[2)f( '](d 6, ) + w —eB d 6,+f' ' 5A

e. af(.0)
—2

c Bv
~ d (6 5A) —6 (v 5A) .+ Jd x(5E +5B ) .

Bx 8~
(29)

Since the equilibrium is independent of x and z, an ap-
propriate ansatz for the generating function 6 (x, v) is

The investigation is now limited to purely electrostatic
perturbations, i.e., we choose

6 (x,v)= —,'[g, (y, v)e "' +g*„(y,v)e '
] . (30) 5A=O . (32)

The wave vector k, introduced here is defined by

k„,=k e +k,e, (31)

and therefore lies on the planes of the 8' ' lines. G is ob-
viously a real function, since g is the complex conjugate
ofg .

Inserting Eq. (30) into Eq. (29) and then integrating
over a periodicity surface s,

xo+(2m/k ) zo+(2m. /k )s= dxdz (33)
X() ZQ

yields
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5 H= g f d u dy —[X)f', ']~[d g +i (v k„,)g ]~

a
(0)

2 8Vl~ co~
w —e~ k„,[g,d„g„*—g*d g —2i(v k„,}g g* ] + d'x 5E',

8~
(34)

where the operator d has been introduced. d is the
equilibrium Vlasov operator for functions which depend
on v and y, but not on x or z, i.e., iI (y, v&, 4, u~~

)

g (y, u~, P, u~~)=% (y, uj, g, u~~)e 7 (36)

where 4 and I, are real functions. Since g„is single
valued, + and I are subject to the periodicity condi-
tions

It is convenient to represent the complex function
g (y, v) as

=u~sinP —au~u~~sinP cosP
ay BUg yQ,

+(au~, sin y —~„)~ 2 a
g, U~, V()

and

(y, u~, /+2m. , u~~ ) =%' (y, uj. , g, u~~ )

I (y, uz, /+2', ull)=l (y'ug'@'ull)+2'

(37)

+au~sing cosP2 a

II

(35} n being any integer number, i.e., n =0,+1,. .. .
Inserting Eq. (36) in Eq. (34) yields

(o)

5'H=g f d'udy —[2)f'„'][(d+„)'++'[dI +(v k„,)]'] ++',
4m BVL~ co~

w —e~ k„,[d I +(v k„)]

+ fd'x 5E',
8m

(39)

which is the general expression for the second-order energy of electrostatic perturbations of the equilibrium considered.
Note that 6 H is a functional of 4, which appears as 4' and d 4, and of I, which appears only as d I

IV. EXTREMIZATION OF THE SECOND-ORDER WAVE ENERGY

In order to minimize the wave energy with respect to I, we now consider the variation of 5 H brought about by a
variation 51 of I . This quantity can easily be calculated as

5r (5 H)=5 H(I +5I,) —5 H(I „)
(0)

f d u dy d 5I" 4 —2[2)f' '][d I „+(vk, )]+
4m

(0)
—5I d, 4 2[Xlf' '](d I +v k—„,)+

a
CO

w —e

w cg 'k (40)

It follows from Eq. (38) that the variation of I,5I, must be periodic in P, i.e. ,

5I (u, /+2, u~~, y)=5I (uz, P, u~~, y) . (41)

Since only derivatives of I appear in Eq. (39), 5I can be taken to vanish at the boundaries. Therefore, Eq. (40)
reduces to

(O)

5 (5 H)= —g f d u dy 5I „d 4 —2[2)f', '](d I +v.k„,)+
4m BM co

w cg 'k (42)

and, since 5I is arbitrary, the condition for the vanishing of 5r (5 H) is

(0)d„4 —2[2)f' '](d I „+vk„,)+ ae w —cz -k .=0 . (43)
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According to the results of Appendix C, the solution of this equation is

(0)
—2+',y)f '."](d.r.+v.k., )+e'.

BYE co
w —

e2) k, =C,(&„,Q„,P,), (44)

where C is a function of the constants of the motion A', V/„nd P which still has to be determined from the bound-
ary conditions on I . Solving Eq. (44) for d, I,+v k, and inserting the result in Eq. (39) yields

, (af',"gee„)'
J d U dy[2)f' '].—(d 4„)2+4'

4m 4[+f(0) ]2

2

w —e~ k, C

4[~f(0) ]2 qg2
(45)

Here, the electrostatic energy term (1/8') fd x 5E
has been dropped, since the perturbed charge density can
be made zero by an appropriate choice of the signs of %',
which do not influence Eq. (45). This is explicitly shown
in Appendix F.

According to the results of Appendix B, the particles
of each species v are divided into two classes, namely the
gyrating particles, which move around the field lines and,
at the same time, oscillate about the planes y =P, and
the swinging particles, for which P takes values only be-
tween P;„and P,„,and which never complete a turn

around the field lines, moving freely in the y direction. In
Appendix D, coordinates in v-y space are introduced
which are particularly convenient for both kinds of parti-
cles. With these results taken into account, the wave en-
ergy is now split into two parts:

o H=(5 H)op+(5 H)sp, (46)

where (5 H)Gp is the contribution of the gyrating parti-
cles, and (6 H)sp that of the swinging particles. With the
definitions and results of Appendices D and E, these con-
tributions can be concisely expressed as

sl~, l

(o H)Gp= g f4m

d& dVl d &,dP, ,
B%', (a, ) b) )—

d P
[&f'."] —[d.4]' ' + d.P, ' k„(P.)

(d )2,
'

(a )+b, )

(
1 2

gy2
V

'2

and

sl~, l

(52H)sp= X ', f4m

d&pVl d P dy B%', (a,2 b,2)—
[2)f', '] —[d,y] + d y, k))(P ) ('u, ,

(a+b )+
' ' ar„'+ ' '

I'))(V.)

( 1) "2m. 2

2

(48)

where

(49)

gf (0)

a 2(&, 'M )=,, e2)(P )

gf (0)

a, (&, 'M )=,, e2) ( P ).
1 & df

(d y), (d y), [g)f'~)] l~ I

q„ 1 n.
(d.y), [Xfg)] I~.l ~. '

(50)
b (&),ll )=

d„P

(51)

(52)
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b 2(&„Vl„)=
d y

(53)

In deriving Eqs. (47) and (48), use has been made of the
fact that d P and d,y do not change sign for gyrating
particles and for swinging particles, respectively. This
yields for the integrals along the particle orbits

f2 qpz d4'
[ (d y)]f2 yz'd.P

=[sgn(d P)]()II,), ttIO

d&,deal dP dP
['J)f '."]

d )))

which yields av))/to =a(R )thu))/ uj)~„, and observes
that a ' &)(Rs ),h for all cases of interest.

Owing to the symmetry of the system, one can set
k))(P ) =k))ocosa P, without any restriction, and one has
to distinguish the following two cases:

a. k))0=0, i e ,.k.
)

(P )=0for all P (waue propagation
perpendicular to B' '). In this case, there is wave propa-
gation only in the direction y of the inhomogeneity and
(5 H)op is given by

(5 H)op=+ J

(y2) /2m. (54)

and correspondingly for swinging particles. Rote that the
only P, dependence in the integrands in Eqs (47) .and
(48) is giuen by k)~~(P„)and by 4' (if the arbitrary 4, is
chosen to be dependent on P,).

V. DISCUSSION OF THK EXPRESSION
FOR THK SECOND-ORDER WAVE ENERGY

A. Homogeneous equilibrium

The expression for 5 H which is valid in the homo-
geneous case is easily obtained from Eqs. (46)—(48) when
one observes that, in that case, there is no electric
current, and a =0. Therefore, there are no swinging par-
ticles, according to Appendix B. Also, S' = v

~~

=U„
es(P )=e~(y)=e„d,P= —co, 2)f', ) =2Bf', )/Bu~,
b, = —

u)) /co„,a„=—
(v)) /co„)a„,where

Bf(o) Bf(0)

~v= (55)
BU BU

Therefore

(56)

Transforming the volume element according to Appen-
dix C and performing a trivial integration in y, one then
obtains Eq. (43) of Ref. [5].

B. Inhomogeneous equilibrium

In the case of an inhomogeneous equilibrium, one has
to consider the contribution from both groups of parti-
cles.

I The wave en.ergy (5 H )&p for gyrating particles

The difference between gyrating and swinging particles
is extensively treated in Appendix B. For all cases of in-
terest, the condition for a particle to be a gyrating parti-
cle, namely

au~~
/cu & 1, is satisfied for the vast majority of

particles. This is easily seen if one introduces the gyrora-
dius (Rs ),h corresponding to a thermal velocity ( v ~ ),„,

Then, o H (0 if 2)f' '=m Bf' '/Mf +(a/co )Bf', '/
BVL =2Bf'„'/By & 0 for some &~,VE~ corresponding to
gyrating particles, and for any particle species v. This
means that the presence of a local minimum with respect
toy in

f ' ) (& (x,y, z ), Vl,(x,y, z,y ) ) (58)

n, & —a )k))(P ) and n„)—b k )('y)), ) . (60)

guarantees 5 H &0, without any restrictions in the spatial
uariation of the perturbations perpendicular to 8' '. it
suKces to localize '0 (B% /B))) ) is then also localized) to
the region in &„,V/ where Bf~„'/By )0. Outside this
region + vanishes. All other O„are set equal to zero.
The %' corresponding to the swinging particles are like-
wise all set equal to zero, so that (5 H)sp=0. The sign of
6 H=(5 H)op is then determined only by the sign of the
integrand in the region of localization.

b. k))()/ )=k)) s oPadoes not vanish for all t./ [the
wave uector has a component in the direction of 8' ' for all
P except a% =+(n/2)+m~]. If Xlf', '=m Bf' /
B& +(a/co„)Bf' '/Ml =2Bf' '/By )0 for some
&~, 'M~ corresponding to gyrating particles and for any
species v, one again localizes the perturbations %' around
these values, as in the preceding case. All 4 correspond-
ing to swinging particles are set equal to zero; therefore,
(5 H )sp=0. If a, ) =b, ) (local isotropy), all terms in Eq.
(47) are negative. If a )Wb ), one can use n to make the
integrand in Eq. (47) negative. This is most easily shown
if 4 is chosen independent of P. In this case, the in-
tegrand in Eq. (47) is given by

[2)f'„"](d,P)', —(0'„),[,+ ., k, ( t/, )]

X [n.+b„k),()/. )] . (59)

If a, b, )0, it sufFices to take n =0 to make the ex-
pression (59) (and thus 5 H) negative. For any a„)b ), it
is negative if the factors in the square brackets are either
both positive or both negative. Both factors are positive
if
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n &max(&~, 'M~)

=—max~ {—a.,k„(P.), —b„,k], (]/, )] . (61)

The expression (59) also is negative if both factors in the
square brackets are negative, i.e., if

n & —a ]k„(P.) and n. & —b.,k„(P.) . (62)

This is made possible by choosing

Let max& [ —a ] k]](P„)] be the maximum of
—a, k]](P ) with respect to ]/, and correspondingly for
—b„k]]o(it' ). Then, choosing n„larger than the largest
of the two maxima satisfies inequalities (60). This can be
concisely expressed by

n & min(&~, VE~)

=—m»p { a ]k]](& ) b lk]](& )] . (63)

These choices of n guarantee that the integrand in Eq.
(47) [and therefore (5 H)op, since the ]P are localized in
&,8' ] be negative for &~,R~ and ali P .

Note that when 2)f' '(&~, Q~)) 0, 6 H (0 is possi-
ble without imposing any conditions on either kll0, or the
spatial variation of the perturbations perpendicular to
8(0)

If 2)f', '=m„Bf' 'IB& +(a/ai )Bf' 'IB'M„=2Bf' 'I
By 2 &0 for some ~~, Vl~ corresponding to gyrating par-
ticles of any species v, one again localizes 4 around

All other 4„,and all 4„for swinging particles
are set equal to zero. The positive contribution of
(Bql, /Bp) to the integral in Eq. (47) can be eliminated by
choosing 4 =]P (&,R, P ), i.e., BV /BQ=O. In this
case, 6 H is given by

c] H=(o H)Gp= g f4m

d& dt's dP
l2)f' ]l(d P)', fdP, (, %', ), (&, 'M, ']/„)(n + a k]]]sos )

X(n +b ]k]]ocosaP ) (64)

Since 4 is localized in &,Vl around &~,Q~, the con-
dition for 6 H & 0 is

If Q, 1b 1
)0, it can be shown that the inequality

n a 1+ cosa P

n Qv1+ cosa P,b, k b,
nv

+cosa P &0
~ vl ll0

(68)

"v
X +cosa P &0 .

~ v1 ll0

(65)

(0)
1

( ~ )
f v

]d" P]z ]2)fioi ]
i

~ Bv )

Since')f' ' &0 was assumed, k]]oa, b„]&0 means that

If Q 1b 1
& 0, it is clear that choosing n =0 satisfies in-

equality (65) without any condition being imposed on k]]o,
except k]]DAO. To understand what k]]oa,b, &0 means,
consider Eqs. (50) and (52), which yield

~ll 1+ 1
2 Q 8f.

can be satisfied in a certain P interval by appropriately
choosing the arbitrary n„/k]] oand that inequality (65)
can then be satisfied by making a mild assumption con-
cerning the dependence of ]II, on P .

Inequality (68) is satisfied if one factor is positive and
the other is negative, i.e., if

nv Qv1 n+- cosa&' )0 and +cosa% &0,
b v1 ll0 bvl llo

or if

n Q n+ cosa]/ (0 and +cosa]/ (() .
v1 llo b 1kll0

('70)

Bf(0)

kllOgll cg P 0
Bv

(67)

Since the mean values ( ), are built along the particle
orbit while the particle completes a ])I turn around the
field lines, this result closely resembles that obtained for a
homogeneous plasma by Pfirsch and Morrison [6], Eq.
(144.b), in the context of drift-kinetic theory.

These inequalities are equivalent to

a 1 n
cosa P » — cosa P

v1 v1 ll0

Q n
cosa P, « — cosa P

b1 v1 ll0

(71)

(72)
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n /k~~o can be chosen in such a way that the inequalities

a 1 n avl
&1 for &1

b., bvlkI~O b 1

(73)

or

avl nv avl
& 1 for — &1

vl vl }i0 vl
(74)

are satisfied. This means that inequalities (71) and (72)
are satisfied for cosa P = 1, and also in an interval
around this value, as shall presently be shown.

If a„,/b „i& 1, inequalities (73) imply that
1& n—/a, k~~0&b, /a, &0. One can then define a
P' ' by the equations

—a P„"& a P & a P"':—arccos
n

b, k((o
(80)

and (65) can be satisfied if 4 (P„)is chosen to vanish
whenever cosa P —cosa P" ' & 0. The characteristic
length for the variation of 4 (P, ) perpendicular to B' '

is, of course, as in the preceding case, i.e., it can be as
large as -a

Inequalities (73) and (74) extend to the inhomogeneous
case the results obtained for a homogeneous plasma in
Ref. [5], Eqs. (49) and (50). From Eqs. (50) and (52), one
obtains

after Eq .(74), cosa%, —1&0 for all P . As in the
preceding case, inequality (68) can be satisfied if

cosa P'„'=— &0, a "P', '&0 .
Q 1k~~0

In this case

(75)

avi 1 IIv 1 ~f v

b i [+f i
] ~cd

~ q(( BYE„
(81)

n a 1 n
+ cosa P +cosa P

b vl )~0 vl vl [[0

(
—cosa P', '+ cosa P )

vl

n,
X +1+cosa P —1

b.l k~(0
(76)

where a, /b, &0, —cosa'P' '&0, n /b„,k~~0+ I &0
after Eq (73), .cosa% —1&0 for all P . Inequality (68)
can therefore be satisfied if cosa P —cosa P' ' & 0, i.e., if

—a%,' ' aP &a%' '—:arccos (77)a, k()o

and inequality (65) can be satisfied if 4„(P) is chosen to
vanish whenever cosa P„—cosa P', ' & 0, i.e., when its in-

tegrand is positive. The characteristic length for the vari-
ation of 'P,(5' ) perpendicular to B' ' can therefore be as
large as a ', which is usually very large.

If a i /b, & I, the assumption a, b„&0 and inequali-
ties (74) imply that 0&a„,/b, & —n /b k~~0&1. One

l

can then define a P" ' by the equations

cosa P"'= — & 0, a P'„"& 0 .b, k)(o

In this ease

(78)

n n avl+cosa P + cosa P
vl ]i0 vl IiO vl

avl (1)
(
—cosa P' '+cosa P, )

vl

n
+1+cosa P,—1

a vl ~~0

(79)

where a i/b i &0, —cosa%',"&0, n a/,
~~

k01+&0

a quantity which can be interpreted as the local anisotro-
py of the distribution function, and which coincides with
the previous definition of the anisotropy in the homo-
geneous case.

It has just been shown that, when 2)f'„'&0, it is al-
ways possible to have 5 H & 0 without any restriction on

k~~0 or the spatial variation of the perturbation perpendic-
ular to Bi '. When 2)fi ' &0 and a i and b i have
different signs, i.e., when q~~(es(P ) ~ (Bf' '/Bv) &0, it

is also possible to have 5 0 & 0, without any restriction
on k~~0, except k~~oAO, and without any restrictions on the
spatial variation of the perturbation perpendicular to
B' '. In the case that 2)f' ' &0 and a, b i &0, however,

klo is restricted by inequalities (73) or (74), and the
characteristic length for the variation of the perturbation

perpendicular to 8' ' must be of the order ~a
which is not an important restriction.

If g)f io' &0 and a, =b, for & =&~, Vl =S'~, the
equilibrium distribution function is local/y monotonieally
decreasing and isotropic, and inequality (65) cannot be
satisfied for these &~,VE~. If 2)f' ' &0 and a i =b

i for
all &„Vt',then f ' ' =f ', '(& ), the equilibrium is every-
where isotropic and homogeneous, there is no electric
current and a =0. The equilibrium distribution function
is a monotonically decreasing function of the particle en-
ergy, and no negative-energy modes are possible, in ac-
cordance with the general results obtained in Ref. [7].

2. The waue energy (52H )sp for swinging particles

These particles, for which the condition avI~ /co & 1

must be satisfied, do not have the same importance as the
gyrating particles. They must, however, be treated when-
ever the equilibrium distribution functions allow arbi-
trarily large velocities.

Again, two cases concerning kt~0 are distinguished:
a. k~~0=0, i e , ki(P )=0.f.or all P„(urave propagation

perpendicular to B' '). In this case, Eq. (48) yields
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sico. i d~.d e.d P.dy

(d.y )',

( l I~'.),
' ar.

(82)

and 5 H&0 if 2)f' '=m Bf' 'IB& +(a/co )Bf'„'I
BVl =2Bf'o'/By )0 for some &~,Vl~ corresponding to
swinging particles and for any particle species v. It
suffices to localize (Ii (B(II /By is then also localized) to
the region in &, 'll where Bf' '/By )0. Outside this
region + vanishes. All other %„areset equal to zero.
The 4 corresponding to the gyrating particles are also
all set to zero, so that (5 H )Gp=0. The sign of
5 H=(5 H)sp is then determined only by the sign of the
integrand in the region of localization.

b. k(((P )=k((ocosa P does not vanish for all 5' (the

wave vector has a component in the direction ofB ( ' for all
except a P =+~/2+m m ). If 2)f ' ' =m „Bf ', ' /B&,

+(a/co )Bf,' 'IMÃ, =2Bf(, 'I By &0 for some &~, 'll~
corresponding to swinging particles and for any species v,
one again localizes the perturbations 4 around these
values, as in the preceding case. All 'II corresponding to
gyrating particles are set equal to zero; therefore,
(5 H)op=0. Following the same line of argumentation
as in the case of gyrating particles, it is easily shown that
5 H &0 is possible without imposing any conditions on
either kiip or the spatial variation of the perturbation per-
pendicular to B' '.

If

Qf (o) m Bf(o) /B~ +(a /co, )Bf o /B'll

=2Bf' '/By &0

for some Vl~, gf'~ corresponding to swinging particles of
any species v, one again localizes 0' around &~,Vl~.
All other 4„,and all 4 for gyrating particles are set
equal to zero. The positive contribution of (BiII„/By) to
the integral in Eq. (48) can be eliminated by choosing
ql =0',(&„O',P ), i.e., BiII /By=0. In this case, 5 His
given by

5'H =(5'H)„=y. , I d& d'M, dy
i2)f', '~(d y), fdP X(V ), (&,Vl, P, ) b, I + a~k ((soaP„

~d yi
' 'i '~ ' ' ' 2'

X hl +b 2k((ocosa 5'2' (83)

Since (P is localized in &,Vl around &~Vl~, the condi-
tion for 5 0 &0 is

Jd P.(%'.), (&~, 'M~, P,)b'„k'

or

—a P" ' & a P„&a P' "—:arccos
acr

2mb 2kiip

a~I a 2X + cosa%
v2 imp v2

abI
+cosa P &0

77 v2 ii 0

(85)
can be satisfied in the interval

—a P' '&a% &a%' '=—arccosV V V

acr
2+a 2kiip

av2
for ) 1

V2

ahI
X +cosa P, &0 . (84)

v2 (ip

If a zb 2 &0, choosing AI „=0satisfies inequality (84)
without any condition being imposed on k

imp,
except

If a zb z )0, one defines a P'„'and a%(" as in
Eqs. (75) and (78), but with a„2and b 2 instead of a i
and b &. It can then be shown as in the case of gyrating
particles that the inequality

ahI a 2+ cosa 'P
v2 Iio v2

av2
for & 1

v2

(87)

(89)

if the inequalities

av2 a AI av2)1 for )1, (88)
v2 v2 fi0 v2

a 2 abI av2
&1 for &1,

b» 2mb v2k imp b»
are satisfied. Therefore, inequality (84) can be satisfied if
(Il ('P ) is chosen to vanish whenever P, does not satisfy
(86) (for a„2/b 2 ) I ) or (87) (for a„2Ib 2 & I ).

Contrary to the case of gyrating particles, inequalities
(88) and (89) do not impose any conditt'on on k(~o, except
k I(p %0. k

~~p
can be chosen arbitrarily, and then the arbi-

trary EI can be chosen so as to satisfy inequality (88) or
(89). In the case of gyrating particles, on the other hand,
one does not have the arbitrary AI, but n, which is not
completely arbitrary because it must be an integer num-
ber.

It has just been shown that when X)f ' ' & 0 for some
&,Vl corresponding to swinging particles, 5 H &0 is al-
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ways possible, without any restriction on
kiowa

or on the
spatial variation of the perturbation perpendicular to
8( '. When 2)f' ' &0 and a z and b 2 have different
signs, i.e., when r(((et)(5' ) (Bf' '/Bv)„)0, 5 H &0 is

also possible without any restriction on kii0, except
k()0%0, and without any restrictions on the spatial varia-
tion of the perturbation perpendicular to 8' '. In the case
that a 2b 2 & 0, there is also no restriction on

kiowa.
How-

ever, in this case, the characteristic length for the varia-
tion of the perturbation 4 perpendicular to B' ' must be
of the order a, which is not an important restriction.

VI. CONCLUSIONS

In the case of an inhomogeneous, force-free Vlasov-
Maxwell plasma with sheared magnetic field, waves of
negative energy (5 H &0) exist for any local deviation
from monotonicity [i.e., if 1)f'„'—:m, Bf', ' /B&
+(a/co )Bf', )/ML =2Bf' '/By )0 for some %,R ]

for any wave number k, irrespective of its magnitude and
orientation. If Bf' ' /By & 0, only the waves with
a component kilo of kll in the direction B(0)(yo) can
possess negative energy. If Bf'„'/By & 0, but
k))0(w) (ez(ya). (Bf' '/Bv)) )0 ((w) is an averaged
parallel velocity, the angles represent averages along the
particle orbits), negative-energy waves also exist, with no
restriction imposed on either k)(0 (others than k)(0%0) or
the spatial uariation of the perturbation perpendicular to
8' '. This result agrees with, and closely resembles, that
obtained for a homogeneous plasma by Pfirsch and Mor-
rison [6], Eq. (144.b), in the context of drift-kinetic
theory.

If both Bf'."/By & 0 and k))0 ( w) ( e~(y0)
.(Bf', )/Bv)) &0, negative-energy modes also exist. In
this case, the characteristic length for the variation of the
perturbation 4 perpendicular to 8' ' is of the order of
the shear length a ' (or smaller), and there is generally a
restriction on the possible parallel wave numbers [condi-
tions (73}and (74), which are limited to a certain interval,
this also being so in the homogeneous case]. The results
of that case are of course regained by taking the limit of
vanishing shear, a~0. The present results show that
large perpendicular wave numbers are not necessary for
the existence of negative-energy waves in the system un-
der consideration, a feature which enhances the relevance
of these modes.

e&
=e Xe~ =cosay e„—sinay e, . (A2)

If one introduces unit basis vectors e, and e& in theI
direction of vi and B' ' X vi, respectively, then the follow-
ing relations obtain:

e, =cosine, +singe~

=cosP cosay e, + singe —cosP sinay e, ,

e&
= —singe, + cosine

= —sing cosaye„+cosine +sing sinaye, ,

and the velocity v can be expressed as

v Ui(y, v)e, (y, v)+u(((y, v)et)(y)

(A3)

(A4)

(A5)

The relations between vj, P, and u() and the Cartesian ve-
locity coordinates x, y, and z are therefore given by

u) =x cosP cosay +y sing —z cosP sinay,

vii
=x sinay+z cosay,

x =uj cosg cosay+u((sinay,

y =v) sing,

i = —
U j cosP sinay+u)(cosay .

(A6}

(A7)

(AS)

(A9)

(A10)

From the foregoing expressions, the following useful
relations can be derived:

Bvi
II

= —au cosine

=a singe
Bx „v)
BV

i) =av) cosine~,Bx

(A 1 1)

Bvi B@ ey BU)(
(A12)

will differ depending on where in x space the decornposi-
tion is carried out. In this system, vi is the magnitude of
vz, the projection of v onto the plane perpendicular to
B' ', and vii is the projection of v in the direction of the
magnetic field. The remaining velocity coordinate P is
the angle between vi and the vector e, defined by

APPENDIX A: COORDINATES IN v SPACE

The magnetic field of the equilibrium considered is

B' '=B' 'ez, ez=sinaye +cosaye, , (A 1) Bv
(A13)

where x, y, and z are Cartesian coordinates and e, e~,
and e, are the corresponding unit basis vectors. For this
configuration, it is convenient to introduce, besides the
Cartesian velocities x, y, and z, a local cylindrical coordi-
nates system ui, P, and u)( in v space, which is particular-
ly appropriate to the problem and, in fact, makes it tract-
able. This decomposition is, of course, space dependent,
i.e., for a given vector v, the components ui, P, and u))

Bv =Cg

d u = v) du) d P dv(( . (A14)

The volume element in v space is therefore given by the
obvious expression
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Given a function G (x, v), one then has the following
relations:

av~~/cu
—1 and the effective potential V(y) can then be

expressed as

BG

x v

BG BG—au
~~

cosP e~
U~, y, v(~

aUi) —1=—0
cosa( P„—y ) (B7)

v
ii

c)G~+a sing e~
Ug X, V~, V~~

BG+au icos/ er,
X, P, V

(A15)

BG BG BG e~e„+
BG

+ e~.
x, v~, f

(A16)

APPENDIX B: PARTICLE QRBITS,
GYRATING PARTICLES, AND S%'INGING PARTICLES

2

H = " +V(y),
2m

(B1)

with

V = (x +z )=&„—m co m co
Vl~+ u

iia a
(B2)

By taking into account that

aull co a(x sinay+z cosay) —cu

a
p sinay+ p, —

m
cosay (B3)

and defining a frequency A by

2 2

n„=icu.i, ; +
6)~m ~

ap, —1
co m

2 1/2

1
[a p +(ap„—m cu ) ]'

V

= [a'v', cos'y+(au„—~.)']
' 1/2

a JV 2a co~VE~+ cu
m~

and an angle a P by

ap„.sinaP =—
co m 0

cosa% = 1—
V

ap,
m

(B6)

Owing to the fact that the canonical momenta p„
and p, , Eqs. (6) and (8) are constants of the motion,
the particles moving in the magnetic field
B' '=8' '(sinaye +cosaye, ) can be considered as
effectively being in a one-dimensional potential V(y ) and,
with the notation of Sec. II, the Hamiltonian, Eq. (9), can
be expressed as

m. . . m, / cu, /n.
V(y) = (0 +co ) — cosa( P„—y ),

2a a
(B8)

respectively.
The particles moving in this periodic potential can be

divided into two classes: those whose energy &„is so
large that they can overcome the potential barriers deter-
mined by the maximum value of V (y), ( V ),„andmove
freely in the y direction, since for them y never vanishes,
and those (in fact, the overwhelming majority in all situa-
tions of interest) with energy lower than ( V ),„,which
are trapped, their motion being confined to a certain y re-
gion around y =P„.The maximum value of V,(y) can
be determined from Eq. (B8) and is

(V ),„= (0„+icui)
2a

(B9)

The condition for a particle to move freely in the y direc-
tion is then

&„—(V.),„&0. (B10)

Although the energies for which this condition is satisfied
are usually very high [corresponding to au~~/co

—1~0,
i e., a(Rg) zu~~/(v~) z

—1 ~0, see Sec. VB 1], the corre-
sponding particles (which play a particular role in guid-
ing center theories [8,9]) must be taken into account
when the distribution functions allow arbitrarily large ve-
locities, for instance when one considers Maxwell distri-
butions.

The two groups of particles, those oscillating about the
planes y =P and those moving freely along y with y
vanishing nowhere, can be characterized by the behavior
of the quantity d P, which is, by the definition of d, in
Eq. (27), the rate of change of P experienced by the mov-
ing particle, i.e., d $=(dgldt), &,„s„b,„.When d P has
no zeros (and P therefore changes monotonically with
time along the particle orbit), the particles gyrate around
the field lines while they oscillate about the plane y =P,.
This is the group of the gyrating particles. If d P van-
ishes for a certain Po, it also vanishes for n —$0 (and for—

Po and ~+$0). Calcula—ting the second derivative of
for these values, i.e., [d (d P)](/=$0),

[d (d P)](P=~—$0), it can be shown that Po and rr $0—
(the same is valid for —$0, —m+$0) are, respectively,
minimum and maximum values of P. The uelocity vz of
the particle swings between these two angles, the particle
never completing a P turn At the same. time, it moues
freely in the y direction, y =v~sinP neuer vanishing These.
are the swinging particles. To understand this relation be-
tween d P and the behavior of the particles, consider the
quantity & —(V ),„,which, taking into account Eq.
(B9), reads
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2

& —( V, ),„=m„
Q

Q 'll —1—
N

2 Q
1/2

2& —2 'M +1

2
CO V=m
Q

T

1 Q

V V

'2
Q Q

2

Uii 1 + Uicos f
1/2

(811)

2

&„—(V ),„=—m
Q

Q

llo
U

—1

2

If d, /=au~~sin P —tv %0 for all U~~, P, then this means
that (a/co )u~~

—1 &0, since otherwise d, P=O would be
possible. Then, taking P =0, u

~~

= u ~~p(&„'M,P =0),
u~=u~p(&, Vl, P=O), which does not mean any restric-
tion, since &,—( V ),

„

is a constant of the motion, Eq.
(Bl 1) yields

with &~,%~ are gyrating particles. If a+~/to &0 and
the expression on the right-hand side (rhs) of Eq. (816)
has no zeros, the particles are likewise gyrating particles.
If a8'~/to & 0, and if d P vanishes for any P=gp, then
the particles with &~, 'M~ are swinging particles. It
should again be stressed that, in most cases of interest,
a(Rs),h«1, and that au~~/co =a(Rg), hu~~/u~, h & 1,
which is necessary for a particle to be a swinging particle,
is only possible for very high values of UII. Therefore, the
uast majority ofparticles are gyrating particles.

Q

IIo
U

—1
V

1/2
Q+

2 Ugo (0
COV

and the particles are therefore trapped.
If d P=au~~sin P —to =0 for a Pp and a v~~p, then

Q 1

sin Pp

and, setting

(812)

(813)

APPENDIX C: SOLUTION
OF THE EQUATION d„X=0

The extremization of the wave energy, Eq. (39), with
respect to I leads to an equation of the form

d X=d y +d uj +d P +d, u~~
=0,()X w BX w QX w BX

(Cl)

where d y, d U~, etc. represent the change with time of
the variables along particle orbits, i.e.,

sin PpCo=
2 Ulo 2

CO~ COS Pp

one obtains from Eq. (811)

(814) d y =y =uj sing,

d uj = —av~u~~singcosg,

(C2)

(C3)

2

&,—(V, )
2 Q

2m co

Q

cos p [2+c —2(1+c )' ]
sin Pp

COS $p [(1+c )'i —1] &0
sin Pp

d P =a v
~~

sin P —tv

d u~~ =au&sing cosg .

(C4)

(C5)

The solution of Eq. (Cl) can be found by the method of
characteristics, i.e., by solving the system

(815)

and the particles move freely in the y direction.
A quantity which plays a crucial role in determin-

ing the sign of o H is 2)f' '=m, Bf', '/
8& +(a/co )Bf' '/BVl . If this quantity has a certain
sign for &„=&~,R =Vl~, one can determine to what
kind of orbit these values correspond in the following
way: by taking into account Eqs. (CS) and (C10), the
parallel velocity can be expressed as u~~ =u~~(&~, 'M~, P),
and d„Pis then given by

d P=au~~sin P —co

dy dug dP du~)

d.y d.u, d.P d.u
~,

The equation

dUg dUII

d Ug d UII

(C6)

(C7)

is easily seen to be equivalent to U~dU~+UIIdUII =0 and
leads to the constant of the motion &„:

2Q . 4 2Q=+to 1+ &~sin P — %lysin P
m co V

' 1/2

(816)

Using this result, the equation

du

dP dv~~
(C9)

can be integrated (carrying out some minor manipula-
tions) and yields the constant of the motion Vl„:If a'M~/cv & 0, then d„/+0for all P and the particles



558 DARIO CORREA-RESTREPO AND DIETER PFIRSCH 47

a
u~sin P+u

2'

The equations

(C10) APPENDIX D: THE COORDINATES SYSTEMS
JY„,Q, Vl„,P„(FORGYRATING PARTICLES)

AND %„,R„,P„,y (FOR SWINGING PARTICLES)

dy dP dy

d~y d~P d~y debug

can be written as

(Cl 1)

(au~~sin P co, )—dy =u~sinPdP,

au
~[

cos Pdy =cosPdu ~

(C12)

respectively. The difference of these two equations yields

(avii
—co )dy =d( —uicosP),

which, together with Eq. (87), leads to

d sina(P —y)+ v~cosP
CO Q~

=0.

(C13)

(C14)

—1
y —P,=—arcsin

a
ugcosf

CO 0 (C15)

with

This expression yields a convenient relation between the
third constant of the motion, 5'„,and y, vz, and P.

For gyrating particles, y —P, is bounded and is given
by

a(m„y,n„v.)
a(u~, p, u~~, y)
aJy. agf. a%'.

aug af av
((

ay ay ay
av g a(jb av

))

an. an. an.
aug af au((

aw. av. av.
aug ap Ull

aJy.
By

ay
By

an.
By

ap
By

(D 1)

The quantities which appear in the functional deter-
minant can easily be calculated. They are

a~-
=Pl Vg,

BU~

a&~ aJt~ a~. =0
By

It is most convenient to introduce coordinates in y-v
space which are particularly adapted to the motion of the
particles. For gyrating particles, the coordinates
&,Q, n„P are introduced. The relevant relations are
Eqs. (C8), (C10), and (C15) Itogether with Eq. (84)j,
which enable one to calculate the Jacobian

—w ~ arcsin vgcosp 77 .
67~0~

(C16)

The meaning of P becomes clear if one assumes that
(a/II )u~ is small, i.e. , (a/II ) ~u-( /aco„)v~
=a (Rz ),huz/(u~), h &&1. In that case

ap
BUg

ae.
BUg

a(h ap ap
ap a

(~
ay

a
v~sin P,

(D2)

(D3)

aP vj ~0 =y — cosP,
M~

(C17)

and y =5', is obviously the plane on which the guiding
center is located.

For swinging particles (which move freely, with non-
vanishing y), y is unbounded and

2~
uj cosP +1

CO 0 a
1

y —P =—arcsin
a

l =0,+ l, etc.

In this case, y =P„+l(2m/a) are the plasma on which

ly I
~~sumes its maximum value. When the particle

swings from $0 to m. —Po and back again to Po, uz returns
to the same value, as can easily be seen when Uz is ex-
pressed as u~(&, n, sin p). At the same time, the parti-
cle moves from yp to yp+2~/a. With these three in-
dependent integrals, the general solution of the equation
d X=Ois givenby

X(uj, g, u~~, y )

ae.
a

a z .
v~sinP cosP,

CO~

a- =1,
Bv

ll

a- =0,
By

av„
BUj

a5 ~ aug
cosP,

avll 02

a'tl =1.
By

From the relation

cosP cosa( P —y),
CO Q

sing cosa(P —y ),
CO~ Q~

Ug

(D4)

(D5)

(D6)

=X(& (u„u~~),n, (u„P,v
~~

), 5' (v„P, ~~, y ) ). (C19) one then obtains the volume element in y-v space:
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d Udy= d& deed% dP
m (av((sin ~ co

d&,dP d%,d P
md/

(D7)

e, (y) =cosaye„—sinaye,

=cosa(P —y)e, (P )+sina(P —y)e~(P )

[(au(( —co,)e,(P )+avicosge~('P )]
co Q

Since, as was seen in Appendix B, d /%0 for gyrating
particles, the coordinates are well defined.

For swinging particles, the coordinates &, Vl, P„,
and y are introduced. Proceeding in a similar manner as
in the case of the gyrating particles, the volume element
is easily derived. One obtains

and

(E3)

e~(y) =sinaye +cosaye,

= —sina(P —y)e, (P )+cosa(P„—y)e~( i/, )

d Udy= d&g Vl d 'P dy
m uzsin

avi cosine + (
Il

rv e& (
Q)~Q~

67~

mdy
d& d ll d q/+y . (D8)

(E4)

Solving these equations for e,(P ) and e~(P ), one ob-
tains

The coordinate system is well defined, since
d y =y = uising does not vanish for the swinging parti-
cles.

For gyrating particles, the expression d I appearing
in Eq. (44) takes the form

ar,
(d I )op=d I" (&,VL, P,Q)=(d P), (D9)

ancl

e,(P,)= — [(au(( —co )e, (y) —auicosge~(y)]
co~A~

(E5)

while for swinging particles one obtains

ar.
(d I ) =d I (&,'M, Py) =(d y ) . (D10)

By

APPENDIX E: SOME USEFUL RELATIONS
FOR THE EVALUATION OF 5 0

e~(P )= — [auicosge, (y)+(au(( —co„)e~(v)].
co

(E6)

With the help of Eqs. (Al), (A2), (22), (B7), and (C14), the
vector (a/co )w —e~ appearing in Eq. (44) can be shown
to be a constant of the motion:

It is convenient to introduce two reference unit vectors

e&(P ) and ez(P ) defined by
a a

w —e~ = uicosge, +
CO CO

a
Ull 1 e~

CO~

e, ("P )=e,(y =P )=cosa&' e —sinai e, ,

e~(P )=e~(y =P )=sinai' e„—cosa% e, .

(El)

(E2)
(E7)

Then, taking into account Eqs. (B7) and (C15), one ob-
tains

It is also convenient to relate the velocity w=v —ye
to the vectors e,(P ) and e~(P„):

2a ~ +2 6' — „(P)+ cosine, (P )
m

w =
u(~(e~ + u icosPe,

2 2 2[( auicos y au((—+Cd —U(()et'(P, )+cd vtcosye)(P )]
co A

co 0

Vl, v(()e~(P )+ v ic osage, (P„),0

where

Q(((&~,R„,u((
)—

V

2a & +2VL —v
co m

(E9)

has been introduced. Mean values for gyrating and for

(E8)

(.. . ) — 2m. . .
d

dP
p (E10)

I

swinging particles, respectively, are now defined by the
expressions
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yo+(2m la) dy
7 yp d"

~y

yp + (2n. /a) dy

d vy

(u, cosP), =0 (E12)

since positive and negative contributions compensate
each other. On the other hand, expressing v)cosP as a
function of &, e, and y through Eq. (C15) and
d y =y =p„/m„as a function of the same variables with
the help of Eqs. (Bl) and (B8), and taking into account
that y does not change sign for swinging particles, one
derives

(El 1)

where f means that the integrals are taken along the
particle orbits, i.e., at constant &,e,P,. Then, taking
ut =ut(&, e, sin (I)) into account yields

af (0) af (0)

"am. +, ae,
n, af(."

(((&„e„)+
(

n
=2)f„''(&,e, ) ~~(&,e,)+

~

(E20)

k((P, )=k„,e)(P„), (E21)

Eq. (44) can be written as

C, fl„af'„'

It is now straightforward to calculate the constant of
the motion C„which appears in Eq. (44). Setting

(u, cosy), =0. (E13) 2[2)f'„'j— k, ( P )v t cosP

Introducing now the Y indepe-ndent, mean parallel ue-

locities q~)(JY„e) and r~((%'„,e„)as

q„(m„,e.)=(g„(m„e.,.„(a., e.,. 'y))),

(E14)

+k„(v.)&„(m„e„+„)+d„r
(E22)

and

„(&,e ) = ( g, (&„e,„(&,e, ( p„—y ) ) ) ),
(E15)

respectively, these results allow concise expressions for
the mean value of w and w. k„„namely

(E16)

For both kinds of particles, the gyrating particles and the
swinging particles, particularly appropriate coordinates
were introduced in Appendix D. By means of these coor-
dinates, the constant of the motion of C can be deter-
mined from Eq. (E22) and the boundary conditions. For
gyrating particles, the boundary conditions, Eq. (38), ex-
pressed in the coordinates &„,e, P, and P, are

1,(&„,e, /+2~, P )=I (A, e, 5' )+2vrn . (E23)

For swinging particles, I is taken to have given values at
y =yo andy = yo+(2m /a), i.e.,

and

), =.
,
(m., e.).,(~„),

( k„),=k„(w.).„(m.,e.),
where the parallel component of the wave vector

(E17)

r,(&„e,p„,y =y() ) =r~,

I, &„e,P„,y =y()+
a

For gyrating particles I, is given by

(r,),=r.„(m.,e., w. )+r„,(m„e„,y, v.),

(E24)

(E25)

k,((P, ) =k„,es(5'„) (E18)

af (0) af (O)

am.
+ . ae.

af (0)

q„(&,e )+

has been introduced. These results, together with Eqs.
(21), (22), (23), and (E7), lead to the relations

a(r., ),
d (I )op=(d (t) (E26)

where 1 z is an arbitrary function of its arguments andI, is determined by integrating Eq. (E22) with respect to
P along the particles orbits. I

„

is not needed explicitly
for the calculation of 6 H; only C is needed.

The corresponding expressions for swinging particles
are

n a"'
xf, (m. , e.)q), (m. , e.)+

(r,)„=r.„(&.,e., p.)+r., (&.,e., ~.,y)

(E19) and

(E27)

and

a(r., )»
d (r )»=(d.y)

By
(E28)
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Dividing Eq. (E22) by d ()I) and integrating along the
particle orbits between /=0 and /=2m yields the con-
stant of the motion C for gyrating particles (designated
by v(op) ):

n„af'."
~~~ Be

7p V V

Bf(0)
—2k„i~,)(.,(~, )

' (~„,e„)
Bv

where

ar.= rvi —r (E31)

(E32)

These expressions can be simplified if it is remembered
that 2)f' '=m Bf' )/a& +(a/co )Bf' '/Be„and the
following definitions are introduced:

(v. )h„)(&,e,P )= ',
)

e~(5'„)~

—2[nf(."]&d".y), n, . (E29) k (w. ) af
h,~(&,e,P )= ",

,
e~(9' ) ~

n. af'."
v(SP) 2 ~j

v
V y

Bf(0)
—2k)(P, )(ez(P, )

" (&„'(l„)
Bv

—2[2)f( '](d y), bl, (E30)

Proceeding in a similar way for swinging particles, i.e.,
dividing Eq. (E22) by d y and integrating along the parti-
cle orbit between yo and yo+(2'/a), yields C (sp), the
constant of the motion C for swinging particles: 8.,(~., e., ')/. ) =k(, (+.) q

d P

(E33)

(E34)

r8 ~(&,e,P )=k~~(P ) (d.y ),
(E35)

i)emote that the only dependence on 5' is given through

k~~~(P ). With these definitions one then obtains from
Eqs. (E19), (E20), (E29), and (E30)

2

v(GP)
n. af'."
/~. [ ae. + 2[2)f(„)](d()I)), [n, +(h„+8,)n +h )8 )]

2(h, +8, )
=(Z[nf(.o)]&d.y), )' n. + (E36)

v(SP )
V y

n Bf' '

/~. / ae. +(2[2)f( '](d y), ) b, I
'2

+(h„+8,) hl +h 8
277

(h ~+8 2)=(2[2)f'„'](d„y) ) bl +
2%

(E37)

APPENDIX F: NEGLECT
OF THE ELECTROSTATIC ENERGY TERM

The contribution of the electrostatic energy term

Jd x5E
Sm

(F1)

af (0) Bf(0)

6f = 5x+ 5p„,
Bx

& Bp

with p the canonical momentum of species v, i.e.,

ep„=m.v+ A"'(x) .

(F4)

(F5)

has been neglected. To justify this, let us consider the
perturbed electric charge density 5p. generally, the
change density is

p=ge ff d'v, (F2)

It therefore follows that

Bf(o) Bf(0)
=m

Bv Bp
(F6)

and the perturbed charge density is

5p= ge J of d'v . (F3)

The perturbation in the distribution function is given by

Bf(0)

v

Bf(0) a(p ) af (0)

Bx ~ Bx „B(p);

Bf(o) e a ~ (o) Bf(0)
V + V 1 V

ax, c ax a(p. ), „' (F7)
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gf (0)

Bx p

Bf(o) e BA (o) Bf(o)

Bx „cBx B(p );

Employing the relations above, one obtains 5f, as a func-
tion of x and v:

gf (0) e g g (0) gf (0)

Bx „mc Bx BU;

The perturbations 5x and 5p are given by

BG
&

BG
5x =

Bp
„

m Bv

(Fg)

(F9)

af(,0) eG„
Bx Bv

af.") aG.
Bv Bx

mvc
(0) BG„8 X

Bv

gf (0)

Bv

(F1 1)

BG BG e BA,.' ' BG„
5p = — = — +

Bx Bx „mc ax aU,

(F10)

This expression can be transformed by taking Eqs.
(20)—(23), (25)—(27), and the relation d, =d +x(B/Bx)
+z(B/Bz ) into account, to obtain

aG. af(." aG„
5f = —0)„[2)f ' ' ]v X eI) ~

mv Bv Bv Bx

m

BG
[&f'."][d.G. ] [&f'."] v— +

(0)
[&f'."][d.G.]+ —[&f'."1) e, + BG

Bx

(0)
[2)f' '][d,G ]+ — e

L

gf (0)
e + aG.

Bx
(F12)

Taking into account Eqs. (30), (31), and (36), one then obtains for the perturbed charge density

5 = —g Jd v [2)f( '][4 G ]+—k, %,(e
V V

Employing the relation

—Il —k xv zx
) (F13)

d G =
—,'[d %„](e "' +e ' )+—%[d I )(e ' " —e " "' ),2

one then calculates

(F14)

(0) (0)
5 = —g J d'v [d (Ii ](e ' "' +e "' )+—[2)f(, ']d I +k„,.

V 2 2 Bv

i I +ik„x i I—ik —.x'
X)Ii e " "' —eV (F15)

Taking d 4' =0, i.e., )Ii =(Ii (&,VE„,P ), does not have any influence whatsoever on the results obtained in Sec. V.
In this case, the perturbed charge density is

(o)

5p= —g Jd3v — [Xlf( ']d, I +k„%(e " ' —e
V

(F16)

The perturbed charge density 5p can be made zero, since the expressions for 5 H only contain )I( and (d )Ii ) . (Ii is
chosen localized in & or Vl„. The distribution of signs in )Ii, is free. For instance, one can take +„piecewise continu-
ous in & or Vl, with changing signs so that positive and negative contributions to 5p balance each other.
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