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The formation of ferroelectric liquid crystals by simple dipolar models is investigated using density-
functional theory and absolute-stability analysis. It is emphasized that for such systems well defined
results can only be found by specifying exactly how the long-range dipolar interactions are treated.
Explicit formal expressions are derived for mean-reaction-field boundary conditions and these are
combined with integral-equation approximations in order to obtain numerical results for fluids of
dipolar hard and soft spheres. The calculations predict isotropic-to-ferroelectric-nematic transitions
in qualitative agreement with computer simulations. The quantitative agreement, however, is rather

poor.
PACS numbers: 64.70.Md, 77.80.—e

I. INTRODUCTION

In recent computer-simulation studies [1, 2] we have
shown that fluids of strongly interacting dipolar soft
spheres can form ferroelectric liquid crystals and similar
results have since been found for dipolar hard spheres [3].
The precise nature of the liquid-crystal phase depends
upon the state parameters. At higher temperatures, one
obtains nematic liquid crystals in the sense that there is
orientational order but no long-range spatial structure.
At lower temperatures, phases with columnar correla-
tions are also found. As shown by de Leeuw, Perram,
and Smith[4], for dipolar systems the application of pe-
riodic boundary conditions with Ewald summation tech-
niques is not straightforward since the necessary sums
over dipolar interactions are only conditionally conver-
gent. Therefore, in order to assure convergence it is nec-
essary to surround the “infinitely” periodic sample with
a continuum characterized by some dielectric constant €’.
The extremes, ¢/ = 1 and ¢’ = oo, occur when the sample
is surrounded by vacuum or a conductor, respectively.
In simulations with ¢ = oo perfect or “single-domain”
ferroelectric liquid crystals are obtained. With ¢ = 1
the system breaks down into two antiparallel ferroelec-
tric domains such that the net polarization of the sample
is zero. These observations are consistent with the be-
havior of ferroelectric solids [5)].

The purpose of the present paper is to investi-
gate the isotropic-to-ferroelectric-liquid-crystal transi-
tion from another perspective. We examine density-
functional theory [6-10] and absolute-orientational-
stability conditions [11] for fluids of dipolar particles. It
is shown that for infinite systems these formalisms lead
to indeterminate expressions and that in order to obtain
well-defined results it is necessary to precisely specify how
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the long-range dipolar interactions are handled. We de-
rive explicit expressions by applying mean-reaction-field
methods [12, 13]. This approach is analoguous to the
boundary conditions used in the computer simulations
in that the sample is surrounded with a continuum of di-
electric constant ¢, and the resulting density-functional
theory and stability relationships depend upon this pa-
rameter. We note that in our earlier work with dipolar
hard ellipsoids [10], the importance of specifying bound-
ary conditions when applying density-functional theory
and stability conditions to dipolar fluids was not properly
recognized and in fact the expressions employed in [10]
are consistent with choosing ¢/ = 1. However, we have
shown that for the models and state parameters consid-
ered in [10] the results obtained do not depend upon the
value of €.

Here we report a density-functional and stability anal-
ysis for fluids of dipolar soft and hard spheres. The di-
rect correlation functions required as input are obtained
by solving the hypernetted-chain (HNC) or reference
hypernetted-chain (RHNC) approximations [14]. The
phase behavior obtained is qualitatively consistent with
the computer simulations, but the quantitative agree-
ment is poor.

The remainder of this article is divided into three parts.
The density-functional theory for dipolar particles is dis-
cussed in Sec. II, the conditions for absolute stability are
given in Sec. III, numerical results are presented in Sec.
IV, and our conclusions are briefly summarized in Sec.

V.

II. DENSITY-FUNCTIONAL THEORY
In density-functional theory [6-8], the grand potential

Q = —PV (P is the pressure and V is the volume of the
sample) is considered to be a functional of the singlet
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density p(1). To second order, it is not difficult to show
[9,10] that the difference in grand potential AQ between
nematic and isotropic phases can be expressed in the form

BAQ = /d(l) {pN(l)ln (pz;_(f)) - [on (1) - ﬁl]}

1 / d(1)d(2)c(12; 7r) [pn (1) — 7]

x[pn(2) — 7] (2.1)

where the subscripts I and NN indicate the isotropic and
nematic phases, ¢(12;7r) is the direct correlation func-
tion of the isotropic phase, ny is the number density of
the isotropic phase, iy = ny/4m and f = 1/kT. Also in
Eq. (2.1), (1) = (r1,Q1) and d(1) = dr1dQ;, where rq
and Q; specify the position and orientation of particle 1.
In order to find coexisting isotropic and nematic phases,
Eq. (2.1) is minimized with respect to pnx(1) and coex-
istence occurs when the condition SAQ = 0 is satisfied.
For axially symmetric molecules, the singlet density of
the nematic phase can be expanded in the form [9, 10]

pn(l) = pn(2) =7y [1 + Z mem(cose):l
m>0
=iy F(cos ), (2.2a)

where 6 describes the orientation of the symmetry axis
J

(Dmnl(nl’nz’ r) _fmnl Z
[N

fmnl is a nonzero constant, the 3-j symbol has its
usual notation, R} (£2) is a Wigner generalized spher-
ical harmonic [16], and €, describes the orientation of
r = rp — r;. For axially symmetric particles, symmetry
requires that 4 = v = 0 and for notational simplicity
these indices shall be dropped henceforth.

Choosing the director to be along the laboratory fixed
z axis, and using the relationships
= Ro(9?) ,

Prn(R2) (2.5a)

4
/dﬂ o0 (R)RG(2) = mtsmm,&po , (2.5b)

together with properties of the 3-j symbols, Eq. (2.3b)
can be partially integrated and reduced to the form

mnl [ MN1
"’Z (2m+1)(2n+1)f 1(000)

x/drc"‘"l(r)Rf)o(ﬂ,.).

(2.6)

Further, the remaining integral can be written as

(7 3 ) REWO@ R () Ryo(@,)

with respect to the director and P, (cos #) represents the
usual Legendre polynomials. Also, here

nN —ny
nr

bo = (2.2b)

is the fractional change in density associated with the
isotropic-nematic transition and

by = (’7‘1—’:) 2m + 1)(Pp), (2.2¢)

where (P,,) is the mth rank order parameter.
Equation (2.1) can be immediately reduced to the form

ﬁAQ / dz F(z)InF(z) —nrbo — 41,  (2.3a)

where
1= / d(1)d(2)e(12; 7r) len (1) — Arllon(2) = 7]
(2.3b)

and = = cos . It is the evaluation of the integral I which
must be considered with care for dipolar fluids.

In order to evaluate I, we expand ¢(12) in rotational
invariants, ®77(12), to obtaln (14, 15]

c(12) = Z el (ry@mrt(12) , (2.4a)

where
(2.4b)

[
[ aremimRio(@n)

_ / A2, Ry (€2,) / ~ dr r2emnl (r)

0
= bjo4m /oo drr2c™(r) , (2.7)
0

where we have used the orthogonality property of the
generalized spherical harmonics. If all of the ¢™™(r)
coefficients are short ranged such that [;° drr2c™!(r)
exists, then we immediately have

b2 mm0
2 m mm0 ~mm0
I=r G’ (00 0)” ©
m

where &™™0(0) is the Fourier transform of ¢™™0(r) eval-
uated at k = 0 [see Eq. (2.14Db)]. For the choice

mnl mnl
f "”/(000) ’

Eqs (2.3a) and (2.8) yield

(2.8)

(2.9)
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+1
paq = dz F(z)In F(z) — nrbo
2 ~mm0
A i (0) ;2
2 (2m + 1)2bm ' (2.10)
m2>0

which is the density-functional expression employed in [9,
10].

However, the pair potential for point dipoles, upp(12),
can be expressed in the form

V30 p?
upp(12) = ~Fm 3 —&112(12) (2.11)
where 4 is the dipole moment, and hence
/30 Bu?
cM2(r) ~ —Pupp(12) = FIE 5 (2.12)

as r — oo. Thus for the dipolar case the final expres-
sion in Eq. (2.7) is undefined for an infinite system and
cannot be evaluated without specifying boundary condi-
tions. This means that in general Eq. (2.10) cannot be
applied to systems of dipolar particles, or, more precisely,
its application implies a particular boundary condition.
We will return to this point below.

Another way to expose this problem is to define the
Fourier transform

1) = o / d(1)d(2)e™ T e(12; 1) [on (1) — 7]
x[pNn(2) — 7] (2.13)

which, if ¢(12;7s) is short ranged, will yield the required
integral I in the limit £ — 0. In order to evaluate I(k),
we Fourier transform c(r, 21, €22) and expand the trans-
form &(k,€21,€2) in rotational invariants to obtain [14,
15]

&k, 21,8) = > & (k)S™™ (0, R, ) |

m,n,l
(2.14a)

where the &™"!(k) are Hankel transforms defined by

nl(kY) = dril / drr2j,(kr)e™i(r) | (2.14b)

with j;(kr) denoting a spherical Bessel function of order
l. Performing the angular integrals yields

7 — a2 bmbr mnl [ MN1
I(k)_"f;;l @mTlEn D)’ (0 00)
& (k) Rbo () -

If ¢™(r) is short ranged (i.e., decays more rapidly than
1/r3), then

lim & (k) = 8mné108™™ (0)

(2.15)

(2.16)

and taking the k — 0 limit of 7(k) we immediately re-
cover the result for I given by Eq. (2.8).
However, as noted above, for dipolar fluids c'2(r) de-

cays as 1/r% and [17]
_4mv30
3f112

which obviously does not vanish at k = 0. Therefore, for
dipolar systems Eq. (2.15) gives

lim &12(k) = Bu? , (2.17)

lim I(k) = 000

+nI Z (2 = 1)2fmm0 (7(7)7'37'8) ~m’m0(0)
(2.18)

We see that the first term on the right-hand side of Eq.
(2.18) depends upon the orientation of the vector k. Thus
for an infinite dipolar sample the ¥ — 0 limit is not
uniquely defined.

One way to obtain well-defined results for dipolar sys-
tems is to employ mean-reaction-field boundary condi-
tions (12,13, 4]. In this picture, each particle is viewed as
sitting at the center of a truncation sphere of radius R¢
which is surrounded by a continuum characterized by the
dielectric constant €. The total configurational energy U
is then written as the sum of two parts

U= Zj u(ij)—ézni-u,»,

L
i<j (rij<Rg)

b? 112
n3 p1i2 ( ) lim 6112 (k) B3 (%)

(2.19)

where u(ij) is the pair potential including the dipolar
term, pu,; is the dipole associated with particle i, and R;
is the reaction field at particle ¢ resulting from polariza-
tion of the continuum. It is obvious that the first term
arises from the interaction of all particles at separations
less than R¢ and that the second term is the interaction
with the surrounding continuum. The factor of % takes
into account the work required to polarize the continuum.
Using explicit expressions for the reaction field [18], it is
not difficult to show [12,13] that U can be expressed in
the form

U= Z (i) + const (2.20a),
where h

ue(12) = {“(12) *une(12), 7 < gc (2.20b)

urr (12) = —f(¢')u*@'1°(12)/RE (2.20¢)

(&) =2(¢ —1)/2¢ +1) (2.20)

and here and henceforth we use the definition of fm»!
given by Eq. (2.9). Therefore, if we consider ¢ to be
simply a constant independent of state parameters and of
conditions “inside” the sample, the dipolar system with
reaction-field boundary conditions can be thought of as
an infinite sample with particles interacting through the
effective pair potential u.(12) defined above.

Since the dipolar interactions are truncated, the effec-
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tive potential is short ranged and it is not difficult to
show [12] that

lim lim &'%(k;Rc) =0,

Rg—00 k—0

(2.21a)

lim _lim c11°(k Rc) = &19(0) + 4rBf(e')u?/3 ,

Rc—00 k—0

(2.21b)

s : ~mmO0(1.. _ xmm0
R},}Too lll_l’f%ce (k;Rg) =&™°(0), m#1

(2.21¢)

where the subscript e identifies the direct correlation
function associated with the effective system and the
&™™0(0) are those for an infinite dipolar fluid.

We can now employ these relationships together with
Eqs. (2.8) or (2.18) to obtain the reaction-field result

I= 2b1 47r,3f(e')N +n? Z (2 Z 1)2 ~mm0(0) ,

97 3
(2.22)

and the grand potential difference can be expressed in
the form

'Bﬁﬂ / dr F(z)In F(z) — nrbo

7;1 b} [n76"19(0) + 37(€')y)
n mmO(O)
5 Z < em + 1) b

where y = 4wfBn;u?/9. It is clear that the density-
functional results will depend upon the dielectric con-
stant of the surrounding continuum. If the surrounding
continuum is taken to be a vacuum then, ¢ =1, f(¢’) =0
and Eq. (2.23) reduces to Eq. (2.10). This choice of ¢’
amounts to a simple spherical truncation of the dipo-
lar potential and this is the only boundary condition for
which Eq. (2.10) is valid.

(2.23)

III. ABSOLUTE-STABILITY THEORY

General conditions for the absolute stability of
an isotropic fluid have been derived by Stecki and
Kloczkowski [11]. If one considers stability with respect
to fluctuations of nematic (or ferroelectric) symmetry
their general expression reduces to the form

Zﬁ%?n(Q +1>—n,I>0,

m>0

(3.1)

where I is just the integral defined by Eq. (2.3b) and
discussed above. For short-range potentials, Egs (3.1),
(2.8), and (2.9) immediately yield the condition

nr

_ ~mm0
m+1° ©) >0,

(3.2)

which must be satisfied for all m > 0 if the isotropic
phase is to be stable. The m = 0 case is just the usual
condition for mechanical stability and is not of much in-
terest here. If Eq. (3.2) is satisfied for m = 0 but not
for some higher values of m then the system is orienta-
tionally unstable and will spontaneously form an orienta-
tionally ordered phase. For nonferroelectric nematics the
stability condition will be violated only for even values
of m. If violations also occur for odd values of m then

the liquid-crystal phase will be ferroelectric.
For dipolar fluids with reaction-field boundary condi-
tions we have
nr

~mm0 O .
T omi1ce (0) > (3.3)
which in the limit R¢c — oo gives
1— %5”0(0) — f(e)y >0, (3.4a)
NI ~mmo
— 0 4
1l (0)>0, m#1 (3.4b)

where we have employed Eqgs. (2.21). It is interesting
to note that for an infinite isotropic dipolar fluid the di-
electric constant € can be expressed in the form [17, 19,
20]

3y
-1= . 3.5
=T nEnE)Ey (35)
Thus for conducting boundary conditions [i.e., € = oo,

f(¢') = 1], Eq. (3.4a) is the necessary condition for € — 1
to be positive and finite. In other words, with conducting
boundary conditions the system becomes unstable with
respect to ferroelectric fluctuations at the point where
the dielectric constant diverges.

We would also like to point out that an interesting
earlier discussion of the instability of the isotropic phase
with respect to dipolar ordering has been given by Hgye
and Stell [21]. Their theory also predicts the possible
existence of a ferroelectric phase.

IV. RESULTS

We have carried out calculations for dipolar soft and
hard spheres defined by the pair potentials

u(12) = uss(r) or uns(r) + upn(12) , (4.1a)

where upp(12) is as in Eq. (2.11) and the soft- and hard-
sphere interactions are given by

uss(r) = dess(a/r)!? (4.1b)
us(r) = {80 ’ ;;Z ) (4.1c)

Here, ess and o are parameters characterizing the soft-
sphere potential and d is the hard-sphere diameter.

It is convenient to describe dipolar soft-sphere flu-
ids with the reduced density n* = no3, the reduced
temperature T* = kT/ess, and the reduced dipole mo-
ment p* = (u2?/esso®)/2. Similarly, dipolar hard-sphere
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TABLE L

The results given by the density-functional theory for dipolar soft spheres
(DSS) and dipolar hard spheres (DHS). For the dipolar soft spheres, T* =

1.35 and

p* = (u?/essco®)'/? = 2.0914 and for the dipolar hard spheres u* = (u2/kTd®)/? = 1.8. n} is
the density of the isotropic phase at the transition, by is the fractional density change, and the

(Pm) are order parameters.

Model n} bo (P1) (P2) (Ps) (Ps) (Ps) (Ps)
DSS 0.8010 0.033 0.679 0.428 0.233 0.114 0.047 0.015
DHS 0.7550 0.073 0.727 0.485 0.282 0.146 0.064 0.020

systems can be described by specifying n* = nd® and
u* = (u?/kTd®)'/2. For dipolar hard spheres we report
results at different densities for u* = 1.8. For dipolar
soft spheres we consider the isotherm T* = 1.35 with
p* = 2.0914. This particular value of u* was chosen
such that u*/+/T* = 1.8 making the dipolar interactions
of comparable importance in both the hard- and soft-
sphere systems. All calculations for dipolar hard spheres
were carried out using the RHNC theory with Verlet-
Weis hard-sphere correlation functions [22]. For dipolar
soft spheres exact reference correlation functions are not
available in convenient form and the HNC approximation
was used throughout.

The results obtained from the density-functional cal-
culations are given in Table I. We see that first-order
ferroelectric transitions occur for both systems in qual-
itative agreement with the computer simulations [1-3].
However, quantitatively, the theory is poor and predicts
transitions at values of the dipole moment which are
significantly too small. For example, for dipolar soft
spheres at T* = 1.35, n} = 0.8 the true isotropic-to-
ferroelectric-nematic transition occurs at u* =~ 2.5. We
will see below that a serious problem with the present
calculations originates with the integral-equation approx-
imations used in order to obtain the direct correlation
functions. These approximations tend to overempha-
size the long-range dipolar correlations [23] and, con-
sequently, predict absolute-stability limits at densities
and/or dipole moments which are too low. Thus, if
exact direct correlation functions were available, the
density-functional theory might be more accurate than

3 4 -
L & i
L Ca—t .
L a- i
L . i
- o -
- [ i - -
L [
0.6 0.7 0.8
n;

FIG. 1. Coefficients occurring in the expansion (2.23).
The open and solid circles are n;&''%(0)+3y (i.e., € = co) and
n1&%2°(0) for dipolar hard spheres with p* = (u?/kTd?)/? =
1.8. The open and solid squares are n;é'!°(0) + 3y and
n18%2°(0) for dipolar soft spheres at T* = 1.35 and puto=
(4?/esso®)t/? = 2.0914. The dotted lines are to guide the
eye.

the present calculations suggest [24].

It is instructive to note that the sign of the coefficient
nr&'10(0) + 3f(¢')y occuring in Eq. (2.23) depends upon
the value of €¢’. For ¢ = oo, f(€¢/) = 1, and (see Fig. 1)
nrét1%(0) + 3f(€¢')y is similar to n;6%29(0) in that it is a
positive increasing function of n}. Thus Eq. (2.23) can be
minimized by nonzero values of b; yielding an isotropic-
to-ferroelectric-nematic transition [25]. At the other ex-
treme, for ¢ = 1, f(¢/) = 0, and ns&1°(0) + 3f(¢')y
is negative at all densities and clearly we would not ex-
pect Eq. (2.23) to be minimized by nonzero values of
b1. Our numerical calculations are consistent with this
deduction and no transition is predicted for ¢/ = 1. We
know from computer simulations [2, 3] (and from other
considerations [5]) that with ¢ = 1 the ferroelectric lig-
uid crystals break down into antiparallel ferroelectric do-
mains with no net polarization. The singlet density de-
fined by Eq. (2.2a) assumes a perfect or “single-domain”
liquid crystal and cannot account for domain structure.
Thus, insofar as the present calculations do not predict
a perfect ferroelectric liquid crystal when ¢ = 1, they
are consistent with the computer simulations. For rel-
atively large finite values of €/, n;é''°(0) + 3f(¢/)y can
also be positive and allow ferroelectric transitions. In
practice we found liquid-crystal crystal phases for values
of ¢ > 75 for dipolar soft spheres and ¢’ > 18 for dipo-
lar hard spheres. Of course for these systems we have
no way of knowing whether or not the perfect ferroelec-
tric nematic liquid crystals are thermodynamically more
stable than those consisting of antiparallel ferroelectric
domains. The present theory simply tells us that they
are more stable than the isotropic phase.

The static dielectric constants obtained for infinite sys-

AL B 5
300 — —
€ C ]
200 ° & 4
C e .

n & ]

100 — o —
|- o L] -1

C o . .

oL | | i .”

0.6 0.7 0.8
nj

FIG. 2. The dielectric constants for dipolar hard (open
circles) and soft (solid circles) spheres. The results for dipolar
hard and soft spheres were obtained with the RHNC and HNC
theories, respectively. The temperature and dipole moments
are as in Fig. 1.
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T T T T

0.9 - —

0.6 |- R

L L B

0.3+~ .. —

0 _I L " L 1_
0.6 0.7 0.8

FIG. 3. The stability conditions obtained for dipolar hard
and soft spheres with € = co. The results for dipolar hard
spheres are represented by circles and those for dipolar soft
spheres with squares. The open and solid symbols are 1 —
nr&1°(0)/3 — y and 1 — n;&*°(0)/5. The temperature and
dipole moments are as in Fig. 1. The dotted lines are to guide
the eye.

tems of dipolar hard and soft spheres are shown in Fig. 2,
and the stability conditions for € = oo are plotted in Fig.
3. We see that, as discussed in Sec. III, for ¢ = oo the
system becomes unstable with respect to the ferroelec-
tric nematic phase at densities which coincide with the
divergence of the dielectric constants. Furthermore, the
absolute-stability limits occur at densities which are only
slightly higher than the transition densities predicted by
the density-functional theory. Therefore, as mentioned
above, we conclude that much of the quantitative inaccu-
racy in the present density-functional calculations must
come from the integral-equation input [26]. We note [see
Eq. (3.4a)] that for values of ¢ < oo isotropic dipolar
fluids do not become absolutely unstable with respect
to the perfect ferroelectric at the point where the infi-
nite system dielectric constant diverges. Possibly these
systems become unstable with respect to structures with
antiparallel ferroelectric domains, but again the present
analysis does not take account of this possibility.

One further observation is of interest. For dipolar flu-
ids the pair distribution function g(12) can be expanded
in rotational invariants as in Eq. (2.4a). Also, for an
infinite isotropic system, the static dielectric constant is
given by the well-known relationship [17]

00D iy s

where §'1°(0) is the Fourier transform of g!°(r) evalu-
ated at k = 0. The growth of the long-range dipolar cor-
relations which lead to the divergence of ¢ is illustrated
in Fig. 4 where we have plotted 72g'1%(r). We note that
9110(r) = 3(u1 - p2)r/p?, where (), indicates an ensemble
average at r, and hence g*!°(r) becomes more positive as
the dipoles align. From Fig. 4 it is obvious that g*!%(r)
becomes positive everywhere and grows rapidly in both
range and magnitude as the density is increased. The
resulting divergence of §!1°(0) leads to the divergence of
€.

(4.2)

V. SUMMARY AND CONCLUSIONS

In this paper we have employed density-functional the-
ory and absolute-stability conditions in order to investi-

—_
LI LA L B B B

r/o

FIG. 4. The function r2g*!%(r) for dipolar soft spheres.
The temperature and dipole moment are as in Fig. 1. The
solid, dotted, and dashed curves are for n; = 0.7, 0.75, and
0.80, respectively.

gate the isotropic-to-ferroelectric nematic transition in
simple dipolar fluids. It is shown that a proper appli-
cation of these theories to dipolar systems requires that
one specify exactly how the long-range dipolar forces are
treated. We obtain explicit determinate expressions by
surrounding the sample with a continuum of dielectric
constant ¢’ and applying mean-reaction-field boundary
conditions. This is analogous to the boundary conditions
used in computer simulations.

Numerical calculations were carried out for dipolar
hard and soft spheres using direct correlation functions
given by the RHNC and HNC approximations, respec-
tively. For ¢’ = oo, the density-functional theory predicts
isotropic-to-ferroelectric-nematic transitions in qualita-
tive agreement with the computer simulations. However,
qualitatively, the theory is poor and the predicted tran-
sitions occur at dipole moments which are too low com-
pared with the simulations. Also, for a given tempera-
ture and dipole moment, the absolute-stability limits oc-
cur at densities which are only slightly higher than those
at the thermodynamic transitions. This indicates that
for a strongly interacting system, the integral-equation
theories tend to overestimate the long-range dipolar cor-
relations. Thus inaccurate direct correlation functions
clearly make a major contribution to the quantitative in-
accuracy of the present density-functional theory.

For the systems we have considered, the density-
functional theory also predicts ferroelectric nematics for
values of €’ greater than ~ 75 for dipolar soft spheres and
greater than ~ 18 for dipolar hard spheres. For lower
values of € no transitions are predicted. This is also in
qualitative accord with computer simulations which in-
dicate that for low values of € the ferroelectric nematic
phase breaks down into antiparallel ferroelectric domains.
The present density-functional theory and stability anal-
ysis considers only perfect ferroelectric liquid crystals and
does not take account of possible domain formation.
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