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Extensive numerical study of spectral statistics for rational and irrational polygonal billiards
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An extensive numerical study of level-spacing properties of rational and irrational polygonal billiard
systems is carried out. It is found that level statistics of both rational and irrational polygonal billiards
deviate from a Gaussian-orthogonal-ensemble-type fluctuation. It is also explored in detail whether the
polygonal billiards with the infinite genus number provide different level-spacing characteristics from
those with the finite genus number. Some delicate problems in dealing with several types of pseudoin-
tegrable systems are also discussed.
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I. INTRODUCTION

Chaos in classical mechanics is characterized by sensi-
tive dependence of orbits on their initial conditions, and
its degree is measured by the Kolmogorov-Sinai entropy
or the Lyapunov exponent. Due to the loss of an initial
memory at an exponential rate, one is unable to make
long-time predictions in principle. In this sense, entropy
is a very important concept which draws a border be-
tween the predictable and unpredictable world. One of
the central subjects in quantum chaos is to clarify how
positive entropy influences various kinds of quantum-
mechanical properties. Alternatively stated, can one
judge correctly whether or not the corresponding classi-
cal system exhibits chaotic behavior solely from
knowledge of some quantum-mechanical quantities? This
setting of the problem is regarded as one aspect of Berry's
proposal of quantum chaology [1].

To our knowledge, there exists no convincing theoreti-
cal explanation that leads to the universality in quantum
mechanics as a direct consequence of positive classical
entropy. The universality of quadratic long-range level
statistics such as spectral rigidity or number variance,
which measures the degree of Auctuation in the energy
interval of the order A, has been derived by a semiclassi-
cal argument [2]. On the basis of the uniformity princi-
ple of classical periodic orbits [3], it predicts a Gaussian-
orthogonal-ensemble (GOE) -type fluctuation. However,
classical entropy does not appear explicitly in the semi-
classical formula for quadratic level statistics because the
decreasing rate of the square of the amplitude factors in
the periodic orbit expansion cancels the increasing rate of
the number of periodic orbits. Moreover, the uniformity
principle is derived on the assumption that a system has
the ergodicity and all periodic orbits are unstable, but it
is not yet known what kind of modification should be
done if only ergodicity or the mixing property is as-
sumed. Concerning the nearest-neighbor level-spacing
distribution, one cannot develop a semiclassical argument
because of the divergence of Gutzwiller's trace formula
caused by the exponential proliferation law of the number

of periodic orbits [4]. Another implication of the role of
the classical entropy is mentioned in the billiard problem
on a compact surface of constant negative curvature, in
which the bottom of the spectrum of the Laplace-
Beltrami operator has an expression directly in terms of
the classical topological entropy [5]. However, the
answer to the converse question is obscure because one
cannot judge the chaoticity of a system only from the ab-
solute value of the ground-state energy. Despite these
partial theoretical understandings, a large number of nu-
merical experiments strongly suggest the universality of
GOE-type fluctuations in completely chaotic systems [6].

On the other hand, from recent analyses for polygonal
billiard systems which are called pseudointegrable sys-
tems in the literature [7], we also know that a positive
Lyapunov exponent is not a necessary condition for level
repulsion [7,8]. Yet, it has not been clarified whether the
level-spacing distribution of pseudointegrable systems
completely coincides with the GOE-type fluctuation and
whether one can discriminate the underlying classical
chaoticity only by means of the signature of the level-
spacing distribution. Hence to get a promising hint to
understand the role of the positive classical entropy in
quantum mechanics, a detailed study of pseudointegrable
systems becomes particularly important. Ordinary ap-
proaches, which give a necessary condition for the mani-
festation of the classical chaoticity to the corresponding
quantum systems, are to study quantum systems whose
classical counterparts have positive metric entropy. On
the other hand, our present approach is, in a sense, devot-
ed to attaining the same aim from the opposite direction,
and would give a sufFicient condition. However, as actu-
ally shown in the present paper, in order to draw a con-
vincing conclusion to this rather delicate problem, one
must collect as many examples as possible and treat them
with care. The delicate nature of the problem is that the
peculiarity of the pseudointegrable billiards lies in the
presence of vertices which are only singular points having
negative curvature. Even though such singularities have
zero measure in classical phase space, they might play a
significant role in determining the structure of the
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energy-level sequence. A drastic role of such a zero-
measure singularity is indeed rigorously shown in the bil-
liard with a point obstacle which is the most ideal version
of the pseudointegrable billiard system [9].

II. MODEL AND CLASSICAL DYNAMICS

As mentioned in the introduction, our motives in this
article are to explore whether or not the GOE charac-
teristic is a property owned only by classically chaotic
systems, and to examine what governs the level structure
of pseudointegrable systems. Toward this end, we shall
take a rhombus-shaped polygonal billiard whose bound-
ary is schematically demonstrated in Fig. 1. We choose
the vertex angle u as a system parameter. An interesting
point in the polygonal billiard system is that classical dy-
namics shows an intermediate property between com-
pletely integrable and chaotic systems, because it is not
integrable in the sense of Liouville and Arnold but it has
null metric entropy [10]. In addition, from the ergodic
theoretical viewpoint, there are two important classes in
polygonal billiard systems. One is a type of polygon
whose vertex angles are all rational multiples of ~ (for ab-
breviation, we refer to this type of polygon as the rational
polygon), and the other is a polygon where at least one of
the vertex angles is an irrational multiple of vr (the irra-
tional polygon, for abbreviation). In the case of the ra-
tional polygon, its classical phase space becomes a mul-
tihandled sphere with a finite genus number, which
means that the number of possible directions for classical
trajectories is finite. On the other hand, since the genus
number for irrational polygons is infinite, it is expected
that typical orbits bounce in all directions. Up to now,
we do not have any rigorous mathematical proof, but it is
believed that almost all irrational polygons possess ergo-
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dicity [11]. Moreover, it is also conjectured that they
possess a weak mixing property which is a minimum con-
dition for equilibrium statistical mechanics [12].

The prescription to compute the genus number for the
rational polygon is given as [7,13]

mk —1

g =1+—g2 k nk

where (mk /nk )rr are interior vertex angles of a polygon,
N is the least common multiple of the integer set nk, and
the sum is taken over all polygonal vertices. For our
model, the genus number in the case of the rational po-
lygon is given in Table I. In the following study of quan-
tum spectral statistics, we shall restrict ourselves to odd-
odd parity states, which means that Dirichlet boundary
condition is imposed on an oblique side and two symme-
try axes. Therefore, we shall treat a right-angled triangle
substantially. From the rule given by Table I, in the case
of a quarter of the rhombus or right-angled triangle, the
reciprocal of the genus numer as a function of the vertex
angle exhibits a self-similar structure as shown in Fig. 2.

TABLE I. Genus number of the rational polygon with the
vertex angle (p/q)m, where p and q are relatively prime in-
tegers. In this table, —', 2, and 1 mean the cases of the quarter
rhombus, the upper half of the rhombus, and the full rhombus,
respectively.

s' q
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0

FIG. 1. Schematic picture of the rhombus. The system pa-
rameter is an interior vertex angle a [0(u ~ (rr/2) ]. The
dashed lines represent symmetry axes.

FIG. 2. The reciprocal of the genus number for the quarter
rhombus as a function of the system parameter u. The quarter
rhombus is integrable only when a is equal to m/2 and m. /3.
The genus number for irrational a is infinite and the reciprocal
is equal to zero.
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When the system parameter a is an irrational multiple of
~, the reciprocal of the genus number is equal to zero.

Before investigating quantum level statistics, it is in-
structive to observe the classical dynamics of the present
billiard system. The classical dynamics for billiard prob-
lems is appropriately described by the mapping on the
Birkhoff coordinate which is composed of a pair of the
arc length and the sine of the reflection angle. As a typi-
cal example of an irrational rhombus, we present in Fig. 3
the phase-space plot starting from a single initial point.
In this example, the vertex angle n is chosen to be
(1 r,—)m, where r, =(&5—1)/2. This is an irrational
number for which the rate of approximation by the con-
tinuous fractional expansion is the slowest. Though the
vertex angle is such a typical irrational number and a
large number of iterations is performed, the rate at which
a single trajectory fills the phase space is considerably
slow. To see such a slow diffusion, we divide the phase
space of Birkhoff coordinates into sufficiently small cells
and count the number of cells in which a trajectory
passes. Figure 4(a) is a plot of the occupation rate as a
function of the time step. For the sake of contrast and in
order to compare it with a typically chaotic system with
positive metric entropy, we present in Fig. 4(b) the same
plot for the stadium billiard system. Although the length
of straight segments of the stadium boundary is very
small, its trajectory rapidly fills the phase space and the
difference in diffusion processes between these two cases
is obvious. In particular, while an orbit in the stadium
billiard spreads over the whole phase space at an approxi-
mately constant rate, the polygonal billiard with an irra-
tional angle does not show such a uniform diffusion, rath-
er an orbit is frequently trapped in very narrow regions
for a sufficiently long time, and after that it spreads at a
relatively fast rate. This graph for the occupied area
resembles the so-called devil's staircase. The observed
fractal structure is closely related to the power-law corre-
lation decay found in other types of pseudointegrable sys-
tems [14,15]. This implies that the time required for an
individual orbit to wander the entire phase space is
exceedingly large, though polygonal billiards with irra-
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tional angles are expected to possess the ergodicity as
mentioned above and its symptom is shown even in the
present numerical experiment. Such a slow diffusion is
mainly attributed to the fact that the irrational polygon is
always sandwiched between rational polygons with a
small genus number as illustrated in Fig. 2. An alterna-
tive interpretation is that numerous cantori filling densely
all over the phase space strongly disturbs the diffusion of
an orbit [16].

From the behavior observed in the classical mapping,
the following prediction is possible for the property of
eigenstates in the corresponding quantum system. Sup-
pose an initially localized wave packet which is composed
of the superposition of a large number of eigenstates in
the semiclassical regime. Owing to considerable slow
diffusion of a classical trajectory in the irrational po-
lygon, such a localized quantum wave packet also spreads
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FIG. 3. The classical mapping on the Birkhoff coordinate.
The horizontal axis corresponds to the arc length from an ori-
gin, and the vertical axis to the sine of the angle between the
direction of a trajectory and that of the inner normal to its side.
The number of iterations is one million.

FIG. 4. The area occupied in the phase space of the Birkhoff
coordinate by the iteration of the classical mapping in the case
of (a) the rhombus billiard with a = ( 1 —r, ), where
r& =(&5—1)/2, and (b) the stadium billiard with y=0. 1 where
y is the ratio of the length of straight segments and the radius of
the circle. The whole phase space is divided into 25000 cells,
and the number of cells in which a trajectory resides is counted.
The horizontal axis represents the number of steps, and the
vertical one is the percentage of the occupied cells.
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out at a very slow rate, which is a consequence of the
most naive quantum-classical correspondence principle.
It leads us to a speculation that a fairly large part of
eigenstates superposed to construct an initial wave packet
are localized ones. Therefore, if one wishes to judge the
precise asymptotic behavior of the level-spacing property
of a system with slow diffusion, one must enter into a
deep semiclassical regime, below which a purely quantum
effect dominates before the wave packet exhibits very
slow spreading rejecting the corresponding slow
diffusion of classical dynamics. Alternatively stated, in
order to see whether level statistics of a typically irration-
al polygon approach GOE-type fluctuation, a sufficiently
large number of levels must be prepared.

tion makes sense in the infinite limit of level number
(N +—~ ), and it is difficult to draw a definite conclusion
only from a finite number of numerical data, especially
when one treats a delicate problem as posed here. Never-
theless, if the number of levels is quite large, one is able
to predict its asymptotic behavior and obtain valuable in-
formation as to its limiting distribution from finite nu-
merical samples. To make the asymptotic behavior evi-
dent, we see how the feature of the nearest-neighbor
level-spacing distribution changes as a function of the
level number. To quantify it, the resulting histograms are
fitted to the Brody distribution which is a semiempirical
interpolation formula between Poisson and Wigner distri-
butions [18],and its explicit form, which is parametrized
by the Brody parameter P, is given as

III. QUANTUM SPECTRAL STATISTICS

Taking account of the preliminary speculation from
classical dynamics, we now examine the level-spacing dis-
tribution of the present polygonal billiards. Our strategy
to seek a primary factor controlling the struture of the
level-spacing distribution is twofold. The first is to ex-
plore whether rational polygons with different genus
number yield different level-spacing characteristics. The
second focus is directed to a question of whether the be-
havior of level-spacing properties can be discriminated by
the rationality of vertex angles. From these two direc-
tions, we intend to get a unified view about the key in-
gredient determining the structure of the level-spacing
distribution in polygonal billiard systems, and to confirm
how spectral statistics certainly reflect the underlying
classical chaoticity.

To obtain eigenvalue sequences numerically, we em-
ployed the boundary element method, the details of
which are described in Ref. [17]. We checked numerical
accuracy and convergency by computing eigenvalues of
the rectangular and a circular billiard whose exact eigen-
values are already known. Due to the roughness of the
discretized interval of the wave number, some of the ei-
genvalues might be missed, which is inevitable in these
kind of numerical or experimental searching procedures.
However, by referring to %'eyl's asymptotic rule includ-
ing both the boundary and corner terms, the percentage
of missing eigenvalues can be estimated and the error was
less than 2%, which did not crucially affect the essential
features of level statistics.

As representatives of rational polygons we examined
the cases with g =2 and 3. From the rule given by Eq. (1)
or Table I, vertex angles —,'e= —,'m, —,'m, and —,', m only yield
the cases of g =2, which could be regarded as the sim-
plest possible pseudointegrable billiard systems. For
these three cases, splitting angles of nearby orbits which
bounce at vertices are all different (among them the case
of —,'o, =—,'~ shows the maximum instantaneous separa-
tion). However, their phase spaces have the same topo-
logical structure with genus 2. Other rational polygons
examined are the cases with vertex angles —,'a=

—,'4~, 777,

—,', m, and —,'4m, all of which classically give the multihan-
dled sphere with genus 3.

Strictly speaking, the concept of level-spacing distribu-

PI3(s) = As~exp( —as '+~),

(2)

A =(1+P)a, a= I 2+
1+

where P=O and 1 yield Poisson and Wigner distributions,
respectively [18]. Although several alternative fitting for-
mulas have been devised [19], the present concern is not
to confirm the validity of those formulas but to clarify the
degree of level repulsion and the extent of deviation of
empirical histograms from the Wigner spacing distribu-
tion.

Figures 5(a) and 5(b) show the variation of the Brody
parameter as a function of the level number for the cases
of g =2 and 3, respectively. A common feature found in
the two figures is that the Brody parameter for the
lower-energy region takes a relatively higher value than
that of the higher-energy regime, and that the Brody pa-
rameter gradually decreases for first hundreds of levels.
Then it seems to saturate or oscillate without a secular in-
creasing or decreasing trend. A possible intuitive inter-
pretation for this behavior is that the influence of singu-
larities with zero measure is relatively large for lower
eigenstates in comparison with higher-energy ones. Such
a large effect caused by the presence of the vertices can be
gradually weakened as the energy goes to the very short
wavelength regime. A similar behavior has been reported
in the case of the billiard with a point obstacle, in which
the first hundreds of levels appear to approach the Pois-
son characteristic [20], but the limiting distribution cer-
tainly shows the level repulsion as mentioned before [9].
Furthermore, the same plots of the variation of the Brody
parameter for the stadium billiard system do not yield
such a high value in the lower-energy regime [21]. Ac-
cordingly, the behavior found in the first lower levels
must be regarded as a transient one, and an asymptotic
feature should be judged in the sufficiently high-energy
regime, in which stationary behavior is confirmed.

From the comparison of Figs. 5(a) and 5(b), it would be
rather difficult to conclud. e that there exists a definite
difference between a set of vertex angles giving g =2 and
those giving g =3, because the final values for the g =3
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FIG. 5. The values of the Brody parameter as a function of
the level number. Figure (a) corresponds to the cases of g =2,
where each mark represents the case of —,'a= —,'~ (E), ,'rr (0), —

and —,
' ~ ( ). Figure (b) corresponds to the cases of g =3,

where each mark represents the case of
2
a= —,'4 m. (0 ), 7~ (D),

—,', ~ (0), and ,'4rr (0). —

cases spread more widely than those of g =2, and the
value for the case of —,'o.'= —,', ~ is smaller than either value
for the g =2 cases. Though one may expect that the
genus number is an important factor determining the
energy-level statistics, it is still only a matter of conjec-
ture within the present result. A similar situation also
holds in the behavior of the quadratic long-range correla-
tion. In Figs. 6(a) and 6(b), we present the results of the
b, 3 statistic [22] for the cases of g =2 and 3, respectively.
Of course as L becomes larger, the difference or the sys-
tem specificity in the plots of A3 becomes more evident,
which should be due to a natural consequence that the
short-time behavior of classical dynamics strongly de-
pends on the vertex angles. However, resulting curves in-
cluding the small L regime, which is less influenced by
such a system specificity, spread over a certain region,
which makes it difticult to conclude that only the genus
number determines the complete characteristic of spec-
tral statistics. In order to give a reliable statement, more
detailed study of other types of pseudointegrable billiards
must be made, the reason for which is discussed in the
final section. Despite these unsettled ambiguities, an im-
portant and clear finding obtained at least within the
present calculation is that level-spacing distributions for
all cases with g =2 and 3 significantly deviate from that
derived by the GOE assumption. Furthermore, the de-
gree of deviation is very similar to the result of the bil-
liard with a point obstacle [23].

Next, we shall focus on the difference between rational
and irrational polygons. As irrational-angled cases, we
choose the vertex angles —,

' a =
—,'( 1 r& )rr, ,' r2rr, ,' r—3rr-—

where r, =(&5—1)/2, rz=v'3 —1, r3=( —3+&21)/2,
and —,'a=(1/&5)m, (1/&7)n, (1/&11)vr, (1/&19)vr
The numbers r„r2, and r3 are typical Diophantine num-
bers which are very hard to be approximated by any ra-
tional numbers, and all denominators and numerators of
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FIG. 9. The nearest-neighbor level-spacing distribution for
the combined data. The solid line represents the case with finite
genus, and the dotted line the case with infinite genus. The bro-
ken curve inserted in the figure is the Wigner distribution.

FIG. 11. The nearest-neighbor level-spacing distribution for
the combined data. The vertical axis is drawn on a logarithmic
scale. The solid line represents the case with finite genus, and
the dotted line the case with infinite genus. The broken curve
inserted in the figure is the Wigner distribution.
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do not completely coincide with GOE characteristic.
The Brody parameter for combined data of rational po-
lygons is equal to 0.71, and 0.82 for irrational polygons.
Ensemble averaged 63 statistics are presented in Fig. 10,
which reveal, under the working hypothesis mentioned
above, the difference between the finite and infinite genus
case of the long-range correlation property.

Though our selection of the vertex angles of both ra-
tional and irrational polygons are not biased in any par-
ticular sharp- or broad-angled regime, and the result for

the spectral rigidity seems to support our working hy-
pothesis, it is dangerous to form a hasty conclusion to
this delicate problem, because we have ignored all other
factors which control the underlying classical dynamics.
Furthermore, the number of levels might be too small to
infer the limiting distribution [24], and within the present
examples it is still unclear that the level-spacing distribu-
tion of irrational polygon s approaches the Wigner
characteristic. Even if it reaches the Wigner one in the
semiclassical limit, its rate of convergence is certain to be
exceedingly slow. In any case, it has not been clarified so
far that the observation of a fairly large number of levels
is required to judge the precise asymptotic behavior of
spectral statistics of polygonal billiard systems.

A large number of levels enables us to check another
detailed property of the level-spacing distribution which
has not been examined so far. As is proved rigorously
[9], in the case of the billiard with a point obstacle, the
signature of the level-spacing distribution in the large
spacing region differs from that of the ordinary GOE pre-

2
diction. While GOE gives P(s)-e ' for s~ ~, the es-
timation P(s)-e ' holds for the billiard with a point
obstacle. We here check the behavior of the tail of the
level-spacing distribution of the present rhombus billiard
model. To see the functional form of s dependence clear-
ly, we present histograms on a logarithmic scale, the re-
sults of which are given in Fig. 11. Although both empir-
ical histograms deviate from the GOE curve, the distri-
butions for large s values do not appear to decay as
P(s)-e ' [25]. This result suggests a possibility of the
behavior of the tail dividing the universality class of the
pseudointegrable system, though a theoretical origin of
this difference has not been understood yet.

FIG. 10. A3 statistics for the combined data. The open circle
denotes the case with finite genus, and the solid circle the case
with infinite genus.

IV. SUMMARY AND CQNCLUDING REMARKS

Concluding this article, we surnrnarize our results and
discuss future unsolved questions in this direction. Our
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main aim in the present study is to see to what extent the
quantum level statistics sensitively reQect the nature of
the underlying classical dynamics, and to verify whether
the level statistics of polygonal billiard systems truly
show the GOE-type universality, which has not been
clarified in studies prior to ours. Our results show that
level statistics of both rational and irrational polygons
significantly deviate from the distribution derived from
the Wigner surmise. Moreover, on the working hy-
pothesis of level statistics correlating with the underlying
classical ergodicity, we concentrated on the difference be-
tween rational and irrational polygons, and the possibility
that the rationality of vertex angles plays a role to deter-
mine level statistics is suggested especially from the ob-
servation of the long-range level correlation. Although a
final conclusion concerning this problem must be drawn
carefully, the present result poses an interesting question
of what is the theoretical background of the difference of
level statistics in pseudointegrable systems. Of course,
toward a definite answer, much more numerous levels are
needed, but at present it is beyond our computational
reach.

To understand the results obtained in this study
theoretically, the semiclassical analysis is desired. How-
ever, as carried out in the case of a= —,'m, the presence of
singularities caused by vertices which are peculiar to
pseudointegrable billiard systems might play an impor-
tant role to determine the structure of energy-level se-
quences [26]. Hence, to obtain a full semiclassical under-
standing, the contribution from the diffraction caused by
the scattering at vertices would be taken into account in
the usual periodic-orbit expansion. In this sense, the
semiclassical origin of the level repulsion found in the
present pseudointegrable system somewhat differs from
that in chaotic systems in which the asymptotic balance
of the number and amplitude of periodic orbits mainly
governs the semiclassical behavior of quadratic long-
range level statistics.

As mentioned in the introduction, our final goal is to
know the precise reAection of the classical positive entro-
py to the structure of quantum energy sequences, which
is analogous to the famous question posed by Kac: "Can
one hear the shape of a drum?" [27]. If the limiting dis-
tribution of the irrational polygon becomes the Wigner
characteristic, it seems that one must abandon an at-
tempt to infer the classical chaoticity only from the sta-
tistical property of energy sequences. However, as is also
discovered in the present calculation, the level-spacing
distribution of irrational polygons takes a fairly large
number of levels to approach the Wigner one, even if the
limiting distribution is the Wigner one. The shape of the
limiting form, therefore, contains important information
and at the same time one possibility to discriminate prop-
erties owned by chaotic systems from those by nonchaot-
ic ones is to see the rate of convergency toward its limit-
ing form. One more important piece of information dis-
carded so far is the fluctuation of the Brody parameter
around its mean value. To see it, our only task is to ex-
amine the Brody parameter of each energy regime sepa-
rately, not the cumulated one. However, within the data
obtained in the present study, we have not succeeded in

detecting a meaningful discrepancy of such fluctuation
features between the irrational polygon and the stadium
billiard. Likewise, it has not been possible to verify the
difference of Planck-constant dependence of the saturated
value of the quadratic level correlation predicted by Ber-
ry [2].

Finally, we wish to remark on the treatment of pseu-
dointegrable systems. To fix an idea that the number of
genus completely determines the universality of quantum
spectral statistics, the following ambiguous questions
should be fully resolved. The numerical study of even-
parity states of the rhombus billiard with a= —,

'm. yields a
somewhat anomalous nature concerning the nearest-
neighbor level-spacing distribution, though the genus
number is also two [26]. This anomaly is due to the pres-
ence of degeneracy which is regarded as remnant of the
nontypical character of the corresponding odd-odd parity
states with g =1.An alternative interpretation is that the
classical billiard problem corresponding to the even-
parity states of the —,'~ rhombus belongs to the almost in-
tegrable billiard, the concept of which is first proposed by
Gutkin [28]. Its billiard plane is composed of several
pieces of completely integrable billiards with the same
shape. The almost integrable billiard is of course a subset
of generic pseudointegrable billiards with the finite genus
number. The truncated triangle billiard analyzed by
Richens is one example of such a class, and the energy se-
quence of the truncated triangle and that of the corre-
sponding integrable billiard have several eigenvalues in
common [29]. Hence it is expected that a class of almost
integrable billiards is nongeneric, and must be treated
separately.

Another remark we wish to make is that there are oth-
er types of pseudointegrable billiards with a finite genus
number. The generalized Sinai billiard studied by Cheon
and Cohen is an example [8]. It also has the finite genus
number, but the difference from the present rational
rhombus lies in that the possible direction of classical tra-
jectories in the generalized Sinai billiard is the same as
those of the ordinary rectangular billiard but there are
convex corners splitting the banded trajectories, whereas
the present rhombus billiard has no such corners but the
number of possible directions of trajectories is propor-
tional to the genus number. We have not yet known
whether or not these two types of pseudointegrable sys-
tems with the same genus number exhibit the same sta-
tistical property of the energy-level sequence. According-
ly, one must carefully examine the difference among them
and, toward the full understanding of pseudointe-
grable systems, these unsolved questions must be dealt
with in the future.
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