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Interface dynamics and banding in rapid solidification
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Rapid-solidification experiments on metallic alloys in the last decade have provided widespread
observations of a novel "banded structure. " We report the results of numerical and analytical studies
of the interface dynamics underlying the formation of this structure in a model of directional solidifi-
cation which includes both solute and heat diffusion and nonequilibrium eQ'ects. The thrust of these
studies is on the unsteady dynamics of the planar interface and thermal effects. The main conclusion
is that the origin of banding can be related to relaxation oscillations of the solidification front, char-
acterized by large variations of the interface velocity, which are dramatically affected by latent-heat
diffusion. Without the latter, the oscillations are found to be reasonably well approximated by the
phenomenological model of Carrard et aL [Acta Metall. 40, 983 (1992)], and the band spacing is
inversely proportional to the temperature gradient. In contrast, with latent-heat diffusion the band
spacing is insensitive to the temperature gradient, but is controlled instead by the interplay of solute
and heat diR'usion. The smallness of the solutal diR'usivity to thermal diffusivity ratio is exploited to
explain analytically this effect and to derive considerably simpler equations of interface motion that
provide an efBcient numerical means to study the nonplanar interface dynamics expected to cause
dark bands. A reasonable agreement with experiment is found for the spacing of banded structures
dominated by light-band microsegregation-free regions in Al-Fe alloys.

PACS number(s): 61.50.Cj, 05.70.Ln, 64.70.Dv, 81.30.Fb

I. INTRODUCTION

During the last decade, a major research effort has
been aimed at developing a fundamental understanding
of a wide range of interfacial pattern formation phe-
nomena in crystal growth [1—3]. So far, the classic
dendritic, cellular, and lamellar eutectic microstructures
studied experimentally in transparent organic materials
and metallic alloys under sloto-soEidification conditions
(with growth rates ~ pm/sec) have been the primary fo-
cus of theoretical investigation. More recently, there has
been a growing interest in characterizing the microstruc-
ture of alloys, which, in contrast, are produced under
rapid-solidification (RS) conditions (with growth rates

cm/sec —m/s) by a variety of techniques ranging from
laser or electron-beam surface remelting, melt spinning,
and atomization [3].

Perhaps one of the most surprising observations that
has come out of RS experiments, from a microstructural
standpoint, is that of the so-called "banded structure"
composed of alternating light and dark bands lying par-
allel to the solidification front (Fig. 1). First observed
as an isolated phenomenon about one decade ago [4],
this structure has since then been found to be a com-
mon microstructural characteristic of many alloys solidi-
fied under growth conditions that approach absolute sta-
bility [5]. Moreover, detailed experimental studies in Ag-
Cu [6], Al-Cu [7], and Al-Fe [8] have shown that the
dark bands have a precipitate structure, either cellular-
dendritic or eutectic, depending on the alloy composi-
tion, which is similar to the precipitate structure ob-
served at lower growth rate preceding the appearance of
the banded structure. In contrast, the light bands have

a microsegregation-free structure similar to the one ob-
served at larger growth rate following the disappearance
of the banded structure. Also, although typically ob-
served to be nearly regular, the banded structure has
occasionally been found to be highly irregular [8], or
observed, in transverse sections, to form a spiral-shape
"swirling structure" [9] with a wavelength equal to the
band spacing.
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FIG. 1. Schematic drawing of the banded structure. The
z and x axes are respectively parallel to the growth direction
and to the solidification front.
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According to the classic Mullins-Sekerka (MS) linear
stability analysis of the planar interface [10], one would
have expected a cellular-array structure to form, at veloc-
ities just below the absolute stability limit, VAs, beyond
which the planar interface is completely stable, and a
planar interface leading to a microsegregation-free struc-
ture at velocities above UAs. This type of scenario has
actually been observed in sufficiently dilute Ag-Cu alloys
by Boettinger et aL [6], but at larger compositions of
Cu it is the banded structure that was observed instead,
comprised for a range of growth rate between cellular and
microsegregation-free solidification. In several other al-
loys such as Al-Fe the banded structure persists at even
more dilute alloy compositions [8].

An important clue as to why the MS analysis fails to
signal the appearance of banding was provided by Coriell
and Sekerka (CS), who redid the analysis incorporating
nonequilibrium effects to account for the fact that the
assumption of local thermodynamic equilibrium at the
interface breaks down at large solidification rate [ll]. In
particular, they introduced a velocity-dependent segre-
gation coefficient k(u) and identified a novel instability,
driven by solute trapping, with a new absolute stabil-
ity limit V~s that is comparable in magnitude but larger
than the old absolute stability limit of the MS analysis.

As CS showed, this instability is a longwavelength
oscillatory instability that should lead, for velocities
slightly less than VAs, to transverse (perpendicular to
the growth direction) cellularlike spatial inhomogeneities
of concentration with periodic variations in time. These
inhomogeneities —although probably occurring but not
visualizable in micrographs because they are not suffi-
ciently large to cause the precipitation of a "dark" impu-
rity reach phase do not account directly for the banded
structure, which, in contrast, is characterized by an alter-
nation of structure along the growth direction. However,
for velocities below a second threshold V, less than VAs,
the zero wave number (planar part) of the CS stability
spectrum becomes unstable, together with other, already
unstable, finite-wave-number instabilities. It is this pla-
nar instability that is most relevant to banding and, as
was found recently [12], triggers relaxation oscillations of
the solidification front.

The conjecture that a planar instability could set up re-
laxation oscillations that would account for banding was
proposed earlier by Merchant and Davis [13] in the con-
text of a linear stability analysis of a closely related model
of rapid solidi6cation, which is based on the so-called
"frozen-temperature approximation" (FTA). In this ap-
proximation, latent-heat difFusion (LHD) is neglected
and the temperature field is approximated by a mov-
ing temperature gradient. The planar instability of this
model has the same physical origin (solute trapping) as
the CS instability, which, as a consequence of the FTA,
becomes shifted to zero wave number at VAs. Recent an-
alytical [14] and numerical studies [15] of the same model
have also found relaxation oscillations. However, generi-
cally, these are dramatically altered by LHD [12] and, for
this reason, cannot be used as a basis for a quantitative
characterization of banding.

Recently, Carrard, Gremaud, Zimmermann, and Kurz

(CGZK) [8, 16] have proposed a phenomenological model
of banding, based on periodic instabilities of the growth
velocity. In this model, cyclic interface motion occurs be-
tween two stable (cellular-dendritic and planar) branches
of an S-shaped T(V) curve corresponding to the temper-
ature of the steady-state solidification front. This cyclic
motion occurs whenever the isotherm velocity Vo drives
the solidification front at a velocity that falls on a mid-
dle unstable branch of the T(V) curve. The instability
of this branch is directly related to the aforementioned
planar instability. This model has two main advantages.
Firstly, it accounts for the formation of alternate dark
(left branch) and light bands (right branch). Secondly, it
allows one to make quantitative predictions of the light
and dark band spacings Ai;zh& and Ag«k (and the total
band spacing A = Ai;si, q + A~«g). However, this model
has two limitations. Firstly, it is mainly phenomenologi-
cal and thus it needs to be examined further to determine
if it actually describes the dynamical behavior of the un-
derlying equations of interface motion; and, secondly, it
relies on the FTA.

A similar idea of explaining banding in terms of a cyclic
interface motion was proposed previously by Aziz [17].
In contrast to the CGZK model, his explanation was
based on cycles in the temperature-concentration (T-X)
plane that should occur when a tie line connects a kinetic
solidus with a kinetic liquidus having opposite slopes.
There is the interesting possibility that such cycles could
also yield bands. However, it should be noted that such
an explanation does not apply to dilute alloy composi-
tions where bands are also observed.

The primary goal of the present paper is to investigate
the nature of the dynamical mechanism underlying the
formation of the banded structure. It has been geared to-
wards providing at least partial answers to the following
questions:

(1) Does the planar instability actually lead in a non-
linear regime to time-periodic changes in velocity that
can account for the formation of bands?

(2) To what extent are these changes described by the
CGZK model?

(3) What is the role of LHD?
(4) What are the dominant physical factors that con-

trol the band spacing?
A brief summary of our results has been published ear-

lier [12], and we give here a more detailed exposition that
includes additional results and new analyses. The outline
of the paper is as follows. In Sec. II, we write down the
basic equations of the model and briefiy discuss some of
its limitations. This model is essentially an extension of
the one-sided model of the directional solidification [18],
which includes LHD and the same nonequilibrium effects
considered in the CGZK model and in Refs. [13], [14], and
[15]. These corrections include a velocity-dependent seg-
regation coefficient following a model of Aziz and Kaplan
[19], the effect of attachment kinetics, and a velocity-
dependent liquidus following a thermodynamically con-
sistent model derived by Boettinger and Coriell [20].

Next, we provide in Sec. III a linear stability analy-
sis of the model and present results for Al-Fe and Al-Cu
alloys. The purpose of this analysis is essentially to pin-
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II. BASIC EQUATIONS

Most theoretical investigations to date of sloio direc-
tional solidification have been conducted in the so-called
one-sided model in which impurity diffusion in the solid
phase is neglected. This model is usually used in con-
junction with the aforementioned FTA for the thermal
field,

T = G(z —Vot),

which neglects LHD. This approximation is accurate at
a small growth rate since the heat flux generated by la-
tent heat at the moving interface is much smaller than
the heat flux generated by the externally imposed tem-
perature gradient. However, as will be explained later,
latent heat turns out to play a crucial role in banding
and, for simplicity, we incorporate its effect here using
a symmetric model for the temperature field in which
the thermal conductivities are taken to be equal in the
solid and liquid phases. The basic equations of interface
motion then consist of the usual difFusion equations, in
a frame moving with the isotherm velocity Vo, and the
conservation of impurity and heat at the interface:

BC BC
=Vo +Dc' C, (1)Bt Bz

BT BT
=Vo +Dr 7 T,

Bt Bz

CL, (1 —k) n„= Dc;—BC
(3)

Bfl

(4)

(2)

point more precisely the role of LHD and to determine
the neutral stability boundary of the planar instability.
The latter determines regions of the composition-velocity
plane where banding should occur.

In Sec. IV, we recast the equations of interface mo-
tion in a boundary integral form, which serves as a basis
for the numerics and for the small solute to thermal dif-
fusivity ratio (Lewis number) analysis presented in Sec.
V. There, we derive a "reduced-temperature equation"
(RTE), which is used in Sec. VI to understand analyt-
ically the efFect of LHD and is shown to lead to con-
siderably more eKcient numerics, both in one and two
dimensions.

Next, in Sec. VI, we investigate numerically the dy-
namics of the planar interface and its implications for
banding. Details of the numerics are presented and the
numerical advantage of the RTE in both one dimension
(1D) and 2D is discussed. Cycles computed using the
FTA are then compared to the cycles predicted by the
CGZK model. The role of LHD is then explored by
studying how the cyclic motion of the interface becomes
modified by its inclusion. A simple analytical theory that
explains why this role is quantitatively important is pre-
sented. The cycles calculated with LHD are then used
together with earlier results of linear stability to inter-
pret the banded structure. Finally, conclusions are given
in Sec. VII.

together with the Gibbs-Thomson condition at the inter-
face modified to include nonequilibrium corrections

ATM v
T, = TM + mCL, —I'~— (5)

BT+ = G+exp! — z !,(Vol
Dz )'S=+OO

C(z —+ +oo) = C (9)

where C~ is the nominal composition of the alloy and the
+ and —signs refer to the liquid and solid phases, respec-
tively. The boundary conditions on the thermal field are
consistent with exponentially decaying steady-state tem-
perature profiles moving at the uniform isotherm velocity
Vo. The overall conservation of heat condition leads to
the relation G = G+ + (I/c„)Vo. It should be em-
phasized that the two control parameters of the models
are G+ and Vo, which enter via the boundary condition
of the far thermal field. Equations (1)—(9) completely
specify the dynamics of the solid-liquid interface for the
model.

Additional remarks concerning the quantitative valid-
ity of the model and its relevance to rapid solidification
experiments should be made:

The last term on the right-hand side (RHS) of Eq. (5)
represents the effect of attachment kinetics where v* is a
kinetic parameter on the order of the velocity of sound in
metals. This term is usually negligible under slow solidi-
fication conditions but becomes significant at velocities of
the order of m/s. Here, D~ and D~ denote, respectively,
the solutal and thermal diffusivities, c& the specific heat
at constant pressure, L the latent heat of fusion, TM the
temperature of melting, and I' the surface tension.

There are two other related nonequilibrium corrections
that we take into account in the present model. The
first is the effect of solute trapping, which we incorpo-
rate using the form derived by Aziz and Kaplan [19],and
Jackson, Gilmer, and Leamy [22], and investigated ex-
perimentally by Aziz et al. [21]:

kg + v~/vd
1 + 'U~/Vd

where vg is a kinetic parameter. It rejects the fact that,
as the interface advances more rapidly, it tends to trap
more impurities into the solid phase, thereby leading to
a value of the segregation coefficient k larger than its
equilibrium value k, . This velocity-dependent form of k
afFeets the conservation of impurity condition (3). The
second is a velocity-dependent form of the liquidus slope
m entering Eq. (5):

k, —k (1 —ink/k, )m —mg 1+
1 —k,

which follows from the thermodynamically consistent in-
terface condition developed by Boettinger and Coriell [20]
based on an earlier model of Baker and Cahn [23].

Finally, directional solidification conditions are im-
posed via the boundary conditions on the temperature
and concentration fields at infinity:
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(i) The velocity-dependent form of k has been found
by Aziz et at. [21] to hold relatively well for some alloys
where experimental values of vg were determined. How-
ever, quantitative values of vp for alloys where banding
has been studied in detail (Al-Fe, Al-Cu, and Ag-Cu) are
presently not available. The same is true of the kinetic
parameter v' entering the term representing attachment
kinetics. We are therefore forced at present to use esti-
mates of vg and v*.

(ii) In slow Bridgman-type directional solidification ex-
periments, the values of the control parameter Vp and
G+ are simply related to the pulling speed of the sam-
ple and the imposed gradient. In laser or electron-beam
surface remelting experiment, the velocity of the solidifi-
cation front (and hence the Vp) is determined indirectly
using the geometrical relation Vp = Vbcos8 [6—8], where
Vb is the beam velocity parallel to the surface and 8 is
the angle between the local orientation of the solidifi-
cation front and the surface. In contrast to Bridgman-
type experiments, Vp does not remain constant but varies
from zero, at the bottom of the remelted zone, to several
m/sec at the surface. Modeling such a situation by direc-
tional solidification implicitly assumes that Vp varies suf-
ficiently slowly, on the time scale where the microstruc-
ture is formed, to be assumed constant.

(iii) The value of the temperature gradient G at the
interface cannot be measured directly and has to be in-
ferred indirectly via a macroscopic heat flow calculation
[16]. This leads to an additional uncertainty in this con-
trol parameter. Interestingly, the interface dynamics re-
sponsible for banding turns out not to be very sensitive
to this parameter.

(iv) Using continuum equations of the form (1)—(4)
implicitly assumes that the solid-liquid interface can be
treated as a sharp interface. This assumption is strictly
valid only when the "instantaneous" solutal diffusion
length t~(t) = D~/V(t) is much larger than the inter-
face thickness 6 ~ 1 nm. For the velocity range between
0.1—10 m/s, where the banding cycle typically occurs, l~
can become comparable to or even smaller than 6 on the
high-velocity end of this range. At this point, the con-
cept of diffusion and the use of the continuum equation
breaks down. As a compensating factor, there is the fact
that at velocities where this breakdown occurs, the par
tition coefBcient is near unity and solidification becomes
essentially diffusionless.

In summary, using the present model of rapid direc-
tional solidification, we expect to be able to understand
essential features of the interfacial dynamics responsible
for banding. However, the accuracy of quantitative pre-
dictions is mainly limited by the present uncertainties in
nonequilibrium corrections.

III. LINEAR STABILITY'

A. Eigenvalue equation

The one-dimensional steady-state diffusion profiles,
corresponding to a planar interface moving at constant
velocity Vp, are given by the usual exponentially decaying
forms:

C(x, z, t) = Css(z)+6Cexp
~

i x —kz+cut ~, (14)

where k+ and k are related to A and ~ via the diffusion
equations (1) and (2). After straightforward algebraic
manipulations we obtain the eigenvalue equation for the
growth rate u(A). We express this equation in terms
of the dimensionless growth rate 0 and wave number q
defined, respectively, by

n = (2D~/Vp')~

q = (2D~/Vp)2vr/A.

The relation between 0 and q is then given by

1+ [1+n(1 —k) —P —c /2]A

(1 —2k) —p(1 —2k) q
1 2

2v(A)

—
~

1 — —pq + —0
~

gl+20+q'=0n i
2v(A) 2

where v(O) is defined by

l1 L k ( Le+0Ie +1
I

v(A) c„mCp(1—k) (QLe2 + 2flLe + q2 r
2D~ G+k

Vp (1 —k)mCp
' (16)

and a, P, and p are velocity-dependent functions defined
by

Vp dk

(1 —k) dVp'

Dz ~ f Vpss()= G 1 expl zl +T
Vp . ( Dr r

Css(z) = C~
I

1
~
exp

I D
z

I
+C~ (11)

( V. )

where, as before, the + and —signs refer to the liquid
and solid phases, respectively, G = G++ (L/cr )Vp, and
Tp is the velocity-dependent steady-state temperature of
the planar interface determined by the modified Gibbs-
Thomson relation (5) with Cr, = C~/k(Vp):

Tp = Tpi(Vp) = TM + m(Vp)C /k(Vp)
RTM Vp

(12)

The stability spectrum of the planar interface is then
obtained by the standard procedure, which consists in
linearizing the equations of motion and interface bound-
ary conditions around the steady-state profiles [(10) and
(ll)] for sinusoidal perturbations of the form

T(x, z, t) = T+ (z) + 6T exp
~

i x p k+z + u)t ~,
(.2~

SS
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P ink/k,
(1 —k, ) rn/m,

rv,
4D~ ~Cp(1 —k)

k RTM Vp

(1 —k)mt p I v''
tion spectrum (FTAS) derived previously by Merchant
and Davis, which neglects LHD [13].

(iii) The third spectrum is the "full spectrum" (FS)
defined by Eq. (15) together with definitions (16)—(19),

Here, Le is the Lewis number

Le = Da
T

The coupling between the thermal and concentration
fields enters the eigenvalue equation (15) via the func-
tion v(A) and nonequilibrium effects via the functions n
and P.

0 4 I 1 I
i

I I I
i

I I I
i

I I I
i

I

—
(a)

0.2

0.0

B. Physical interpretation

There are three essential physical effects that together
determine the shape of the stability spectrum A(q) of the
planar interface:

(i) The classic MS instability, which, in slow direc-
tional solidification, occurs near constitutional supercool-
ing, and, near absolute stability, occurs with decreasing
velocity. It results from the competition between the
destabilizing effect of the diffusion field and the restabi-
lizing effect of surface tension.

(ii) The CS instability, which originates from the desta-
bilizing effect of solute trapping. Without I HD this in-
stability is most unstable at q = 0.

(iii) The effect of LHD, which strongly reduces the am-
plification rate of a very narrow range of wave number
near q = 0 and shifts the CS instability to small wave
number at absolute stability.

To illustrate how these three effects together shape the
stability spectrum, we have found it more illuminating to
compare three stability spectra, each spectrum incorpo-
rating progressively one more of the above three effects:

(i) The first spectrum, which only contains the first
effect, is obtained by setting

CD

G$
CC

O
(3

-0.2

-0.4
0.0

Q 4

0.2

0.0
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-Q 4
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Wave number q
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Wave number q
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n = P = Le = 0 (MMSS)
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l
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i
I I I

J
I I I

i
I I I

Q A

into Eqs. (15) and (16). It does not include the effect
of LHD, since taking the limit Le = 0 essentially corre-
sponds to having the thermal Beld relax instantaneously
(i.e. , DT —+ oo). Also, it only contains nonequilibrium
effects to the extent that nonequilibrium values of m and
A: are used. With equilibrium values m, and k„this
spectrum is identical to that of the classical MS analysis.
We refer hereafter to this spectrum as the modified MS
spectrum (MMSS). It is also nearly identical to the one
developed by Trivedi and Kurz [24] for rapid solidifica-
tion, with the minor difference that it does not contain
the quasistationary approximation. This difference af-
fects mainly the small-wave-number part of the spectrum
that is stable in this approximation.

(ii) The second spectrum, which contains both the first
and second effects, is obtained by setting only

Le = 0 (FTAS)

into Eq. (16). This is the frozen-temperature approxima-

Q)

05
CC

o

0.2

0.0

-0.2

-0.4
0.0 0.2 0.4 0.6

Wave number q

0.8 1.0

FIG. 2. Real part of A(q) corresponding to the most
unstable branch of (a) the modified Mullins-Sekerka spec-
trum (MMSS) [24], (b) the frozen-temperature-approximation
spectrum (FTAS) [13], and (c) the full spectrum (FS), for a
2% wt Fe Al-Fe alloy.
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TABLE I. Physical constants used for Al-Fe. 0 4

Constant

TM
I
Cp

SAN

Dc
DT
v

V8
g+

Value

933 K
10470 J/mol
30 J/mol K

0.037
—3.5 K/wt%

1.7 x 10 s m2/s
535x10 m /s

2000 m/s
1.7 m/s '

5x10 K/m

CD

G$

CC

O
(3

0.2

0.0

-0.2—
0.10

0.00

V =0.5 m/s0

I a I, I

0.02 0.04 0.06 0.08 0.10

~ 4 I I I I I I I I I I I I I I I I-0.
Average value of solid and liquid dift'usivities.

Values used in Ref. [16].
0.0 0.2 0.4 0.6 0.8

Wave number q

1.0

TABLE II. Physical constants used for Al-Cu.

Constant Value

which incorporates all three effects.
The real part of A(q) for the MMSS, FTA, and the

FS, is plotted respectively in Figs. 2(a)—2(c) for three
different velocities. The physical constants used in the
present calculations are given in Tables I and II. On.'y
the real part of the most unstable branch is shown, and
the imaginary part is not displayed for clarity. The merg-
ing of complex conjugate pairs of roots into one real one
is responsible for the presence of cusps in the real part
of the spectra. A comparison of the FTA and FS at
Vo = 0.5 m/s is presented in Fig. 3. The first effect (MS
instability) is clearly seen in Fig. 2(a). As the velocity
is decreased below the absolute stability limit (equal to
Vo =0.87 m/s for the MMSS), a finite band of wave num-
ber q becomes unstable. The small-wave-number part of
the spectrum is stable, but with a very small negative
real part, which scales as 1/v && 1 for Le = 0.

The second effect (CS instability) is clearly seen in Fig.
2(b). At Vo = 0.9 m/s, where the MMSS is completely
stable, the FTA has a band of unstable wave number
with the fastest growing mode at q = 0. This mode
only becomes restabilized at a higher velocity Vo 3
m/s [not shown in Fig. 2(b)], which constitutes a new
absolute stability limit. As the velocity is decreased, the
MS instability increases and eventually dominates the

4
(a)

AIF

C =0.31
E

C =0.03.:
O
CD

0
0.0 0.5 & .0

Concentration (wt %)

*c= .

4

C =0.18

.:(::;:"';:;,".',:,';.':"".-:;:;~:;,.~,:„'~"',:mi:"' . ~'";:-;,;- -.;:

AICU

E 3

0
2O

CD)

FIG. 3. Comparison of the FTAS [13] and FS.

2.0

TM
I
Qp

7?lg

Dc
DT
v

Vg
G+

933 K
10470 J/mol
30 J/mol K

0.14
—2.6 K/wt %

49x10 m /s
535x10 m /s

1000 m/s
4.9 m/s

5x10 K/m

Average value of solid and liquid diffusivities.
Values used in Ref. [16].

0
0 2

Concentration (wt %)
FIG. 4. Neutral stability boundaries of the q = 0 planar

instability: (a) Al-Fe, and (b) Al-Cu. The light and dark
shaded regions correspond to unstable regions, as predicted
respectively by the FTAS [13] (light) and FS (dark). The up-
per neutral stability boundary of the planar instability for the
FTAS also corresponds to the absolute stability limit of the
FS. C indicates the lower critical composition below which
banding should not occur. Note that C* is underestimated
by the FTAS.
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q = 0 instability. This crossover is shown in Fig. 2(b),
where at Vo = 0.5 m/s, the MS instability dominates the
q = 0 instability (i.e. , it has a larger amplification rate),
while at Vc = 0.9 m/s it is the q = 0 instability that
dominates.

The last effect (LHD) is shown in Figs. 2(c) and 3.
The very-small-wave-number part of the FTA is strongly
restabilized by the effect of LHD. Consequently, the CS
instability becomes shifted to a small finite wave num-
ber. This is clearly seen in the FS at Vo = 0.9 m/s in
Fig. 2(c), where the most unstable mode is at a q slightly
less than 0.1, in contrast to q = 0 in Fig. 2(b). As be-
fore, the CS instability becomes restabilized at a new
absolute stability limit Vo 3 m/s, and, with decreasing
velocity, the wave number of the most unstable modes in-
creases abruptly as a consequence of the crossover from
the CS instability to the MS instability. Figure 3 has
been included to illustrate the fact that latent-heat diffu-
sion only affects the very-small-wave-number part of the
FTA. This feature is a direct consequence of the small-
ness of the Lewis number and is explored further at the
end of Sec. V.

The most relevant consequence of the effect of LHD
on banding, as seen from linear stability analysis, is the
reduction of the parameter range where banding should
occur. We see in Figs. 4(a) and 4(b) that the domains
of the composition-velocity plane where the planar insta-
bility, assumed to trigger banding, occurs is dramatically
reduced by LHD. In particular, the FTA grossly under-
estimates the critical alloy composition C* below which

banding should be absent. In Al-Cu Zimmermann, Car-
rard, and Kurz [7] still observe bands at 3 wt% Cu but
not at 1 wt% Cu. The value C' 2 wt% determined
with LHD is therefore in good agreement with these ob-
servations. In Al-Fe, bands have been observed to per-
sist down to compositions as small as 0.25 wt%Fe [8]
while we predict here bands not to form below C' 0.3
wt% Fe. Note that this value is only slightly larger than
0.25 wt% Fe.

Finally, we note that the absolute stability limit VAs
with and without LHD is the same (see the end of Sec.
V). The only difference is the value of the critical wave
number, which is shifted to a finite value with latent-heat
difFusion. Consequently, the upper stability boundary of
the q = 0 mode for the FTAS in Figs. 4(a) and 4(b) also
corresponds to the absolute stability limit of the FS.

IV. BOUNDARY INTEGRAL FORMULATION

To investigate the nonlinear dynamics of our model,
we recast the equations of interface motion in the form of
coupled integral equations for the composition and ther-
mal fields using the standard Green's-function approach
[25, 26].

A. Two dimensions

For a general nonplanar interface in two dimensions
these equations take the form

t
dt' dx'CI, GzD(6(, Ax; Et)

(t') 2 t
0(' Ax 8('
Bx' 24t Bt'

dx'dz'GzD (( —z', Ax; t)C(x', z', 0),

I
T, = —Le

cp

g I

dx'GzD(v'LeA(, v LeAx; At), + Le
(t') Bt' (0)

dx'dz'G2D (v Le [( —z'], v LeAx; t)T(x', z', 0),

(21)

where the 2D diffusion Greens function is given by

1 ( u'+ U'l
GzD(u, v;7-) = e~p I—

4~D~~ q 4D~~ y
(22)

Q( = ( —g', 4x—:x —x', and Dt—:t —t'. These equa-
tions completely determine the motion of the interface
together with the modified Gibbs-Thomson condition (5)
which relates CL, and T;.

Here, C(x, z, 0) and T(x, z, 0) are, respectively, the ini-
tial concentration and temperature profiles, S(t) denotes
the interface profile at time t, and ((x, t) measures the
verf;ical interface displacement in the z direction in a
stationary frame. We have also defined ('—:('(x', t'),

I

B. One dimension

For a planar interface in one dimension the boundary
integral equations are reduced after integration over x'
to the form

Cl (t)
2

dz'C(z', 0)G, (g(t) —z'; t) + (t) ~

-~() ~( ) —k(t') ~( ) ~G, (
q2 t —t' dt' )

(23)

T;(t) = v Le dz'T(z', 0)GiD(v Le[((t) —z']; t) + —v «
Cp

G1D(v Le[4(t) ~(t )] t t )
, dg(t')
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where the interface position ((t) is now independent of x
and the 1D difFusion Green's function is given by

1 ( u~
Gio(u; r) = exp ~—

4~Der ( 4Dcr (25)

Both for the numerics and for the small Lewis num-
ber analysis, it is useful to rewrite the first integral on
the RHS of Eq. (24) by choosing the initial temperature
profile T(z', 0) equal to the steady-state profile Tss(z')
[Eq. (10)]. This choice of initial condition is not limiting
since we are interested here in following the evolution
of a perturbed planar interface into nonlinear regimes.
The nonlinear cycles of oscillations of the planar inter-

I

face are independent of the initial profiles at sufFiciently
large times.

Substituting T(z', 0) = Tss(z') into Eq. (24) (where
the —and + signs refer respectively to the interval

[
—oo, 0] and [0, oo]) and using the identity

( [((t) -z]' V. ,l
&4 D t-P

&
4D~t

= exp
(

— [((t) —V t] I (26)
l( Vp

Dz

we find after simple manipulation that the integral equa-
tion for the temperature field can be rewritten in the
form:

T,(t) —Tp = G+ 1 —exp — [((t) —Vpt] ~
+ —V Le+D~ Vp

Vp D~ c
dz'Giii(v Le[((t) —z']; t) 1 —exp — z'

~D&

L~—&Le (27)

V. SMALL LEWIS NUMBER LIMIT:
DERIVATION OF A REDUCED
TEMPERATURE EQUATION

limit. At leading order in Le, the second and third terms
on the RHS of Eq. (27) drop out. The equation for the
temperature field becomes simply

There are three essential reasons that render the anal-
ysis of the small Lewis number limit particularly relevant
here:

(i) In metallic alloys, the Lewis number is typically on
the order of 10 and can therefore be treated as a small
parameter.

(ii) In this limit the integral equation for the tempera-
ture field can be rewritten in the form of a reduced tem-
perature equation (RTE) corresponding to the first two
leading terms in an asymptotic expansion in Le of the
boundary integral for the thermal field. This form is nu-
merically simpler to handle but remains quantitatively
accurate. In the 2D case, describing nonplanar dynam-
ics, the RTE takes the form of a one-dimensional inte-
gral equation only involving a spatial average over the
interface velocity 8(/Bt. This renders the 2D problem
considerably more tractable numerically.

(iii) The RTE provides a basis for an analytical under-
standing of the role of latent heat diffusion, which plays
a crucial role in banding (Sec. VIC 1).

We first give a formal derivation of the RTE for the
one-dimensional case of primary interest here. We then
provide an alternate derivation based on scaling argu-
ments, which provides a better physical understanding
of this equation; and write down an equivalent Fourier
series representation, which leads to more efFicient nu-
merics. Finally, we provide a derivation for the 2D case.

A. One dimension

T, (t) —Tp ——G
~

1 —exp
+Dz (

Vp D [((t) —«]
lDz

(28)

At this order, we recover the frozen-temperature approxi-
mation (FTA) mentioned earlier, which neglects entirely
the eKect of LHD. For ((t) —Vpt (& Dz/Vp, Eq. (28)
reduces to the more familiar form of the FTA

T'(t) —T = G'[((t) —V.tl (29)

( (/tc
z ~ z/lc,«/r .

which assumes motion in a straight temperature profile.
Next, we evaluate the erst contribution beyond leading

order in Le (i.e. , beyond the FTA) originating from the
second and third terms on the RHS of Eq. (27). To make
the small parameter Le appear explicitly it is useful to
scale spatial coordinates by the solutal diffusion length
tc = Dc/Vp and time in units of the solutal difFusion
time I'c = Dc/Vp using the substitutions

The reason for rewriting Eq. (24) in the form of Eq.
(27) becomes apparent when considering the small Le

After performing these scale transformations, Eq. (27)
becomes
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T, (t) —Tp ——G —(1 —exp (—Le [((t) —t])) + —/Le] I
Le cp

+—v'Le, exp
~

—Le
I. ' Ch' d((t') (

( ) dt'

dz' t' [((t) —z'] )
exp

(

—Le
[ [1 —exp( —Lez')]

/4~h q 4h

[((h) —((h ) l

4' t —t' 4(t —h')
(31)

where we have defined the scaled temperature gradient
G+ = G+D~/Vp. The dominant contribution of the last
term on the RHS of Eq. (31) becomes

I—v'Le
Cp

dt' d((t')
/4vr (t —t') dt ' (32)

Le—[((t)—
4S

which comes from replacing the exponential factor by
unity. Here the ellipsis denotes higher-order corrections
in Le. In the second term on the RHS of Eq. (31),
the space integral over z' runs over the interval [

—oo, 0],
and the exponential factors cannot simply be replaced
by unity. To extract the dominant contribution of this
integral, we make the change of variable

((t) = Vpt (39)

B. Alternate derivation

We include here an alternate derivation of the RTE
based on scaling arguments, which provides more physi-
cal insight into its origin and thermal effects in general.
This derivation starts by noting that the scale (7 on
which the temperature profile is perturbed during the
oscillation cycle

is trivially seen to be a solution of the RTE. Note that
Eq. (38) has the form of Abel's equation first derived for
the problem of finding the form of a plane curve along
which a particle can fall in a time that is a prescribed
function of vertical distance.

after which it can be rewritten in the form g&T'I'osc
~ (40)

+ du
exp( —u )cP ((t) /Le/4t V ~

x (1 —exp[—Le((t) + u/4tLe] j. (34)

In this form, the exponential containing terms propor-
tional to Le and v'Le can now be expanded and the lower
limit of the integral replaced by zero. The integral then
becomes

where I
„

is the period of oscillation, is much larger
than the scale ( characterizing the displacement of the
interface in the frame of the moving isotherm. A good
measure of the latter is the root-mean-square displace-
ment of the interface averaged over some time T » I'„,

dt [((t) —Vpt] z

&Le
I
cg

+ du
exp( —u2)uv 4t+

Finally, using the identity

Ch'

/4~(t t')—
v'Le

Cg

T'(h) —T =G [((h) —
hl

t
+ v'Le

Cg

dt' (d((t')
/47t(t —t') q dt )

and combining Eqs. (31)—(36), we obtain the RTE:

(35)

(36)

(37)

L fd((t)
cP ( dt ) (42)

[the average of ((t) —Vpt is identically zero following the
requirement that, on the average, the interface moves
with the isotherm velocity Vp].

One part of the interfacial temperature variations
comes from the motion of the interface in the underlying
temperature profile and is given by the first term on the
RHS of Eq. (37). It follows from the condition (T » (
that the additional part originating from the excess (pos-
itive or negative) heat flux generated by the unsteady
motion of the interface can be calculated as though the
interface remained stationary in the frame of the moving
isotherm. Since the additional heat flux generated by
this unsteady motion is proportional to

T4(t) —Tp = G+ [((t) —Vpt]
t

+
dt' (d((t')

/4~DT(h —h') 4 ch' )

It is also useful to express the RTE in terms of the
original dimensional space and time coordinates where it
becomes

it follows that the additional temperature variations are
given by the solution of the heat diffusion equation with
a steady moving point source

BzT BT BT L f'd((t)
By2 By Bt cP g dt

The steady-state solution
(38) where y = z —Vol is the space coordinate in the frame of

the moving isotherm. The final step consists in recogniz-
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ing that the advection term VpBT/Oy can be neglected
in Eq. (43). This follows from the fact that the period
of oscillation of the interface I'

„

is much smaller than
the thermal diffusion time I'z = DT /Vp or, equivalently,
that (7 (( tz. Consequently,

Substituting the series (46) into the heat equation (45),
and adding the contribution to interfacial temperature
variations coming from the motion of the interface in the
underlying temperature profile [i.e., the FTA contribu-
tion equal to the first term on the RHS of Eq. (38)], we
obtain the FSR of the RTE in the formBT 1 VpOT 1

&V' 8 DT ou ktT (44)

8 T
DT

y

BT L (d((t)
Bt c~ g dt

(45)

Neglecting the advection term, the part of the interfa-
cial temperature variations due to the excess heat flux
generated by unsteady motion is then given by the solu-
tion at y = 0: T(y = 0, t) of the heat equation with an
effectively stationary heat source

da, (t)

L 1 (d((t)
cp Lp ( dt'

T, (t) —T, = ' +),(t)+G+[((t) —Vot].
j=1

(47)

(48)

It is then elementary to show that T(y = O, t) is given
identically by the second term on the RHS of Eq. (37)
leading to the same previously derived RTE.

C. Fourier series representation

M

T(y, t) = + ) a, (t) cos (46)

over the interval y = [
—Lp, Lp]. The only constraint on

the box-size Lp is that it should be sufficiently larger than
the scale gz characterizing the variations of the thermal
field, such that the solution does not depend on Lp. Ac-
cordingly, for a given Lp, the number of modes M should
be chosen large enough for the solution to converge to
some desired accuracy.

Although the integral representation of the RTE [Eq.
(38)] is more suitable for analytical treatment, its equiv-
alent Fourier series representation (FSR) leads to consid-
erably more eKcient numerics. The FSR can be derived
by seeking directly a solution of T(y = 0, t) of Eq. (45)
in the form of a Fourier series. Since the solution is even
[i.e., T( y, t) = T(y—, t)], T(y, t), it can be expanded in a
Fourier cosine series of the form

The numerical advantage of the FSR over the integral
representation [Eq. (38)] comes from the fact that the
equations for the cj are local in time. Thus, for a com-
putation of N time steps the cost of evaluating T, (t) by
the integral representation scales as N2, while the cost of
evaluating the FSR scales as NM, which is considerably
more efficient at large time (N )) M).

D. Two dimensions

We provide here a derivation of the RTE in 2D appro-
priate for studying nonplanar dynamics. The derivation
follows essentially the same line as in one dimension and
we only point out the main difFerences. As before, we con-
sider the initial value problem corresponding to a steady-
state planar temperature profile T(T, z, 0) = Tss(z). Af-
ter substitution of this initial profile in the integral, Eq.
(21), the second term on the RHS can be rewritten in the
limit I e &( 1 as the sum of two terms equal to the FTA
contribution given by Eq. (29) and a spatial integral that
reduces as before to Eq. (35).

The main difference from the 1D case comes from the
time integral corresponding to the first term on the RHS
of Eq. (21). To analyze this term, we again perform the
scale transformation (30) after which it can be written in
the form

dt'
0(' L ' dt'

dx'G2D(v'LeA(, v'Le42:; At), = Le—
(&')

Bt' c„p4~ t —t' dx'exp
~

—Le (49)

where we have used the fact that

, [ ( ) — ( ')]'
i

(50)
4(t - t')

Note that the exponential factor in (49) cannot be approximated by unity because the integral over 2." runs over the
interval [

—oo, oo]. Next, we express the interface displacement ((2.", t') in terms of a Fourier series of the form

((x', t') = ) c„(t')e-*""*~~-,

where L~ is the scaled system width (L~ = L~/l~). Substituting the above form into Eq. (49), completing the square
of the exponential, and evaluating the remaining Gaussian integral, we obtain
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t g(l—Le dt' d2."
G2D (V'Led(, v'LeAx; At)

&p 0 S(t )
Bt'

) e in—2wz/L

CJ' n

dt 2~n
exp

g4~(t —t ) ( qLeL.

- 2

(
,
)

dc„(t')
dt'

8('(x' t')
dx t' (54)

We note that the only difference between the 1D and 2D
RTE is that the velocity of the interface d((t')/dt' in Eq.
(38) is substituted by the spatial average of the vertical
velocity of the interface d(()/dt' in 2D. In terms of the
alternate derivation of the RTE given above, this refiects
the fact that in 2D the total heat fiux generated by the
unsteady motion of the interface is simply given by

«d(()
(55)

It is now apparent that in the small Le number limit the
only term which survives in the above sum corresponds
to n = 0. This term together with the FTA contribu-
tion [Eq. (28)] and the spatial integral contribution [Eq.
(35)] yields the 2D RTE, which, after converting back to
unscaled coordinates, takes the form

T'(t) T.=—G+ [((t) —V.t]
L dt' (d(()+ 0

o +4~DT(t —t') ( «'
(53)

where

l

The origin of this discontinuity is linked to our pre-
vious observation in Sec. II (see Fig. 3) that latent-heat
diffusion only affects the very-small-wave-number part of
the FTAS. In particular, the width of the thin boundary
layer of small wave numbers restabilized by LHD shrinks
to zero in the Le —+ 0 limit. Thus, the only feature
of the FS lost with the RTE is the existence of a firute
width to this thin boundary layer. To study the long-
wavelength modulations of the interface near absolute
stability described by Coriell and Sekerka [11] (or long-
wavelength modulations of the banded structure itself),
which are linked to the existence of a maximum growth
rate at small q, the RTE is not adequate. However, the
RTE provides an excellent approximation to investigate
the alternation between a q = 0 planar structure and a
cellular structure with a wave number q g 0 well outside
this boundary layer. It is this alternation of structure
that is believed to be responsible for banding.

Finally, we note that the fact that the absolute stabil-
ity limits of the FTAS and the FS are identical can easily
be derived from the above spectrum. In particular, the
absolute stability limit of the FS in the small Lewis num-
ber limit is given by that of the RTES. The most unstable
mode of the latter at VAs is given by the limit q ~ 0+ of
A(q), which is therefore identical to that of the FTAS.

For numerical purposes the method of choice is to use a
FSR of the RTE which in 2D is given by Eqs. (47) and
(48) with the substitution d((t)/dt ~ d(()/dt.

Linear stability spectrum reeisited

IeA
2

j. L k

v(A) c„mCo(1—k)
2D~ G+k

Vo (1 —k)rnCo
' (56)

which represents a very good approximation of the pre-
vious definition of 1/v(A) [Eq. (16)] for small Le. The
spectrum is therefore discontinuous at q = 0.

A question that arises in the present context is to what
extent the 2D RTE [Eq. (53)] together with the exact in-
tegral equation for the concentration field reproduce the
full stability spectrum. This question is answered at once
by noting that for sinusoidal linear perturbations of the
form (13) and (14) the spatial average d(()/dt is always
zero except at zero wave number. The spectrum obtained
with the RTE (RTES) is then given exactly, for q g 0, by
the frozen-temperature approximation spectrum (FTAS)
defined in Sec. II and, for q = 0, by the eigenvalue equa-
tion (15) with

VI. INTERFACE DYNAMICS

In this section we investigate the unsteady dynamics
of the "planar" interface and the role of thermal effects
in connection with banding. As explained at length in
Sec. III and at the end of the preceding section the q = 0
mode is no longer the most unstable one in the presence
of LHD, even in a velocity range where the larger q MS-
type instability is suppressed [see, for example, Fig. 2(c)].
Nevertheless, we choose to study the nonlinear dynamical
evolution of this "not-most-unstable mode. " There are
several justifications for this choice:

(i) Experimental observations generically show that
bands occur parallel to the solidification front, indicating
an essentially planar dynamics of the interface, at least
during the formation of the light microsegregation-free
bands.

(ii) The small q instabilities, which are more unstable
than the q = 0 one at the level of linear stability, may
lead to very-long-wavelength transverse modulations of
the banded structure, which are sometimes seen. By se-
lecting the q = 0 mode we are essentially neglecting these
modulations. It should also be noted that the rapid ac-
celeration of the interface following the q = 0 instability
compresses the boundary layer of solute ahead of the in-
terface (with a thickness D~/V), thereby suppressing
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all Qnite q instabilities during part of the oscillatory cy-
cles.

(iii) During its oscillation cycle, the planar interface
traverses a low-velocity regime where larger q (MS-type)
unstable modes, which differ from the aforementioned
small q unstable modes, should lead to a spatially pe-
riodic cellularlike structure that is automatically sup-
pressed by restricting the dynamics to being planar.
We therefore cannot describe this transverse structure
or study to what degree its occurrence would affect
the shape and duration of the overall oscillation cycle
that determines the band spacing. Although th!s repre-
sents a serious limitation to characterize banded struc-
tures where both light and dark bands have comparable
widths, we expect to be able to characterize by planar
oscillations the total width of those structures, occurring
at higher isotherm velocities, where the light bands are
considerably wider than dark ones. In particular, when
Aq„k/Ai;sh«( 1, the interface should remain nearly pla-
nar during a major portion of its oscillation cycle, spend-
ing only a short time in a nonplanar morphology, which
is expected not to afFect much the overall cycle of oscil-
lation.

(iv) The amplitude of oscillations of the planar in-
terface grows initially as gV, —Vo. Thus, we expect
the small-amplitude oscillations occurring in the neigh-
borhood of V, not to be particularly relevant to band-
ing. Those would undoubtedly be strongly modulated by
small q instabilities. However, as Vo is decreased away
from its threshold value V„the character of oseillations
changes rapidly from small-amplitude sinusoidal oscilla-
tions to large-amplitude relaxation oscillations. It is the
latter that we expect to be responsible for banding. Also,
as argued in (ii) above, these are expected to be less af-
fected by long-wavelength modulations.

A. Numerics

metallic alloys in general, the reduced formulation (2)
yields results that are very close to those obtained using
the exact formulation (1). In the present investigation,
we mainly use the exact formulation (1) to study interface
dynamics. We have used the reduced formulation mainly
to check, as a testing ground for 2D, that it does indeed
represent a good approximation of (1) in 1D, and to study
the spatiotemporal variations of the thermal profile.

8. Methodology

To solve numerically the exact formulation (1) we have
used a straightforward method that consists in evaluating
the integrals using appropriate quadrature formulas and
a two-dimensional Newton method to solve for the two
unknowns CL, (t) and ((t) at each time step. The third
unknown Ti(t) is eliminated via the Gibbs-Thomson con-
dition (5). Two types of integrals appear in Eqs. (23)
[with C(z', 0) = Css(z')] and (27): spatial integrals over
z' and time integrals over t'. The spatial integrals are
calculated efficiently by rewriting them in the form of
complementary error functions. The numerical cost of
evaluating these integrals remains constant as t increases
and represents a negligible part of the computation.

The integrals over t' are evaluated by using a quadra-
ture formula designed to handle the square-root singular-
ity of the integrand ~ 1/gt —t'. The time interval [0, t]
is divided into N intervals

0) ty) tg) ..., t, ) ...) t~ y) t~)

which are not necessarily equally spaced. The freedom
of handling nonequally spaced time intervals turns out
to be particularly crucial in this study due to the fact
that the interface velocity changes abruptly by about one
order of magnitude during the oscillation cycles. The
time integrals have the generic form

1. Two distinct formulations

To study the dynamics of the planar interface, we have
solved two distinct formulations of the free-boundary
problem given by Eqs. (1)—(5), together with the non-
equilibrium corrections and boundary conditions given
by Eqs. (6)—(9):

(1) Exact formulation. Consisting of the boundary in-
tegrals for the difFusion fields with initial steady-state
profiles: Eq. (23) for CL, (t) with C(z', 0) = Css(z'), Eq.
(27) for Ti(t), and Eq. (5), which couples T,(t) and CL, (t)
on the interface.

(2) Reduced formulation. Consisting of the boundary
integral formulation for the concentration field with an
initial steady-state profile coupled to the RTE (which
inherently assumes an initial steady-state profile): Eq.
(23) with C(z', 0) = Css(z'), Eqs. (47) and (48) for T,(t),
and Eq. (5).

The only difference between the two formulations is
the representation of the thermal field, which is exact in
(1) and approximate in (2). Due to the smallness of the
Lewis number, Le 3 x 10 5 in the Al-Fe alloy, and

where the square-root dependence has been singled out
and f(t', t~) represents all the other terms inside the
integrand. The function f(t', t~) is then approximated
by a linear interpolation formula of the form

over each interval t' = [t, , t;+i] where f~„=f(t~) t,).
Substituting this form into the above expression for I,
we obtain a quadrature formula of the form

i=0

where the weights m~, ; are obtained by evaluating an-
alytically the integral over t' within each interval, the
square root singularity of the integrand being removed.

For the reduced formulation (2), we use the same
methodology to evaluate the integral equation for the
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concentration field and a second-order implicit scheme
to time step the az in Eq. (47).

8. E~ciency and accurucy considerations

The accuracy of our numerical calculations is mainly
limited by the accuracy of the quadrature formula used
to evaluate the time integrals of the form I, which scale
as NAt where N = t/At is the total number of time
step. For the reduced formulation (2), the time stepping
of the az leads to an error of order its at each time step
and to a total error of the same order.

With regard to the efficiency of the methods, the costly
part of the computation at large N comes from the time
integral for the temperature field. Due to the smallness
of Le, the concentration field has a much shorter mem-
ory than the temperature field. In particular, it decays
on a time scale much shorter than I'„,. Consequently,
the computational cost necessary to evaluate the time in-
tegral for Cl, (t) scales as RN, where R is a cutoff beyond
which the integrand is vanishingly small. (It varies here
between 100 and 500.) On the contrary, the temperature
field has a long-term memory with a characteristic decay
rate ~ DT/U;„ longer than the period of oscillation.
The computational cost necessary to evaluate the time
integral for T;(t) therefore scales as N~ )) RN.

For the reduced formulation (2), the cost of evaluating
the concentration integral remains the same, but the cost
of evaluating the temperature field is greatly reduced.
The computational cost to time step the a~ scales as MN
for large N where M (the number of Fourier modes) re-
mains constant in time. Here, we used values of M rang-
ing between 500 and 3000.

We conclude by noting that, in 1D, both formulations
(1) and (2) lead to reasonable computing times, (2) be-
ing more efficient than (1). However, in 2D, the analog
of the exact formulation (1) is numerically too costly to
carry out, even on fastest current machines, mainly be-
cause of the inherent stiffness of the equations related to
the smallness of the Lewis number. Using an accelerated
algorithm for the thermal field, such as the ones recently
developed by Strain [27] or Brattkus and Meiron [15],
would considerably reduce the computations. However,
it would not cure the present problem of having two dif-
fusion fields with vastly different time scales and spatial
scales. The Fourier representation of the 2D RTE elim-
inates the spatial stiffness of the equations by reducing
the equation for the 2D temperature field to an effectively
1D problem whose computation cost scales as NM as in
1D. The problem of the thermal field being removed, the
computation of the concentration field should then be
manageable using the integral representation [Eq. (23)]
or, more efficiently, accelerated algorithms.

FTA have also been reported in Refs. [14] and [15]. The
goal here is to first investigate the validity of this model
within the approximation on which it is based. We shall
see later that the inclusion of LHD dramatically alters
the character of the FTA cycles.
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The CGZK model of banding starts with the observa-
tion that at high velocity there exists a range of inter-
facial temperature over which steady-state solidification
can proceed at three distinct velocities. As an illustra-
tion, we show in Fig. 5 the case of 2 wt% Fe Al-Fe al-
loys. All the calculations of the present paper have been
performed at this composition. The lowest velocity cor-
responds to a steady-state dendrite branch which merges
near point 1 with the steady-state branch of the planar
interface. We denote by Td,„(V)the dendrite branch
and by T~t(V) the planar branch. The latter has, with
increasing velocity, an up-sloping part from point 1 to
point 3 (Vi & V & Vs) and a down-sloping part after
point 3 (V ) Vs).

For a fixed isotherm velocity Vo, the steady-state tem-
perature of the interface is given by Td,„(Up)for Vp & Vi
and T&t(Vp) for Vp ) Vs. However, for Vi & Vp & Vs,
it is assumed in the CGZK model that the up-sloping
branch of the Tg(V) is unstable, in contrast to the down-
sloping part, which is stable. As a consequence, steady-
state solidification is no longer possible, and, instead, the
solidification front is assumed to repeat indefinitely the
cycle of oscillation 1-2-3-4-1.. . in Fig. 5. In this cycle
the transitions between steady-state branches, 1-2 and
3-4, are assumed to be quasi-instantaneous, and parts
2-3 and 4-1 of the cycle are assumed to correspond to
slow quasi-steady-state changes in temperature along the
steady-state branches. These changes are caused by the
motion of the interface relative to the moving isotherm.
In part 2-3 of the cycle the interface moves faster than
the isotherm and therefore warms up, and, in part 4-
1, it moves slower and therefore cools down. It should
be noted that the assumed instability of the up-sloping

B. Frozen-temperature limit and the CGZK model

0.1 ~0 &00
Velocity (m/s)

100.0

In this part, we first review briefly the CGZK model
and then compare the cycle it predicts with the cycle of
oscillation of the planar interface calculated numerically
using the FTA [Eq. (28)]. Oscillation cycles using the

F1G. 5. The cycle 1-2-3-4-1 corresponds to the CGZK
model [16], where the steady-state dendrite branch Tq,„(V)
and planar branch T»(V) are represented by dash-dotted and
dashed lines, respectively. The solid line corresponds to a cy-
cle computed without latent-heat difFusion (FTA).
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FIG. 6. Time variations of the velocity V, the interface
position ( in a stationary frame, and the interfacial tempera-
ture change b,T = T;(t) —Te (a) without LHD (F.TA), and
(b) with LHD, for the same initial conditions; (a) corresponds
to cycle A, and (b) to cycle E', in Fig. 7. The dotted line in (a)
marks the instant at which the cycle reaches the maximum of
the Tpi(U) curve (point 3 in Fig. 5).

branch of the Tpi(V) in the CGZK model is actually the
same as the CS instability that occurs at q = 0 in the
FTA (see Sec. III). In the FTA, the absolute stability
limit of this instability is actually very close to the max-
imum of the Tpi(V) curve as correctly assumed in the
model. However, with LHD, its absolute stability limit
occurs lower on the Tpi(V) curve (at V~ 1.42 m/s).

Given the assumed cycle 1-2-3-4-1, it is then possible
to calculate exactly the spacing of light and dark bands.
This is done by difFerentiating Eq. (29) with respect to
time, taking into account the fact that T, (t) = Tpi(V) on
2-3 [or T, (t) = Td,„(V)on 4-1] where V = d((t)/dt is the
instantaneous velocity of the interface. This difFerentia-
tion yields at once the relation

dv dTpi(V) G(V V )
Ch dV

valid on 2-3, and its analog

dV dTd, „(V)
dv

on 4-1. Note that, in the FTA, G+ = G = G. By
eliminating time via dt = dz/V it is then easy to show
that the total distance traveled by the interface on 2-3
(light band spacing) is given by

V

~light =
G Ug

' VdTpi/dV
V-V. " (57)

and the distance traveled on 4-1 (dark band spacing) by

V

&da.k =—0
' VdTpi/dV

V —Vo
(58)

8. Cycles computed using the frozen-temperature
approximation

We have compared in Fig. 5 the cycle of oscillation of
the CGZK model with the cycle calculated numerically
using the FTA [i.e. , the boundary integral formulation
for the concentration field coupled to Eq. (28), which ne-
glects LHD]. We also show in Fig. 6(a), for the same cycle,
the time dependence of the interface velocity V(t), the
interface position g(t) [recall that E(t) is measured in a
stationary frame], and the interfacial temperature change
AT—:T, (t) —T, (0). We start the computed cycle from
a point along the up-sloping part of the Tpi(V) curve,
about midway between 1 and 3. This choice is somewhat
arbitrary and was made to render the comparison clearer
(1 could have been chosen as well). The instability is
triggered by choosing a starting velocity slightly higher
than Vp.

We first note that the part of the cycle analogous to
1-2 in the CGZK model occurs on a very short time
scale marked by the abrupt change of velocity in Fig.
6(a). During this transition, the interfacial temperature
changes very little, as shown by the horizontal jump be-
tween the unstable and stable branches of the Tpi(V)
curve in Fig. 5. Subsequently, the cycle of oscillation
follows exactly the Tpi(U) curve up to point 3, the tem-
perature and velocity evolving slowly in time. This first
part of the cycle (up to point 3) is nearly identical to that
of the CGZK model.

The part of the computed cycle from 3 to 4 is nearly
horizontal in Fig. 5 but does not occur instantaneously,
as assumed in the CGZK model [Fig. 6(a)]. This part
of the cycle can be roughly divided in two parts: the
first from point 3 to the point of maximum temperature
corresponding to V = Vo (about midway between 3 and
4) and the second from the latter point to point 4. The
first part occurs rapidly, as the initial horizontal velocity
jump, and can be assumed to be quasi-instantaneous.
The second part occurs much more slowly due to the
fact that the interface velocity becomes much smaller (V
varying from about 1 rn/s to 0.1 m/s). Actually, it can be
seen in Fig. 6(a) that the time spent on this section of the
cycle (from midway between 3 and 4 to 4) is a significant
portion of the total time spent on the entire cycle. The
CGZK model therefore underestimates significantly the
time spent in the second part of section 3-4 of the cycle.

This error in duration, however, does not alter signif-
icantly the analytical prediction [Eq. (57)] for the light
band spacing AI;~h~. The reason for this is that, although
the actual cycle spends a relatively long time along the
second part of 3-4, the interface travels a relatively short
distance during this part due to the fact that V is small.
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Most of the interface displacement occurs on the down-
sloping part of the T~t(V) curve where V is high. The
CGZK model therefore only slightly underestimates the
light band spacing as shown in Fig. 6(a).

To conclude this comparison, we note that we have
only graphed in Fig. 5 the computed cycle up to point 4.
Past this point, the planar interface continues to decel-
erate down to very small velocities (in the cm/s range)
where it eventually starts accelerating again. However,
this part of the cycle is unphysical since the breakdown
of the planar interface caused by finite-wave-number in-
stabilities occurs already in the last part of the 3-4 cycle.
An indication of this breakdown is given by the linear
stability spectrum of the planar interface, which devel-
ops a strong MS-type instability below about 0.5 m/s
[Fig. 2(c)]. (This spectrum can only be used as a rough
estimate here since the interface is actually not in the
steady state during the deceleration cycle 3-4.) Finally,
although our present numerics cannot be used to check
the 6nal portion 4-1 of the cycle, we expect it to be rea-
sonably well described by the CGZK model together with
the prediction of Ad~, k.

C. Thermal efFects

We now present the results of numerical simulations,
which include LHD, and then explain why they turn out
to be so large using the RTE derived in Sec. V.

f. The elf'ect of latent-heat diffusion

To illustrate the effect of LHD we have compared in
Fig. 7 the initial trajectories of the interface obtained
using the same initial condition that was used in the pre-
vious comparison of Fig. 5, but with decreasing thermal
diffusivities (in the order A—E). The two important tra-
jectories are A, which corresponds to the FTA (Dz —+ oo)
and is identical to the one displayed in Fig. 5, and E,
which corresponds to the physical value of the thermal
diff'usivity for our model D& = 5.35 x 10 m /s. Trajec-

bT = AT~+ ATg. (59)

The first term represents the temperature increase re-
sulting from the advance (or retard) of the interface with
respect to the moving isotherm

tories B D—correspond to cycles with decreasing values
of Dz (10,10, and 3 x 10 m /s). Cycles A and E
are also compared in Fig. 6.

The comparison of the two extremes A and E clearly
shows that LHD has a dramatic effect on the trajectories
of the planar interface in the T-V plane. The physi-
cal origin of this effect can be understood qualitatively
by noting that during its unsteady motion the interface
produces an extra amount of latent heat proportional to
(L/c„)[V(t) —Vo]. The moving isotherm only carries out
the heat generated by the interface moving exactly at Vp.
When the interface initially accelerates, as it leaves the
unstable branch of the T~t(V) curve, it will produce an
excess of latent heat that will tend to increase its temper-
ature. On the contrary, after decelerating sufFiciently it
will eventually produce less latent heat than the amount
which is carried away by the moving isotherm and its
temperature will decrease. This accounts for the fact that
the trajectories in the T-V plane slope increasingly up-
wards during acceleration, and increasingly downwards
during deceleration, as the effect of LHD is increased.

The above argument accounts "qualitatively" for the
effect of latent-heat diffusion. However, it does not ex-
plain "quantitatively" why it is so large. We now show
that a proper explanation of this quantitative role can be
obtained using a short-time approximation of the RTE
derived in Sec. V. We start by noting that the total in-
terfacial temperature change 6T:—T, (t) —To caused by
the unsteady motion of the interface can be written as
the sum of two terms (see Fig. 8):
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FIG. 7. Initial part of cycles computed with latent-heat
difFusion and different Dg '. (A) FTA (Dr ~ oo), (B) Dv =
10 m/s, (C)D~=10 m/s, (D)Dz =3x10 m/s,
and (E) Dz = 5.35 x 10 m /s. Cycles (B) and (C) corre-
spond to values of Dz outside the physically realizable range,
and are displayed to illustrate thermal effects.

FIG. 8. Schematic drawing of the disturbance of the tem-
perature profile following a rapid acceleration of the interface
in the frame of the moving isotherm. The steady-state tem-
perature profile and the interface, before and after the per-
turbation, are represented respectively by dashed and solid
lines. AT& and AT&, denote respectively the temperature
changes resulting from motion of the interface in the temper-
ature gradient and diffusion of excess latent heat. Note that
the drawing is not to scale (in reality g )) d).



S28 ALAIN KARMA AND ARMAND SARKISSIAN

AT~ = G+[((t) —Vpt]. (60)

The second term ETI. represents the temperature in-
crease resulting from the excess latent heat (L/c„)[V(t)—
Vp] generated at the interface and is given by the second
term on the RHS of Eq. (38):

Cg

To evaluate AT~ and ATI, in an unsteady growth sit-
uation one needs to know the time dependence of U(t),
which, in general, has to be calculated numerically by
solving the coupled solutal-thermal problem. However,
analytical estimates of the changes ATG and ATI. , oc-
curring during the initial acceleration period where the
interface releases a large amount of excess latent heat,
can be obtained by assuming that during this period the
acceleration remains approximatively constant. It should
be noted that an infinitesimal linear perturbation would
lead to an initial exponential growth ~ A2 exp At of the
acceleration, which is not relevant here. The short period
where the acceleration is roughly constant already occurs
in a nonlinear regime following a small but finite ampli-
tude perturbation. Numerically, we have observed that
following such a perturbation the interface acceleration
is only very roughly constant. The above approximation
should therefore only be interpreted to yield orders-of-
magnitude estimates of AT~ and ATI, with the goal of
understanding the quantitative role of LHD. Denoting
by r~ the total duration of the acceleration period and
substituting V(t) = Vp + AV/r~t into Eq. (60) [with

((t) = fp V(t')dt'] and Eq. (61), we obtain after per-
forming elementary integrals

where V—:(Vf + Vp)/2 and Av = Vf —Vp (Vp and
Vf denote, respectively, the initial and final velocities).
For the interface acceleration to take place, the bound-
ary layer of solute ahead of the interface needs to become
thinner to accommodate a larger velocity. The accelera-
tion therefore occurs on a time scale that is proportional
to the difFusion time Dc;/V . Substituting I' D~/V
into the above form for b,TG and ATI, we obtain the
estimates

&c L
h, Tg G+, ATI, —v'Le,

V cp

where we have dropped the numerical prefactor factor
g4/9z (Av/V) of order unity. The quantitative impor-
tance of LHD can now be understood using the above
relations. Using the typical value V = 1 m/s together
with D~ = 1.7 x 10 s m /s, DT = 53.510 s mz/s,
L/c„=349 K, and the estimate G+ = 510s K/m, we
find ATG 10 K while ATI, 1 K. The conclusion
is that ZTI, )) ATG. The change in interface tempera-
ture due to LHD far exceeds the change due to interface
motion in the temperature gradient.

The relation ATI, )) ATG explains why in Fig. 7 the
trajectories of the interface are so dramatically affected
by LHD. Without this effect, the temperature remains
nearly constant (ATI. = 0) during its acceleration pe-
riod and this is why the transition 1-2 appears to be
nearly horizontal in the T Vp-lane (trajectory A). At
the other extreme (trajectory E), LHD causes the inter-
face to warm up considerably during its acceleration, and
the reverse during its deceleration.

8. Cycles computed upwith latent-heat diffusion and
thermal profiles

We show in Figs. 9(a)—9(d) cycles in the T Vplan-e for
decreasing values of Vo calculated using the exact inte-
gral formulation (Sec. VI A 1). Here, the initial transients
are not shown and only the final cycles are displayed for
clarity. The same cycles are also represented in Figs.
10(a)—10(d), where V(t) = d((t)/dt is plotted as a func-
tion of time. The time variations of composition on the
solid and liquid sides of the interface are illustrated in
Fig. 11. We also compare in Fig. 12 two cycles obtained
for the same parameter values using (i) the exact for-
mulation and (ii) the approximate reduced formulation
based on the RTE (Sec. VIA1), in order to verify the
validity of the latter.

The character of oscillations changes rapidly [Figs.
9(a)—9(d) and 10(a)—10(d)] as the control parameter Vp is
decreased below the critical velocity V, = 1.42 m/s cor-
responding to the onset of the q = 0 instability. For Vo

very close to V, the oscillations first have an amplitude
that increases as v V, —Vp, and then evolve into large-
amplitude relaxation-type oscillations for smaller values
of Vo. The relaxational character of these oscillations is
clearly marked in the velocity versus time plots (Fig. 10)
by the presence of sharp spikes, indicating abrupt ve-
locity changes intercalated with slow quasi-steady-state
changes.

Another important feature of the cycles is the occur-
rence of a classic period-doubling sequence of bifurcation
to chaos with decreasing Vo. Representatives of period
1-2-4 are shown respectively in Figs. 9(a)—9(c) and 10(a)—
10(c). A typical chaotic state is shown in Figs. 9(d) and
10(d). It is interesting to note that the occurrence of pe-
riod doubling and chaotic cycles seems to be intimately
linked to the interplay of the thermal diffusion field with
a bistable dynamics. In particular, in the context of ex-
plosive crystallization, where the dynamics of the planar
interface is controlled by the thermal Geld via a local
growth law V = V(T~), van Saarloos and Weeks had pre-
viously observed a similar period-doubling sequence of
bifurcation [28]. In their case, the V(T) curve possesses
two branches (characteristic of bistable dynamics), which
are analogous to the the two branches of the steady state
T~&(V) here. Thus, both banding and explosive crystal-
lization have the common ingredient of being controlled
in part by a long-range difFusion field (temperature) and
some local bistable dynarnies, which in one case (band-
ing) is controlled by the concentration field, and the other
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(explosive crystallization), by a local growth law.
To explore further the role of thermal effects we have

displayed in Fig. 13 snapshots of the temperature profile,
where the steady-state background has been subtracted
(here AT—:T —Tss). The two instants, where the tem-
perature reaches a maximum and a minimum value dur-
ing the cycle, are shown. The large positive and negative
spikes in the thermal profile are the result of the addi-
tional positive and negative heat Aux (L/c„)[V(t) —Vo]
generated at the interface and equal b,T~ [Eq. (61)] at
the interface (z —( = 0). The complete spatiotemporal
evolution of the temperature pro61e for the same cycle is
shown in Fig. 14.

As mentioned earlier, the scale (T QDT I'~„char-
acterizing the spatial extent of the thermal spikes is on
the order of a few p,m and therefore much larger than the
average interface displacement ( [Eq. (41)] which, here,
is of the order of 50 nm. It should also be noted that the
width of the thermal spike caused by the initial acceler-
ation of the interface scales as ( QDzI'~ V't~tT,
which is about one order of magnitude smaller than (z.
This narrower spike is then broadened diffusively during
the slower quasi-steady-state portion of the cycle, which
follows the T~t(V) curve.

D. Banding

Consequences of theriiial effects

The small-amplitude oscillations [e.g. , Vo = 1.393 m/s
in Figs. 9(a) and 10(a)] are characteristic of what is usu-
ally observed above threshold of a supercritical Hopf bi-
furcation. We would expect these oscillations to be mod-
ulated spatially by lang-wavelength instabilities, which
are suppressed by our numerics. Furthermore, these os-
cillations are too small in amplitude to cause the alter-
nation of structure associated with banding to occur and
are not particularly relevant here.

More relevant are the large-amplitude oscillations that
occur at lower isotherm velocity. These carry the inter-
face from a high-velocity regime (3—10 m/s), where finite
q instabilities are suppressed, to a low velocity regime
(0.5—1 m/s), where they are amplified and could lead to
the formation of a transient cellular structure that would
account for the presence of dark bands. Thus, an essen-
tial ingredient of the CGZK model —namely that banding
results from large velocity changes that yield an alterna-
tion of structur" survives, at least qualitatively, when
the effect of LHD is included. However, the nature of
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because the latter diverges as the chaotic regime is ap-
proached (for period-2" cycles A 2"A).

Note also that A should be considered a lower bound
for the total band spacing since situations could arise
where dark bands do not form at every velocity minima,
but only at those where the amplitude of the transverse
structure is suKciently large to cause the precipitation of
the impurity-rich (dark) phase.

The comparison of Table III shows that the calculated
and measured spacings are in relatively good agreement
given the uncertainties in the nonequilibrium coefficients
vg and e", and the fact that A represents a lower bound.
It should be emphasized that the present predictions are
nearly independent of the value of G (Fig. 15). In con-
trast, in the CGZK model an upper limit of the temper-
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FIG. 17. Velocity V vs interface position g for the cycles

corresponding to Figs. 9 aad 10.

values reported by Gremaud, Carrard, and Kurz for a 2
wt% Fe Al-Fe alloy over a velocity range corresponding
to the one studied here. The ratio Ai;shi/A indicates the
fraction of the banded structure occupied by light bands.
The calculated spacings correspond to a value A defined
as the average spacing between successive velocity min-
ima in the plot of velocity versus interface position [Figs.
17(a)—17(d)]. We use this definition instead of the total
spatial period

~osc

V(t) dh

ature gradient (G+ = 20 x 10 K/m) was used to match
predicted and measured spacings [16]. The comparison
also indicates that the predicted spacings are found to
increase with decreasing Vo as seen experimentally. One
point of disagreement is the value of the upper veloc-
ity beyond which bands should not form, which here is
equal to V, 1.42 m/s, while experimentally bands are
observed up to a maximum measurable velocity in the
range 3—5 m/s.

An interesting question here, with regard to band-
ing, is whether chaotic oscillations have a signature in
the experimental micrographs. In particular, one could
have expected such oscillations to lead to highly irreg-
ularly spaced bands. However, a close examination of
Fig. 17(d) (which displays a chaotic cycle) reveals that
the magnitudes of the velocity maxima are highly er-
ratic but, in contrast, the velocity minima stay nearly
regularly spaced. Since presumably only the latter are
observable, we would not expect to see highly irregularly
spaced bands. Finally, the fact that the erratic behavior
of the velocity maxima does not feed back significantly
on the spacing of velocity minima is a simple consequence
of the fact that the interface spends only a short time of
its cycle in a high-velocity regime (Fig. 10).

VII. CONCLUSIONS

In summary, we have investigated various aspects of
interface dynamics in a model of rapid directional so-
lidification that includes, in addition to solute difFusion,
nonequilibrium eKects and LHD. The main conclusions
of this study with regards to banding are:

(1) A planar instability, which occurs below a criti-
cal velocity U, less than the absolute stability limit Vp,s,
leads to large-amplitude relaxation oscillations of the so-
lidification front. This instability has the same physical
origin as the CS instability [11],namely solute trapping;
a planar perturbation, which increases slightly the inter-
face velocity, causes the interface to reject less solute and
therefore to accelerate faster.

(2) The oscillation cycles are characterized by large
velocity variations that carry successively the solidi6ca-
tion front from a high-velocity regime where the pla-
nar interface is morphologically stable (up to some long-
wavelength modulation) to a low-velocity regime where
it is morphologically unstable and should form a cellular
structure. We expect that the alternation of structure,
characteristic of banding, results from such cycles. This
expectation is strongly supported by the fact that the
average cycle spacing A falls, nearly independently of G',
close to the measured [8] spacing ofbanded 'structures
dominated by light microsegregationfree regions.

(3) The cycles obtained with the FTA used in recent
studies of banding [14, 15] are described reasonably well
by the CGZK model. This model contains, qualitatively,
what seems to be the proper explanation of banding.
However, quantitatively, the FTA-cycles are dramatically
altered by I HD and do not provide a proper description
of interface dynamics. This is reflected most strongly
in the fact that, without LHD, the band spacing scales
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as G, while, with LHD, it varies very little with G.
LHD also leads to a dynamical behavior (period dou-
bling, chaos, etc. ) much richer than first anticipated. It
should be noted, however, that finite-wave-number in-
stabilities are very little affected by I HD and adequately
described by the FTA [13].

(4) The efFect of LHD can be understood in terms of
a RTE, derived in the small Lewis number limit, which
governs the change in interfacial temperature due to un-
steady growth. This change is the sum of two parts:

AT = ATG + ATI, .

The first, AT~ GD~/Vo, results from interface motion
relative to the moving isotherm (FTA), and the second,

ATI, L/c~+D~/DT, results from LHD. For values of
G 10s—10" K/m and Vo m/s, characteristic of the
RS experiment where banding is observed, ATI. )) AT~.
Thus, despite the fact that gD~/DT is small, the dy-
namics of the planar interface is inQuenced considerably
more by LHD than by the temperature gradient.

An essential part of our understanding of banding that
remains lacking, is an understanding of the role of long-
wavelength instabilities and a description of the trans-
verse cellular-dendritic structure expected to form dur-
ing the low-velocity portion of the cycles. We expect this

structure to be of much smaller amplitude with LHD
than without. However, to determine its amplitude and
wavelength, and how it affects the overall cycle, a descrip-
tion of nonplanar dynamics is needed. This dynamics is
considerably more difBcult to study numerically than the
planar dynamics (already nontrivial here), as it involves
treating at the same time the unsteady motion and the
deformation of the interface. In this paper, we have de-
rived a new equation of motion for the thermal field (2D
version of the RTE) which allows us to investigate this
dynamics with considerably more efficiency. A study of
nonplanar dynamics based on this equation is presently
underway.
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