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The usual theories of selection in dendritic growth involve an analytical extension in the complex
plane and a search of singularities for the profile function. We show here that the complex plane is in

fact the liquid phase and that the zone of singularity lies on the growth axis. We find a selection mecha-
nism, by using localized perturbations, for the dendritic growth even when the surface tension is isotro-
pic. We show that it is possible to act on the complex plane and to modify at distances the growth rate
and the shape of the solidification front. Moreover, we stress here the influence of localized perturba-
tions on the measurement of the constant of stability a * of the needle crystal.

PACS number(s): 68.70.+w, 61.50.Cj, 05.70.—a, 81.30.Fb

I. INTRODUCTION

During the past two decades, physicists have tried to
understand the selection mechanism for observed needle
crystals. It has long been known that solidification of a
crystal results in dendrites and only the product of the tip
radius times the growth rate is fixed by the undercooling
[l]. A series of numerical and analytical papers (for re-
views, see [2]) based on the solution of the steady-state
growth equations conclude that suitable solutions can ex-
ist if and only if one introduces explicitly the anisotropy
of surface tension. They predict that the "constant of
stability" a*=2doD/p U (with do the capillary length,
D the di6'usion coeScient, p the tip radius, and U the
growth rate) depends only on e, the anisotropy
coefficient, with an e ~ [3] dependence for small e. Very
unfortunately, to date, this coefFicient has been reported
only for five materials and the discrepancy between calcu-
lated and measured o. values remains of order two or
three, in both directions [4]. This is a little disconcerting
after several decades of hard work.

Moreover, as far as the selection mechanism is con-
cerned, such a discrepancy between measured charac-
teristic lengths and predicted ones does not exist for
viscous fingering, even in the very unstable radial
geometry [5]. The parallelism between the equations
which govern both instabilities is perfectly well estab-
lished, even if the conformal-mapping techniques [6] are
generally preferred for Laplacian growth. Nevertheless,
the selection treatment is the same: analytical continua-
tion of the interface equation in the complex plane and
search of singularities in this plane. Of course, this simi-
larity does not help one very much to understand what
happens really in crystal growth. But one can notice that
it would be very pleasant to have an adjustable parameter
in dendritic growth, completely in the hand of the experi-
mentalist, instead of the parameter e, which is unperfect-
ly known. In viscous fingering, this is the case, since the
capillary number o. depends on the pushing Aux and can
be varied continuously by the experimentalist.

Our attention has been drawn by the paper by Thome
et al. [7], whose very suggestive title is "Controlling

singularities in the complex plane: Experiments in real
space. " The aim of that paper, which concerns viscous
fingering in a channel, was to show that the complex
plane of the theoreticians is in fact the liquid viscous
Auid, so that it is possible to act on it. They obtain
fingers in the forbidden range of A, values (A, is the half
width of the finger compared to the channel width,
A, )0.5). To do so, they create a singularity of the fiuid
velocity by putting a coin in front of the finger, on the
growth axis. This new but physical singularity competes
with the unique singularity induced by curvature in the
range A. (0.5, so narrow fingers are permitted. In the
limit of a very low capillary number and weak perturba-
tion, a collapse condition is enough to fix k, which de-
pends only on the position of the coin in front of the tip,
on the growth axis. Is it possible to adapt this result to
the needle crystal growths This is one purpose of the
present paper.

First of all, we consider the crystal-growth regime
which is formally the closest to viscous fingering: the
one-sided model of solidification at low Peclet number.
We show that the singular point due to curvature is locat-
ed on the growth axis, in front of the tip at a distance of
1.5 times the tip radius of the dendrite. So conceptually
the situation appears to be very similar to viscous finger-
ing. As a consequence, in the absence of anisotropy of
surface tension, a needle crystal exists if one adds a static
and localized perturbation in front of the crystal. As a
perturbation, one can think of an obstacle, of a germ or
an inhomogeneity of temperature or impurity. We ana-
lyze these perturbations and show that they are
equivalent to a dipole for the impurity or temperature
field. But due to the lack of intrinsic length scale in the
dendritic growth problem, the amplitude of the perturba-
tion itself is dependent on the unknown radius of curva-
ture. This complicates the analysis and requires a numer-
ical study. When anisotropy is added, we show that a di-
pole perturbation on the growth axis located at a distance
of the order of the tip radius increases very significantly
the constant of stability o.*. Since we show that most of
the physical perturbations encountered in experiments
are equivalent to fictitious dipoles, one can easily imagine
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that it is very difficult to measure this constant of stabili-
ty o' with precision, and to test the theory of selection,
which has been established in a too ideal situation.

This paper is organized as follows. In Sec. II, we show
that we can also treat the dendritic growth at low Peclet
numbers by conformal-mapping techniques stressing the
similarity between growth, viscous fingering, and usual
electrostatics. Section III recovers known results about
the selection problem within this framework. Section IV
gives a simplified description of localized perturbations in
terms of dipoles. Section V shows that these perturba-
tions can also be responsible of the selection process. Fi-
nally, in Sec. VI we confirm numerically our analytical
predictions and study the competition between the an-
isotropy of surface tension e and a dipolar perturbation,
both in the two-dimensional (2D) and 3D cases.

least mathematically. The diffusion length given by
D, /U (for a discussion of scaling laws, see, for example,
[9]) is large when b„ the supersaturation at infinity, is
small. So we can surely use the Laplace approximation
around the tip of the needle crystal as soon as one consid-
ers distances of order of the tip radius. It gives

bP(x, y) =0+0(Pe) with I'e = 2pU
D,

(2.1)

So P can be considered as the real part of an analytical
function (see Fig. 1, which represents the frame coordi-
nates). The imaginary part g can be derived by solving
the Cauchy equations, as soon as P is known everywhere.
This equation (2.1) must be solved simultaneously with
boundary conditions at the interface: the Stefan law and
the Gibbs-Thomson law. The Stefan law gives the flux of
impurity across the interface,

II. THE ZERO-SURFACE TENSION
FREE-BOUNDARY PROBLEM

0%'
n VP = — = —Pe cos8,

Bs
(2.2)

In this section, we consider the steady growth of a nee-
dle crystal in the one-sided model of solidification, in two
dimensions. This model represents fairly well the
solidification induced by diffusion of impurities, but our
conclusions, as shown below by the numerics, are also
valid for the symmetric model of solidification (more con-
venient for thermal processes) in two or three dimensions
with axisymmetry. Moreover, we restrict ourselves to
vanishing Peclet numbers (the Peclet number is a dimen-
sionless quantity defined by the characteristic length of
the growing structure times the growth velocity U divid-
ed by the difFusion coeScient D, ). We will deal with the
Laplace equation in the liquid phase rather than the
diffusion equation for different reasons. First, our
analysis will be similar to the one employed for the
Saffman-Taylor viscous fingering, the main differences
coming from boundary conditions at the walls and at
infinity. Second, we will take advantage of simple results
of electrostatics to justify the selection mechanism with
or without localized perturbation. It is certain that some
results derived in this paper have been known for several
years now, but they have been obtained by a rather so-
phisticated analysis of nonlinear integral equations. Our
purpose is also to find a more pedagogical way to derive
the so-called "selection mechanism. "

Exact results are more easily derived for Laplacian
fields, because we can use conformal-mapping techniques
which rest on the existence of a complex potential. In
this part, we want to recover the exact results of Ivantsov
[1] by this technique, in order to handle the free-
boundary problem with both capillarity and localized
perturbations as has been done for the Saffman-Taylor
problem [7,8]. As for the usual Laplacian field, we map
the physics (x,y) plane to the complex potential one
4& = (P, it ). P has an obvious physical meaning: it
represents the dimensionless concentration field
P=(c —cI )/(cL —c&); c is the impurity concentration in
the liquid phase and cI (cs) is given by the liquidus
(solidus) lines of the phase diagram. In a hydrodynamic
experiment it is the stream function. In our case, its
physical meaning is less obvious but we can define it, at

while the Gibbs-Thomson law fixes the impurity amount
at the interface,

(2.3)

By

ay r Pe
' (2.4)

The reader may think that the present model and espe-
cially Eqs. (2.1) and (2.2) are inconsistent since we do not
keep the same order in Pe in both equations. For a com-
plete discussion of this question, we refer to the paper by

LIQUID

FIG. 1. The needle-crystal frame of coordinates.

We take as the length unit two times the tip radius of
curvature of the Ivantsov parabola, 0 is the angle be-
tween the growth direction and the normal n of the inter-
face, and s is the dimensionless arclength. do is the capil-
lary length, which is taken equal to zero in this section.
I is the interface. It will be more convenient to trans-
form (2.2) into
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jz = +if + —,
'

Pe
(2.5)

The interface is deduced from the Gibbs-Thomson law in
the absence of capillary effects (/=0), which gives

2x=, y=-Pe' Pe soy= x (2.6)

With this choice [Eq. (2.5)], the reader can check that
the Stefan law (2.4) is automatically satisfied and, as in
the Ivantsov theory, the lines of isoconcentration are par-
abolas of equation:

Pe

2

Pe
2P
Pe

2

This result is consistent with the Ivantsov treatment,
when 6, the supersaturation at infinity, goes to zero.
Nevertheless, it gives no way to derive explicitly the rela-
tion between the Peclet number and 5, which is reached
for values of P of order Pe'~ . This restricts its validity to
P values of order Pe'~ or less. Fortunately, it turns out
that the selection mechanism results from interactions
which act on distances of order of the tip radius, which
means P of order Pe, as shown in the next section.

III. FREE-BOUNDARY PROBLEM
WITH CAPILLARITY

We want to show here that this formalism allows one
to treat rather easily the selection mechanism by surface
tension of the 2D needle crystal. Let us first introduce a
function of the unknown profile: f=e' (8 has been
defined above). For an arbitrary point of the interface I,
the two boundary conditions to apply to the interface can
be joined together into a unique equation concerning the
complex derivative of the complex potential:

d4 1 BP . 8@
dz r f Bs Bs

dp

2p

2 p—i + iPe/2 1+'d. f2
(3.1)

But N can also be deduced from the solution of the La-
place equation. For the moment, let us write

&P=C,„+(4—4&,„)
with

4p,„=Pe/2 —Pe( —,
' —iz )

' (3.2)

as deduced from (2.5). The correction (N —4&i„) to the
Ivantsov field is given by an integral term derived by
Green's-function techniques, as shown in [10], for exam-
ple. This correction is a small term which is not impor-

Pelce and Pomeau, who justify this approach via an
asymptotic analysis [10]. To guess a complex potential
with parabolic isoconcentration lines is not very difficult.
In fact, the solution is given explicitly in the lectures of
Feynman [11]:

2

tant for the selection process. From (3.1) and (3.2), one
obtains

—o + 1+d" f2
=( ,' —i—z) '~ +O(o ), (3.3)

with o. a small parameter, sometimes called the "constant
of marginal stability, "

cr =2do/(2pPe) =2/C (where C is
the usual nonlinear eigenvalue introduced in [10]). The
factor 2 is not a pure matter of convenience for the nota-
tions. It comes from the chosen model of solidification:
here the one-sided model while [10] deal with the sym-
metric one. Then we easily recover that the constant of
stability o * for solidification induced by impurities (one-
sided model) is twice the value obtained for pure materi-
als (two-sided model). Equation (3.3) is valid only on the
interface and o. is an eigenvalue that is determined by the
requirement that f is real at zero (8 vanishes at the tip).
Let us extend as usual this equation to the complex plane
in order to impose a vanishing imaginary part for f(0) on
the imaginary axis. But note that here the complex plane
is located in the liquid phase. We know from previous
treatments that o. is derived from a careful analysis of
this nonlinear equation in some inner region where f, the
profile function, becomes singular. This occurs when

f =CT ' F(i'+0 u ) .4

To leading orders, from (3.3) it reads

dI'+ 1,(. )

(3.4)

(3.5)

This is a nonlinear equation which can be solved numeri-
cally. But it turns out that we need to know only its ex-
pansion far away from the inner region, on the growth
axis. Everywhere in the complex plane but outside this
boundary layer, because o. is a small parameter, one can
linearize Eq. (3.3) around the Ivantsov solution fi„given
by

2
Iv

=(1 —
/ z) —1 .'4

Focusing only on the imaginary part of the small devi-
ation (f f,„) from the Ivants—ov solution, hereafter
called g on the imaginary axis (z =it), one obtains the

~ —1/2=0 so (
' iz)——=1,f2 4

which means that this inner region is located on the
growth direction, in the liquid phase, at a distance of —,p
from the tip. Let us recall that this singular part of the
complex plane, which is in fact located in real space (the
liquid) (around point I in Fig. 1), has a very small exten-
sion of order o . Just to check that this approach is
consistent with previous theories, let us analyze this
equation and recover that in absence of anisotropy of sur-
face tension, the needle crystal cannot exist due to tran-
scendental small corrections which prevent the tip from
being smooth. First of all, we derive the inner equation
valid in the boundary layer located at P [x =0, y =

—,'(2p)]
by the following stretching transformation:
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very simple equation

d 1o. —2 g=0,
dt f

which is easily solved by WKB techniques:
3/4g(t}=AS'(t} ' exp —o '~ du S'(u)

t

with

Iv

(3.6)

(3.7)

this inner equation which has no freedom. Numerics in-
dicate that 3 is not zero. So there is no needle-crystal
solution with isotropic surface tension. The reader can
check that we recover the usual transcendental correc-
tions (see, for example, [10]) by a simple change of vari-
able.

(
] +t)1/2
4 2

Now we introduce the anisotropy of surface tension in
the usual way:

y(8)+ y(8)"=yo(8) [1—e cos(48) ]

In order to have a smooth solution at the tip without any
cusp, g ( t) must vanish at zero, which is possible only if A
equals zero. Since A is related to the asymptotic expan-
sion of the inner equation, it is really a characteristic of

I

=yo(8)[1 e—+8ecos 8—8ecos 8] . (3.8)

Here we assume a fourfold symmetry. With this aniso-
tropic surface tension Eq. (3.3) is modified into

4

—o(l —e) 1 — f+ — + f+— + 1+1 2e 1 df 1

2(1—e) f 1 & f dz f =( ,' iz—)—'~ +O(o. ) . (3.9)

The same stretching transformation (3.4) transforms (3.9)
immediately into

d F 4 1, . g 4/7[1—aF ]+ =
—,'(iu), a = —o.

dg2

once we keep only the most singular contribution. Note
that a is a pure number of order unity. This equation has
an oscillating behavior near the singular point on the
imaginary axis and an exponential decay far away what-
ever the e value. These transcendental decaying correc-
tions can be destroyed by convenient oscillations as well
as by convenient values of a. This is why the anisotropy
allows one to recover an infinite discrete set of solutions
a„such that

o =(E/a„) ~

It seems to us that this description of the selection
mechanism by surface tension in dendritic growth is
much more simple to handle than the usual theories; it
also allows one to go a little further by examining the
effect of static perturbations. Moreover, it has never been
shown that the complex plane of theoreticians is in fact
the liquid plane of the experimentalists, at least in dendri-
tic growth. In this sense, one can dream of acting on this
complex plane to modify at distances the dendritic
growth. The existence of "pure" dendritic growth is ex-
plained by the presence of a singularity of the profile
function f(8) due to the curvature in some specific place
of the liquid phase, on the growth axis, in front of the tip.
To act on the growth seems easy: it is enough to create a
new singularity in the vicinity of the boundary layer in-
duced by the capillary effects. In the next section we
want to emphasize that ordinary localized perturbations
which can occur in dendritic growth also make singulari-
ties of the temperature field, as well as f(8), which can
compete with the curvature singularity at —,'p.

IV. LOCALIZED PERTURBATION AS A
SINGULARITY OF THE TEMPERATURE FIELD

Any physical effect that moves us away from the ideal
situation examined in theories can be called perturbation
and it is certain that many of them are present in an ordi-
nary experiment of crystal growth. Moreover, any physi-
cist involved in this field is interested in modifying the
selection rule by a quantitative experiment with adjust-
able amplitude in order to test some aspects of the
theories. Most of the time the only parameter at our
disposal is the anisotropy of surface tension, which is
rather diScult to measure with high precision [4], and
most experiments today are concerned with similar sam-
ples with similar anisotropies of surface tension. As a
consequence, the theory of solvability is hard to test and
gives rise to controversy among the community. These
controversies are quite inexistent for the Saffman-Taylor
viscous fingering, where the equivalent capillary number
o. is proportional to the ratio between the surface tension
and the velocity of the finger, so it can be modified during
the experiment only by pressure. It is a control parame-
ter completely in the hand of the experimentalist, who
can observe every finger with arbitrary width A. )0.5.

First of all, we will distinguish localized perturbations
from the long-range ones. The former modify the
diffusing field only on distances of order of the natural
scale of the dendrite. The latter affect the Ivantsov field

everywhere, even at infinity. Although a systematic
study has never been done, starting from examples
[12,13], we can say that long-range perturbations modify
both the relation between the Peclet number and the su-
persaturation b, (or undercooling) and the nonlinear ei-
genvalue o.. It is the case, for example, for forced con-
vection in dendritic growth or for coupled diffusion of
both impurity and temperature. If one focuses only on
the selection mechanism, it turns out that the anisotropy
of surface tension, at least for these two cases, which
have been studied in some detail [12,13], is the necessary
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ingredient to obtain selection. Of course, the stability
constant deviates from standard predictions with a devia-
tion that depends on the strength of the perturbative field
itself. Most of the time, as shown also by experimental
results, the deviation of o. appears to be a regular pertur-
bation correction to the value selected by the anisotropy
of surface tension and not a singular correction [12,13].

Here we deal with sharply localized perturbations
which will not modify the Ivantsov field, like capillary
effects. For the moment, we choose them steady in the
dendrite frame. They can be inherent of the growth pro-
cess itself like microscopic germs or nuclei in the bath of
the dendrite. They can be due to some inhomogeneity in
the experiment or they can be added intentionally by the
experimentalist: a rigid obstacle in front of the tip (like
coins in the experiment by Thome et al. [7]) or a laser in
directional solidification experiments [14]. A simple
analysis shows that localized perturbations are responsi-
ble for two different kinds of singularity of the field: they
produce either a sharp variation of the impurity concen-
tration or a sharp variation of the diffusion coefficient.
Sometimes both appear. As an example, a rigid obstacle
prohibits the diffusion of impurities inside and imposes
the concentration of impurities at the border. Nuclei are
equivalent to bubbles in the Saffman-Taylor experiment.
They impose the same boundary conditions for the field
as for the dendrite: Stefan and Gibbs-Thomson laws. Fi-
nally, the laser perturbations locally heat the melt, in-
creasing the diffusion coefficient D and the miscibility
gap. Moreover, the situation here appears more compli-
cated because we cannot neglect the coupling between
impurity and temperature in both diffusion equations.

We plan now to represent these perturbations and to
calculate the change of the diffusion field P because of
these perturbations far away from it. We will show that
it produces a dipole perturbation with an amplitude pro-
portional to the involved area, in two dimensions. Let us
introduce some effective partial coefficient A which re-
lates the equi. librium. impurity concentration in the per-
turbed region 4 to the equilibrium concentration in the
liquid, and p the ratio between the diffusion coefficient 2)
in the perturbed region 4 and the one of the cell. These
two coefficients are enough to describe all these different
physical situations.

P=2)/D and c,s =Ac, .

With these notations, we have P,„,= [c—cI /(cI —c, )

=(c—
c& )/c&(1 E)] outside 4, but ins—ide S it reads

in
CI Cs ci(1—K )

with K the usual partition coefficient between the liquid
and solid. Now we focus on the boundary conditions to
apply at the boundary 4 which, as usual, rest on the con-
servation of impurity and local equilibrium:

(on the boundary of 4),

4,„,=@,„+gB z™ (4.2)

=4&,„+g B r e ' ' (outside 4),

with A and 8 two sets of complex constants and ~ the
usual polar angle defined from the x axis. In principle,
the above boundary conditions (4.1) are enough to fix the
amplitude of each multipole in (4.2). But to simplify the
algebra, we will assume that 4 has the shape of a circle of
radius ro with a center located on the y axis at the dis-
tance d of the tip. The zeroth-order one is a pure con-
stant irrelevant for selection so we focus on the first one
outside the perturbed region. We deduce the amplitude a
of the effective dipole in terms of physical quantities ro,
%', E, adnP:

Pe8 =i+
1

' Pe"o pA —1 1 —%'+2 . (4.3)
2(1+P%) ( '+d)'~ 1 —K

The imaginary constant i means simply that the orienta-
tion of the effective dipole is along the growth axis. Note
that, when there is no perturbation, p and%' are equal to
unity, and the amplitude of the dipole vanishes. For the
coin, p vanishes. Unfortunately we have no general
answer about the order of magnitude of A compared to
K. It depends on the affinity of the impurities in the
liquid for the wall. For the heating by laser, the situation
is also not obvious, but if the main effect is the increasing
of the diffusion coefficient by the heat, p goes to infinity
and a is also positive. For the case of microscopic germs,
p is zero (one-sided model) and %' is equal to K, so a is
also positive. It seems to us that most of the localized
perturbations reduce to a dipole perturbation with a posi-
tive amplitude in the direction of the growth, proportion-
al to ro, given in units of the radius of curvature of the
dendrite.

We cannot use the same technique of analytical func-
tions for the 3D dendritic growth even when axisym-
metry is assumed, but, as shown previously, we expect
the physics of the growth to be quite independent of the
space dimension. The only technique at our disposal in
this case remains the Green s-function technique with in-
troduction of the perturbation. In order to carry out a
numerical analysis of the deduced equation, it is rather
important to show that also in 3D most of the perturba-
tions are equivalent to a dipole parallel to the growth
axis, and to evaluate its amplitude in order to see if it has
some chance to act on the growth. First of all, from
Ivantsov theory, we can deduce the temperature field in
the zero Peclet number limit:

ln2[(z+ —,
' )+R ]

We choose the usual expansion for the complex potential
@which must satisfy the Laplace equations

4;„=g A z =g 3 r e™(inside g),

1—
%,„,~@=p%,„~@+pe x ~@ .

(4.1)

with R =[( +(z+ —) ]
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Only the second equation in Eq. (4.2) has to be modified
since we cannot define easily a stream function %. It is
transformed into

1—
n VP,„,=Pn VP;„—Pecos(8) (4.4)

Solving the first equation (4.2) and Eq. (4.4), we find an
amplitude very similar to (4.3):

Pe
Bi =a

2

Pe"0 pA' —1 1 —A
2(2+PA) 2(d+ —') 1 —K

+2 (4.5)

[z and p define the polar coordinates, p =(x +y )'/ ].
The general solution of the Laplace equation for the

3D axisymmetric case is

A1r + &, P, ( cosO)
BI
1+1

+ nPe i
2 z —id

(5.1)

Because of this perturbation, we need to add the complex
derivative of the dipolar potential to the interface relation
(3.3), assumed to be valid everywhere in the liquid.

— "'f+ 1+ '
d" f 2

1 +O(cr) .
(z —id )

(5.2)

shown that the orientation of the dipole is parallel to the
growth axis, its position is fixed at a distance d from the
tip on this axis, and its amplitude is characterized by a
parameter u, which happens to be positive in physical sit-
uations. The complex potential which acts everywhere in
the cell is the sum of the Ivantsov potential plus the dipo-
lar potential,

The formula (4.5) is rather close to the one calculated in
2D (4.3) despite some numerical factors. Nevertheless,
the amplitude of this dipole will be rather different since,
in 3D, it is proportional to the perturbed volume (ro),
contrary to the 2D case (ro). We will come back to this
difference in Sec. VI, where numerical results are dis-
cussed. The discussion concerning the sign of this 3D di-
pole is the same as in 2D: most of the time, it is positive.

One can wonder if it is realistic to consider a static per-
turbation in the dendrite frame since most of the pertur-
bations are static in the laboratory frame. We can argue
that when the perturbation is due to some fluctuation it is
not a rigid one; it can be advected by the Aow created by
the dendrite, so this perturbation will be perfectly static
in the dendritic frame. On the contrary, a rigid obstacle
in the laboratory frame moves in the dendrite frame with
a characteristic time of order ro=plU. This time is
much greater than the characteristic time of sidebranch-
ing given by ~, =cr' ~0, which is itself much greater than
the diffusion time rD =Fera (for a discussion of these time
scales see, for example, [16]). So the time of displace-
ment ~0 in the dendrite frame is very large and the per-
turbation can be considered as static in the dendrite
frame, except perhaps in the very close vicinity of the tip.
The dendrite has time enough to adjust its tip radius to
each instantaneous position of the dipole. We will use
this adiabatic approximation and will assume that the di-
pole is steady in the frame of the needle crystal.

V. SELECTION IN THE PRESENCE OF STATIC
LOCALIZED PERTURBATION:

ANALYTIC TREATMENT

This section is devoted to the determination of the ei-
genvalue o. in the presence of a dipolar perturbation. In
order to show the drastic effect of a localized perturba-
tion located in the vicinity of the growing structure, we
will examine the ideal case where there is no needle-
crystal solution: that is, we will assume that the surface
tension is isotropic. Since most of the localized perturba-
tions are of dipolar nature, we will restrict ourselves to
this kind of dipolar interaction. Moreover, we have

with (5.3)

g(t) =1—( —,'+ t )

We focus on the boundary layer around t =d and we
linearize g. Moreover, we apply a stretching transforma-
tion:

u =[g'(d)la]'/ (t —d), F=fg'(d)' a'

d F 1 1+Pu —u+
du 2 F2 u2

with

o g(d)
7/6 i(d)1/3 ' 1/3 ~(d)2/3

(5.4)

(5.5)

Note that g'(d) is always positive but g(d) is either
positive for d) —,

' or negative for d & —,'. The selection
mechanism now means one relation between 71 and p.
Equation (5.4) is exactly the Combescot-Dombre inner
equation [8] for the coupled selection problem of a bubble
in front of a finger in the Hele-Shaw cell. Anyway, some
differences appear: because they have to select both the
bubble and the finger sizes for fixed d, both parameters g
and p need to be selected and are positive eigenvalues of
order unity. It means that, in our language, the ampli-
tude of the equivalent dipole which is related to the bub-
ble size is fixed in their case. In our case, the amplitude
of the dipole is a free parameter so the selection produces

Singularities of this equation correspond to 1 lf~0.
There will be three singularities, but if we choose o, small,
one of them remains close to the previous one: z=3i l4,
the others being located near id. In the following, we will
restrict ourselves to this situation: e small, in order to
simplify the analysis. Of course, when d is close to —,', all
of the singularities are in the same neighborhood. As be-
fore, the solvability condition requires that the imaginary
part of f vanishes on the imaginary axis far away from
each singularity. So we introduce the change of variable
z =it.

d 1 1
cr + =a g(t)+O(o )—

dt' f' (t —d )'



MARTINE BEN AMAR AND EFIM BRENER

richer pictures of scaling laws, which depend on the two
characteristic parameters of the dipole: the amplitude
and position.

The capillary effects plus the dipole effects induce a
regular correction to the Ivantsov parabola if the imagi-
nary part of F vanishes far away from the singularities.
This is possible, as shown in detail in [8], if and only if
the cubic polynome on the right-hand side of Eq. (5.4)
has two complex-conjugate roots. It immediately pro-
duces a lower limit to our parameter P )P,= —(27/4)'~ . It means that d should be smaller than
d„, given by

d &d„with d„=—'+( —"a)' (5.6)

for small a values.
Now, two cases have to be handled following the order

of magnitude of g compared to 1.
(a) When the parameter g is small, the selection gives

us the following relation:

d„d=(b„—q)'"a'" (5.7)

)dG 1
c

dv2 G

1+U
U2

(5.8)

and the following selection rule for o'.

(5.9)

As usual, the largest value of cr in the spectrum (5.9) cor-
responds to an eigenvalue a of order unity, and lower
values of o. correspond to larger eigenvalues c, which be-
come proportional to n when n is large. (ii) The second
possibility involves the case q ))p'~ . Of course, it is im-
possible to find this kind of solution in the framework of
Eq. (5.8) which rests on the opposite scalings. Note that,
because of the definitions given by (5.5), this hypothesis
implies larger values of cr when compared to (5.9). This
situation is important since usually experimental mea-
surements are concerned with the largest value of o.. All
the other selected steady states appear to be instable and
so are not observed. It is easier to come back to our orig-
inal equation (5.3). In this case, which corresponds to a
extremely small, both singular regions (one around d, the
other around —') are well separated. So the imaginary
contribution coming from the most distant singularity
from the tip (that is, the usual one), although weakened

b„represents an increasing set of nonlinear eigenvalues.
(b) The opposite limiting case is concerned with large

values of q, and so P, which means o )a . The analysis
is more complex since two opposite situations can appear.
(i) The first possibility, which is the most natural one, is
to neglect the cubic term in the polynome of Eq. (5.4),
and thereby restrict the inner problem to the dipole
singularity. This also implies that one modify the
stretching of Eq. (5.4). If both u and F are scaled by
p ', we find that i) should scale like p'~ so that

u =Up ' F=Gp
If we define c =p' /g, it gives the following inner equa-
tion:

by a decreasing exponential factor, succeeds to combine
with the very weak dipole contribution (proportional to
a).

Taking into account the decreasing contribution from
(3.7), it reads

exp —o. du S'(u) =a .3/4

d
(5.10)

So, within logarithmic accuracy, we neglect the Van
Vleck prefactor which involves only powers of cr in (5.9).
It reads

[S(—,
'

)
—S(d)]

( lna)
(5.1 1)

We want to emphazise that when the parameter a re-
sponsible for the selection goes to zero, the selected ei-
genvalue o. goes to zero in different ways for the main
branch (5.11) and the other branches given by (5.9). This
is clearly a new result since usual eigenvalues o.„,selected
by anisotropy of surface tension, differ only by numerical
factors.

Let us sum up. First we eliminate the case (b ii), which
corresponds to extremely small values of the amplitude of
the dipole a (with

l lnal large). Two opposite situations
can occur following the distance of the dipole from the
curvature singularity compared to a' . If this distance
ld —

—,'l is small, d —
—,'l &a', then o, given by (5.7), is

proportional to a . In the opposite situation,
ld —

—,
'

l
)a', o is proportional to a as shown by (5.9).

Between these two limits, g«1 described by (5.7) and
g )) 1 described by (5.8) or (5.11), there is an intermediate
regime where g and P in (5.5) are of order unity. This in-
termediate regime can be handled numerically and is the
subject of the next section. But in any case, we have
shown that a localized dipolar perturbation can also be
responsible of the fixed point of the needle-crystal growth
since our analysis is concerned with isotropic surface ten-
sion. Of course, this fixed point depends on both the am-
plitude and the position of the dipole. It seems that these
dipoles, which are probably always present in an experi-
ment, are in competition with the anisotropy of surface
tension, which is generally believed to be responsible for
selection. It will be rather tedious to analytically handle
this competition. This is why we now present a numeri-
cal analysis with realistic values of both the dipole ampli-
tude and the anisotropy. %'e should emphasize that the
selection by dipolar perturbation takes place only for a
precise sign of the dipole. For the opposite sign, we did
not find a solution to the selection problem both analyti-
cally and numerically, but most of the perturbations ex-
amined in this section seem to correspond to this situa-
tion with selection.

VI. NUMERICAL INVESTIGATION OF THK 2D
AND 3D NEEDLE CRYSTAL IN THE PRESENCE

OF DIPOLE PERTURBATION

Numerics allow one to handle intermediate values of
the parameters which are very often closer to the experi-
mental ones than the asymptotic regime treated in the
previous section. Moreover, it will allow a discussion
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about the physical relevance of this treatment. We use
our code of the needle-crystal growth in 2D and 3D cases
(with axisymmetry) [10,16] at zero Peclet number and in
the two-sided model of solidification. Results concerning
o. are expected to be different only by a numerical factor
of 2 since the framework of the analytical part is the
one-sided one. This code rests on a solution of the inter-
face equation derived by Green's-function technique. We
add the dipole perturbation of amplitude e located on the
growth direction at a distance d from the tip. First of all,
we verify different aspects of the analytical results ex-
plained above in absence of anisotropy of surface tension.
Second, we include ordinary anisotropy values (a=0.083
for succinonitrile, @=0.375 for pivalic acid).

Isotropic needle-crystal growth with dipole interaction

0.12—

010—

0.06-
0

0.02
0

I ) I

2 4
I

10 12

The previous analytical treatment handles dimension-
less quantities such as the dipole amplitude a or its posi-
tion d scaled by the unknown radius of curvature of the
selected dendrite. These units are appropriate for the
analytical treatment but not for experimental compar-
isons. In that sense, it is not really easy to predict the
final result in a given experiment from the analytical part
above. Anyway, since the analytical treatment an-
nounces a rather important result, that is, selection by di-
pole perturbation with isotropic surface tension, it seems
to us rather important to verify carefully some scaling
laws. In a second step, we will focus on the physical
relevance for the experiments. A first check consists in
the scaling law of Eq. (5.7). Figure 2 displays the selected
values of cr*, the usual constant of stability measured by
the experimentalists, versus the dimensionless position of
the dipole d, for fixed e = 10 . In the case of
solidification induced by diffusion of impurity, o * is eight
times greater than our parameter o. introduced previous-
ly. Our numerical o.* values confirm that o* goes to 0
when d goes to d„=—,', proving that there is no steady
state for the needle crystal when the dipole is too far from
the tip, in agreement with the prediction of (5.6) and (5.7)

0.20

FIG. 3. Selected values of o.* vs the amplitude a of the di-
pole a when the position d=0. 1 is rather di6'erent from d„.
Note that o. is very similar to measured values in dendritic-
growth experiments.

and also in agreement with our physical intuition. It also
emphasizes the specific role played by the point —,'p in
front of the tip, similar to what is observed for the
viscous fingering experiment. As an illustration we
present also the dependence of o. vs a for fixed d in an in-
termediate regime, when d =0. 1 is rather far away from
d„(Fig. 3). Finally we made successful trials to verify
the logarithmic scaling (5.11), which is possible due to the
very slow decaying of cr vs a when o —+0, as shown by
Fig. 4. This logarithmic scaling is pertinent only for ex-
tremely low values of the parameter a.

Let us come back now to universal units more practical
for the experiments. We are looking for the unknown ra-
dius of curvature of the selected dendrite by dipolar per-
turbation. We scale all lengths (that is, the radius of cur-
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FIG. 2. The selected o.* values vs the position of the dipole
when its amplitude is a=0.001. Following Eq. (4.6) d„=0.938.

FICx. 4. Logarithmic scaling of o. vs the amplitude a of the
dipole following Eq. {4.2). ao has been found by trials.
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vature and the dipole position) by do/Pe, where do is the
capillary length and Pe is fixed by the supersaturation fol-
lowing Ivantsov's relation. As a consequence the ampli-
tude of the dipole, in physical units, is given by

r DPeD
(6. l)

P
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FIG. 5. Radius of curvature p of the 2D needle crystal select-
ed by dipolar perturbation vs the position d of the dipole. The
two-sided model of solidification is assumed. The unit of length
is do /Pe. X, a' = 2; ~, a' =20; 1,a' =200.

where D is the space dimension. This last formula allows
a realistic evaluation: let us assume that the size of the
perturbed area is ten times smaller than the typical length
of a dendrite, that is, 1 pm; the Pe number in 2D is rather
small, of order 10, proportional to b, (this number is a
little larger in 3D, roughly proportional to 5 [9]; and the
capillary length is of order 10—100 A. A realistic dimen-
sionless value of the dipole amplitude seems to be of or-
der several hundred in 2D, depending on the experiment,
and in 3D one or two orders of magnitude greater. In
Fig. 5 (Fig. 6) we plot the selected radius of curvature in
2D (3D) versus the distance d from the tip of the dipole.
Note that the selected value has the same order of magni-
tude as usually observed in dendritic growth. In these
units,

4 do
psym + p+sym

With, for example, o. =0.011 for succinonitrile material,
this gives

p, =400 .

For the one-sided solutal dendritic growth, the radius of
curvature is divided by 2.

As shown by Figs. 5 and 6, in the range of accessible
numerical values, it turns out that this radius is propor-
tional to the distance that separates the dipole from the
tip at fixed amplitude. The dendrite becomes more and
more sharp-pointed when the amplitude of the perturba-

1000—

500—

I I i I i I i l

200 400 600

FIG. 6. Radius of curvature p of the 3D needle crystal select-
ed by dipolar perturbation vs the position d of the dipole. The
two-sided model of solidification is assumed. The unit of length
is do/Pe. &, a'=200; ~, a'=20000, $, a'=200000.

0
0 800 1000 1200

tion is increased and also when the position of the dipole
is closer to the tip. Finally, one can notice that this result
is somewhat different from the conclusion derived in the
Saffman-Taylor case. In viscous fingering with a bubble,
Thome, Combescot, and Couder [7] concluded that the
final selected k relative width of the finger is such that
there is a complete collapse between singularities of the
Saffman-Taylor velocity field and the dipole position.
This collapse allows a very easy determination of A, which
is independent of the amplitude of the fictitious dipole
and also of the size of the bubble. This was in agreement
with the experimental measurements. If one keeps this
very nice and simple picture, in our language it will mean
that the radius of curvature of the dendrite is simply —', d,
whatever the value of the dipole amplitude. Figures 5
and 6 prove without any ambiguity that this is not the
case since a sharp dependence with amplitude is ob-
served. So the dendritic growth appears to be a more
complicated example for testing a singularity in real
space. Nevertheless, our results show the importance of
static and localized perturbations in crystal growth as far
as selection mechanism is involved.

Let us discuss now the selection with both anisotropy
of surface tension and dipole perturbation. Since both
effects can be responsible for selection, there is a nontrivi-
al competition between them which makes the final result
difficult to predict. Nevertheless, when the dipole is far
away from the tip, we expect the selection to be produced
by the anisotropy of surface tension which fixes the ra-
dius of curvature of the dendrite p», s When the distance
of the dipole from the tip becomes of order of this value

p,„;„selected values of o. and p will be changed. We ex-
pect that for the "good sign" of the dipole which has al-
ways been considered in this paper (which means a posi-
tive in our terms), the dendrite would be sharper, so p
would decrease with an increase of o. and growth veloci-
ty. These qualitative predictions are confirmed by
numerics as shown in Figs. 7 (for 2D) and 8 (for 3D),
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FIG. 7. Radius of curvature p of the 2D needle-crystal select-
ed by dipolar perturbation vs the position d of the dipole for
two different values of anisotropy of surface tension @=0.083,
@=0.375. The two-sided model of solidification is assumed.
The unit of length is the value of p selected by anisotropy with
0.,*„=0.014 for a=0.083 and o.,„=0.091 for a=0.375. For
E=0.083, $ a'= 2, ~; a'= 200. For a=0. 375, 0, a' =2;
n' =200.

FIG. 8. Radius of curvature p of the 3D needle crystal select-
ed by dipolar perturbation vs the position d of the dipole for
two different values of anisotropy of surface tension @=0.083
@=0.375. The two sided model of solidification is assumed.
The unit of length is the value of p selected by anisotropy with
o.,„=0.011 for @=0.083, and o.,*„=0.053 for @=0.375. For
E=0.083, t, a' =200; ~, a' =20 000. For e =0.375, 0, a' =200;

, a'=20000.

where the calculations assume the anisotropy value of
succinonitrile (a=0.083) and of pivalic acid (@=0.375).
The reader can expect that, for smaller values of anisotro-
py, the effect of dipolar perturbation will be stronger. On
the contrary, for larger values of anisotropy, such as for
pivalic acid, the dipolar perturbations would be
ineffective except in the very close vicinity of the tip.
This is not true, as shown by Figs. 7 and 8. When the di-
polar perturbation is weak, its inAuence on o * is weak, of
course, and quite independent of the anisotropy values.
On the contrary, when it increases, anisotropic materials
appear to be more sensitive. This astonishing result is
due to the fact that the efficient amplitude of the dipole
increases when the "natural" tip radius of the dendrite
decreases and when the anisotropy of surface tension in-
creases. Note that these conclusions will be reversed in
the case where the sign of the dipole will be changed too.
This can happen by a physical effect not involved here.
We can conclude that most of the axial perturbations will
be responsible for a too large measurement of the con-
stant of stability o.*, when compared to values deduced
from anisotropy of surface tension.

turbations always present in laboratory experiments. It
also stresses the difficulty of testing the solvability mecha-
nism by anisotropy of surface tension. Due to this
difFiculty, contradictory points of view appear in the
literature. The main difficulty remains the precise deter-
mination of the properties of the concerned materials. It
is why an attempt has been made for precise measure-
ments of the anisotropy of surface tension for succinoni-
trile and pivalic acid [4]. Nevertheless, a certain
discrepancy remains, which is probably due to the
difficulty of treating in the theoretical treatment all per-
turbations which cannot be avoided in a real experiment.
We simply show here that a static dipole in the dendrite
frame can be responsible of the factor of 2 or 3 which
separate measurements from theoretical predictions.
This is only a model which shows the extreme sensitivity
of the selection mechanism. This paper confirms that it is
possible to act on fronts of solidification, at distances and
without touching it.
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