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Morphology of amorphous layers ballistically deposited on a planar substrate
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We report numerical simulation of the deposition of spherical particles on a planar surface, by ballis-
tic, straight-line trajectory transport, and assuming irreversible adhesion on contact with the surface or
previously deposited particles. Our data indicate that the deposit formed has a loosely layered structure
within a few diameters from the surface. This structure can be explained by a model of growth via chain
formation. Away from the surface we found evidence of a monotonic, power-law approach to the bulk
density. Both density and contact-statistics results suggest that the deposit formed is sparse: the space-
filling fraction is about 15%, and the average number of contacts is 2. The morphology of the deposit
both near the surface and in the bulk seems to be a result of competition of screening and branching;
nearly half of all the spheres are either single-contact dangling ends, or branching nodes with more than
two contacts.

PACS number(s): 05.90.+m, 68.55.Jk, 82.70.Dd

I. INTRODUCTION

Formation of deposits of proteins and monodisperse
colloid particles on planar substrates (surfaces) has been a
topic of recent theoretical interest [1] due to advances in
experimental realizations and characterizations of such
systems [2]. Since analytical theories are at best approxi-
mate [1], formation of multilayer deposits has been stud-
ied mostly by numerical means [1]. However, these nu-
merical studied were limited to lattice models, and many
of the detailed results were obtained only for the deposi-
tion on linear, one-dimensional "substrates. " In this
work we report the first detailed numerical investigation
of the morphology of off-lattice deposits of spherical par-
ticles at a planar, two-dimensional wall. We also intro-
duce a theoretical model that explains semiquantitatively
the numerical findings.

Our interest is mainly in the morphology of the deposit
near the wall (i.e., the structure of the first few layers).
Indeed, deposition experiments [1,2] providing motiva-
tion for our study typically involve formation of not too
many layers. (Note that the concept of "layers" is at best
approximate in random, amorphous structures. ) As em-
phasized in earlier studies [1], the transport mechanism
of particles to the wall is then not a decisive feature.
Here the simplest, ballistic-deposition transport will be
assumed: spherical particles are dropped randomly over
the substrate. They fall along straight-line trajectories
(perpendicular to the substrate) and stick irreversibly, at

the first contact, to the substrate or to one of the particles
deposited earlier.

We only report results for the final-state structure after
many spheres were deposited and the near-wall layers
reached saturation. Study of the time-dependent proper-
ties is also of interest. However, all such investigations
are rather computer-resource (time and memory)
demanding. Ballistic deposition modeling of colloid ag-
gregation at surfaces has a long history [3]. Recent stud-
ies of ballistic deposition on both linear and planar sub-
strates, mostly limited to lattice models, were largely fo-
cused on the properties of growing surfaces far away
from the wall [4,5]. For numerical investigations of
amorphous assemblies of spheres produced by means oth-
er than irreversible deposition, for modeling experimental
"powder" properties, consult, e.g. , Ref. [6]. Models of
epitaxial growth where particles fall on an ordered sub-
strate (e.g. , a lattice of spheres) and further relax, for in-
stance by rolling down to the lowest lattice position after
the first contact, have been considered in the literature
[7], although most numerical simulations were limited to
a lower-dimensional case of deposition of circles.

The outline of the later sections is as follows. The
model is defined and the numerical simulation details are
given in Sec. II. Section III is devoted to the presentation
and discussion of our results for the sphere-center density
as a function of the distance from the wall. Further dis-
cussion of the density properties near the wall, in the
framework of the chain-formation model, is the subject of
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Sec. IV. Finally, Sec. V contains the presentation of our
results on the statistics of sphere contacts and summary.

II. DEFINITIONS AND OUTLINE
OF THE NUMERICAL METHOD

Let the ball (sphere) diameter be D. We will measure
all quantities in dimensionless units. Thus, the substrate
surface was square, of size lD X lD, with l values of order
200 in our simulations. Periodic boundary conditions
were imposed in both directions within the substrate to
minimize finite-l effects. Each ball was positioned ran-
domly above the substrate and then "dropped" vertically
to stick at its first contact with the substrate or one of the
earlier-dropped balls. The number of balls in each run
was of order 10 and the results were averaged over many
runs; specific numbers and computer program details are
given later.

We recorded the ball density and the statistics of con-
tacts. The latter will be described in Sec. V. The ball-
center density was measured by binning the center coor-
dinates in the histogram with bins at

1 m 1 m+1—+—D&z( —+ D,
2 K 2 K

(2.1)

where z is the distance of the ball center from the wall,
while m =0, 1,2, . . . labels the bins. Let us denote the
count in bin m, averaged over many runs, as mentioned
earlier, by C

Note that the ball centers are located at distances
z ~ D /2 away from the wall. However, we found that the
count Co is much larger than the counts C &o, due to
the formation of a finite surface-coverage density of balls
in direct contact with the wall. If we introduce the di-
mensionless variable

=z 1h= ———
D 2

(2.2)

then the total ball density can be formally written, for
h ~0, as

[p(h }+85( h ) ]D (2.3)

Here the wall-contact density contribution (per unit area)
is given by OD, where 0 can be estimated numerically
from the relation

0= lim (Co/l ) .
&~ oo

(2.4)

The spatial ball-center density for h &0 is pD (per unit
volume), where

p(h ) = lim (KCxq /1 ) .
K~ oo

(2.5)

Results of our numerical simulations and their analysis
will be presented in later sections. In the remainder of
this section we outline some of the programing aspects of
the simulation. Readers interested in results only can
skip now to Sec. III.

In the deposition of the nth sphere, we select its planar
coordinates (X„,Y„) randomly and independently. How-

ever, the vertical coordinate z=Z„must be determined
by the first-contact condition. Let (X,Y,Z ) denote
the coordinates of the centers of spheres deposited ear-
lier, m =1,2, . . . , n —1. We examine the numbers z
defined by

z =Z +[D (X„——X ) —(Y„—Y ) ]' (2.6)

Most of these n —1 numbers will not be real. However,
we only keep those for which the argument of the square
root is non-negative so that they are real (for positive ar-
guments the positive root value is taken}. The resulting
real z values and the number D/2 are compared and
the largest among all these numbers is the required value
z'

A straightforward selection by maximization of (2.6)
among n —1 candidates z requires order n computa-
tions for particle n and hence order X computations for
depositing N particles. Our program actually spent only
order N computations for N particles. This was accom-
plished by splitting the area of the substrate into sectors.
For each sector we maintained a list of particles deposit-
ed in it. For each new particle, our program checked
particles only in a few neighboring sectors, rather than all
the previously deposited particles. Moreover, the parti-
cles in the sector were ordered according to their z coor-
dinates, and the checking within each sector was restrict-
ed to a few top particles.

III. RESULTS FOR THE DENSITY
OF SPHERE CENTERS

0=0.318+0.001 . (3.1)

Note that if the ball adhesion events were allowed only
on the substrate, and not on other balls, then this system
would be equivalent to the random sequential adsorption
process of depositing disks on a plane [1]. In the latter
process, the surface coverage (fraction of area covered)
reaches the value -0.547 at large times [8]. This corre-
sponds to the disk-center density -0.430, in units of
D . The result (3.1) is considerably lower, indicating a
significant screening of the surface layer by balls deposit-
ed in higher layers.

As already mentioned, the concept of a "layer" is used
here loosely. It turns out, however, that the deposit
formed does show some tendency to layering at least for
distances up to about h =5. The density of ball centers
near the wall, as obtained in our longest run, is shown in
Fig. 1. The fluctuations observed, suggesting the layered
structure, can be attributed to chain formation, which
will be modeled in detail in the next section. The layering
tendency is not due to any ordering of a crystalline type.
Examination of few snapshots of the two-dimensional

Our longest run took about 2 CPU weeks on a SUN
SPARC workstation. The substrate size was l =200.
The number of balls dropped in each run was 10, and the
results were averaged over 1005 independent runs. The
bin size was I/X= —,', . From the data collected in this
run as well as in other simulations (see further below), we
estimate
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FIG. 1. Spatial density of ball centers evaluated numerically
in the long run with bin size 1/K=

97 see Sec. III. The histo-

gram counts were multiplied by K/l according to (2.5), to yield
the density estimates which were plotted at the h values corre-
sponding to the centers of the bins; cf. (2.1) and (2.2). The lines
connecting three points near h = 1 were drawn to guide the eye.

cross sections parallel to the substrate both near and
away from the wall, for a run with the substrate size
i=256, suggests no crystalline regularity in the ball ar-
rangement.

For distances h + 5, the density oscillations fade away;
the density decreases monotonically. In earlier numerical
studies of ballistic deposit growth from point seeds and
on lattice substrates, mainly for low-dimensional lattice
models [4,5,9,10], it was noted that the density away from
the seed or surface falls as a power law,

p(h) =p( ~ )+const/h~ for h ))1, (3.2)

with the exponent estimates spanning the range
p =0.80+0.06 for two-dimensional substrates; see
[4,5, 11]. This behavior attracted much interest and it
was attributed [11] to the formation of large gaps due to
surface roughening, which in turn arises from screening
effects. As pointed out earlier, the morphology of depos-
its far away from the substrate is sensitive to the trans-
port mechanism. The ballistic transport yields screening
too weak to cause formation of a ramified fractal struc-
ture. The power-law tail is thus the most profound result
of screening in ballistic deposits. In particular, the ex-
ponents in (3.2) was related to the kinetic roughening ex-
ponents; see [11]for further discussion.

Our longest-run data were recorded up to approxi-
mately h =20. In order to check that the observed
monotonic decrease in density was not due to incomplete
saturation, and to make sure that finite-I effects were
negligibly small, we made another long run. The number
of spheres was increased to 1.6 X 10, while the substrate
size was reduced to /=160. The bin size was 1/K= —„', ,
and the results were averaged over 236 independent depo-
sition runs. The data were recorded up to approximately
h =50. Comparison of the results of the two long runs

FIG. 2. Density of ball centers vs 1/h '. The data shown
are from the two long runs as described in Sec. III.

confirmed the observed monotonic variation. The data
from both runs are plotted versus h in Fig. 2.
Despite the statistical noise, it can be claimed that the
power-law behavior is consistent with the data and that
the exponent in (3.2) is in the range p =0.8+0.2. The
saturation density is

p( ~ ) =0.280+0.005 . (3.3)

p( oo ) =0.2798+0.0006,

in excellent agreement with our estimate (3.3).

(3.4)

IV. CHAIN MODEL OF THE
DENSITY VARIATION NEAR A WALL

Let us assume that the deposit growth can be described
in some approximate sense by the following chain-
formation model. The incoming balls attach to the end
balls of chains of previously deposited balls. Each chain
starts with a ball on the substrate and then the later-
attached balls can be identified in a linear sequence. Ob-
viously, such a model can be at best approximate. Let us,
however, explore its implications.

Within an average, effective-field type prescription, we
should be able to assign the probability function w(x) for
the mth ball in a given chain to adhere with its center dis-
placed the distance x (measured in units of D) from the

We also tried fit to the exponential decay law. However,
the power law is clearly favored.

The asymptotic "bulk" density of sphere centers
-0.28D corresponds to the packing fraction (fraction
of the volume filled up) of —15%. This is considerably
smaller than the packing fraction of random assemblies
of spheres [6] formed by bulk mechanisms with relaxa-
tion. Indeed, in the latter processes the filled volume
fraction is typically over 60%. Presently, the most accu-
rate estimate of the packing fraction for the ball-
deposition ballistic aggregation model in three dimen-
sions is 0.1465+0.0003; see [4]. This range corresponds
to
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center of the ball (m —1). This displacement is in the
vertical h direction. The function w (x) is normalized

f w(x)dx = 1 . (4. 1)

w(x)=2x for O~x ~ 1 (4.2)

and w (x ) =0 outside this range of the center displace-
ment.

The first balls in the chains, those in direct contact
with the wall, contribute the term

In fact, this function will be strongly localized in
0«x «1. The value x =1 corresponds to the head-on
deposition, while the value x =0 corresponds to the ex-
treme circumferential impact parameter equal to the
sphere diameter.

The simplest model is of course to assume that both
the surrounding chain spheres and the preceding spheres
in the same chain do not interfere in any way with the
deposition event. It is then quite easy to check that on
geometrical grounds alone a sphere dropped with uni-
form probability distribution over the cross section of
another sphere will adhere with probability

p( ~ ) =8/x, ,

where x
&

is the first-moment displacement

(4.6)

were plotted with the same axis ranges. Note that the re-
sulting density function p(h) has a discontinuity at h =1,
as well as a discontinuous (h —1)-order derivative at each
integer value h & 1.

The chain-model ideas in deposition, in a somewhat
different context, have already been used in the literature;
see, e.g. , [10], where off-lattice ballistic deposition of cir-
cles on a seed was studied. While it is tempting to modify
the simplest distribution (4.2) to improve the quantitative
consistency with the measured density, the chain model
should not, in fact, be taken too seriously. First, at short
distances it is not quite clear if the actual density will
have true derivative discontinuities near integer h, or just
sharp but rounded anomalies. This is difficult to decide
from the numerical data available. Within the chain
model, one would then round up the tv(x) function near
x =0 and x =1.

At large distances, the chain-model prediction for the
density is

p' "=85(h) (4.3) x, = f xw(x)dx . (4.7)

to the density (measured in units of D ); see (2.3). The
contribution of the balls m & 1 can be calculated itera-
tively,

p' '(h)= f p' "(h —x)w(x)dx,

where the total spatial density in (2.3) is then given by

(4.4)

(4.5)

FIG. 3. Density of ball centers calculated with the simplest
chain-model probability function (4.2).

Already the simplest model distribution (4.2), with
8=0.31g taken from the numerical estimation [see (3.1)],
gives the density function, which has many semiquantita-
tive similarities with the measured density near the wall.
This function was evaluated numerically and plotted in
Fig. 3. It should be compared with Fig. 1; both figures

However, our numerical estimates of 8 and p( ~) suggest
x, = 1.14 & 1, see (3.1) and (3.3). Thus, the "realistic" dis-
tribution w(x) must "protrude" past x=1 to fit the
large-h data. (Note that the large-h limiting value in Fig.
3 is 0.477.)

Further difficulty is suggested by the power-law tail in
the density (3.2). The Fourier-space considerations not
detailed here [note that the convolution (4.4) becomes a
product in the Fourier space] suggest that this tail im-
plies long-range tails in the distribution w(x) as well. All
these observations make it actually quite difficult to pro-
pose a plausible few-parameter form for w(x) to fit all the
features of the observed density variation within the
chain model.

%'e therefore adopt the point of view that the chain
model can be used (a) to describe the behavior of the
saturated-deposit density within few diameters from the
wall semiquantitatively; (b) to suggest some general
features of the density to be checked by future numerical
simulations, such as possible discontinuities in p(h) and
its derivatives; and (c) in time-dependent deposition mod-
eling for short times when the average coverage is within
few diameters.

Note that relations (4.3)—(4.5) for the density are recur-
sive along the chains, which are anyway approximate ob-
jects. In a series of papers [12], Savit and co-workers
considered approximate recursive relations in time for
particle adhesion probability distribution within the
growing kinetically roughened interface. Their con-
clusion was that in many models quasiperiodic
irrational-frequency density Auctuations should be
present, with density Auctuating on scales larger than the
underlying particle-size "clock" length, 1 in our reduced
units (2.2). It should be emphasized that fiuctuations in
density and other quantities (see Sec. V) found in our
work are not the bulk effect described in [12]. In fact,
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what we are observing is the clock particle-size fluctua-
tions with underlying periodicity 1. These fluctuations
fade away for distances over 5 —6 particle diameters from
the wall. Therefore, the irrational-frequency fluctuations
I12] cannot be present in the model considered here.
Indeed, far from the wall even the basic particle-size
periodicity is not preserved; the deposit is truly amor-
phous. However, bulk density fluctuations can be present
in lattice ballistic deposition I13], as well as in off-lattice
models where the underlying discrete structure is
preserved far from the wall. This can be achieved by
having lattice substrate and relaxation mechanisms for
particles to align themselves with the deposit structure on
adhesion, or by having particle shapes, e.g. , oriented
cubes, which force layer structure in the bulk.

V. CONTACT STATISTICS

One of the conclusions of Secs. II and III was that the
deposit formed by ballistic transport and irreversible
sticking is quite different from the uniform assembly of
randomly packed spheres I6]. We found that the density
is much lower, and the structure has a preferred orienta-
tion and tendency to layering at least within the first few
diameters from the wall. It is well established that the
average number of spheres in contact with each given
sphere in the randomly packed structure is near 6; see I6].

We collected the statistical data on the number of con-
tacts per ball, binned similarly to the density statistics de-
scribed in Sec. II. We only found contacts with 1, 2, 3, 4,
5, and in very few instances, with 6 balls (the count in-
cluded wall contacts as well). Let us denote by f;(h) the
fraction of balls with i =1,2, 3,4, 5, 6 contacts, at the (di-
mensionless) distance h from the wall; see (2.2). The
average number of contacts is given by

of behavior similar to the center density: there are oscil-
lations and (possibly rounded) discontinuities in the func-
tion or its derivatives near integer values h =1,2, . . . .
Although not shown in the figure, the value =1.900
found at h =0 suggests also the discontinuity as h —+0.

The large-h behavior of the average number of contacts
can be represented by a power-law relation similar to
(3.2). The data from the two long runs are quite straight
when plotted versus h (cf. Fig. 2), suggesting that the
same exponent p =0.8 applies here. The limiting value as
h —+ ~ was estimated as 2.000+0.005. Early numerical
studies I3] of ballistic deposition also yielded bulk contact
numbers near 2. In fact, one can prove that this limiting
value is exactly 2, provided the average number of con-
tacts approaches a constant value as h ~~, i.e., the fluc-
tuations are damped, as is indeed suggested by our data.
Note that this "coordination number" is much lower
than the typical powder values -6 quoted earlier.

The fractions of contacts f,.(h )0) for i =1,2, 3 are
plotted in Fig. 5. The remaining contacts i =4, 5, 6
amounted to at most 2%, typically less. Thus, Fig. 5
summarizes the main contact-statistics properties. Each
fraction has (possibly rounded) discontinuities similar to
the density and average number of contacts. There is
also the discontinuity at h =0, where the values, not
shown in the figure, were =0.286, 0.541,0. 161, for
i = 1,2, 3, respectively.

Note that the simplest chain model would correspond
to f2=1 and the number of contacts 2. In actuality,
however, far from the wall only about 53%%uo of the balls
have two contacts. About 25% of the balls have only one

6 6

g if, (h) where g f;(h)=1 . (5.1)

This function, as estimated from our longest run (Sec. II),
is plotted in Fig. 4 for h &0. It shows a general pattern
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FIG. 4. Average number of contacts for spheres with centers
at h )0; see (5.1).

FIG. 5. Fraction of spheres with I, 2, and 3 contacts (marked
by f; =, 2 3), for h & 0. The remaining contact fractions, for 4, 5,
and 6 contacts, sum up to at most -0.02 and are not shown.
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contact, which indicates that they were screened from the
incoming flux of balls by the surrounding structure, thus
becoming "dangling ends. " On the other hand, the
remaining 22% of the balls have 3 (about 20%) or more
(about 2%) contacts, thus forming branching points in
the structure. Qualitatively, these conclusions were also
confirmed by visual examination of a "snapshot" of the
ball configuration in the plane perpendicular to the sub-
strate.

The above percentages were far from the wall. Figure
5 suggests that both screening and branching change
abruptly near integer h values within the first few diame-
ters from the wall, which correlates with the density fluc-
tuations, although we are not aware of any theoretical
modeling of such properties.

In summary, we reported a detailed investigation of the
morphology of ballistic deposits near walls. The ob-

served structure is disordered but an approximate notion
of layers can be used near the wall. Deposits formed by
irreversible sticking are much sparser than the relaxed,
powder-type structures. On the average, each particle is
in contact with two others particles. The chain model in
its simplest form accounted only for the near-wall layer-
ing, while the more bulk properties seem to be governed
by competition of screening and branching.
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