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Perturbation theory in the exact linearized kinetic equation for a plasma
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An analysis is performed of the perturbation theory dealing with particle interactions in the exact
linearized collision integral (CI) for a plasma in an electric field. It is shown that for a fully ionized plas-
ma the usual results of kinetic theory correspond to a high-frequency expansion of the CI, whereas the
static limit of the exact CI in a weak-interaction approximation is in disagreement with the usual kinetic
theory.
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I. INTRODUCTION

The kinetic theory of plasmas is based on the statement
that under certain conditions a closed system of kinetic
equations (KE) for one-particle distribution functions
(OPDF) f, (p, r, t) exists [I—4]. The derivation of closed
kinetic equations is not only based on the weakness of in-
terparticle interaction or low density of particles in the
system considered, but also on statistical assumptions,
such as weakening of correlations in the past, which can-
not be proved strictly. In this connection the verification
of the correctness of the assumptions is of essential in-
terest. It is especially important with respect to attempts
to develop a kinetic theory for strongly coupled plasmas;
see, e.g. , the recent paper [5] and references mentioned
there. Evidently, such verification can be implemented
by comparing consequences of the KE method with exact
results from microscopic statistical theory.

In the present paper the generalized KE for the OPDFf, ( p, r, t ) follows from linear-response theory (LRT) for
plasmas in an electric field. All effects of strong interac-
tion are included in the collision integral (CI). As will be
shown, the use of perturbation theory with respect to in-
teractions between particles leads to different results for
different sequences of limits, i.e., A, ~O, co—+0 or co —+0,
A, —+0, where co is the frequency of the electric field and A,

is the interaction parameter. From a physical point of
view it seems obvious that for the description of kinetic
processes in a weakly nonideal plasma in a static situa-
tion, the sequence of limits co~0, A, —+0 is appropriate.
This cannot be realized, however, within the framework
of the usual KE method which is restricted in principle to
the sequence A, —+0, co —+0. Therefore, it is necessary to
investigate the correctness of the usual results of the KE
method in the static limit. To this end we consider in
Sec. II the general form of the linearized KE and the
linearized CI in the Lenard-Balescu approximation for
co~0. In Sec. III we use the formalism of LRT to estab-
lish the generalized linear kinetic equation in closed form.
This KE for the OPDF is exact for arbitrary strength of
interaction and arbitrary frequency of the external field.

We show that in the limit X—+0, co—+0, the Lenard-
Balescu CI is obtained. In Sec. IV we consider the oppo-
site sequence of limits, co~0, A, ~O, and discuss the
structure of the CI in this case. In Sec. V some con-
clusions are formulated.

II. GENERAL LINKARIZED KINETIC EQUATION
AND LKNARD-BALESCU COLLISION INTEGRAL

One of the consequences of the KE method for a plas-
ma is a closed integral equation for the OPDF f, ( p, r, t)
linearized with respect to the electric field in the limit of
weak nonuniformity. The common form of this equation
can be written in a convenient form by using Fourier
variables (k, co) instead of (r, t):

gf (&)(p)
itof,("(p,k~—O, co)+Z, e E (k~O, to)

Bp~

d3—g I 3 W,b(p, p»to)fb '(p&, k O, co) .
(2m%)

Here, E(k~O, co) is the weakly inhomogeneous electric
field and f,' '(p) is the exact equilibrium OPDF for parti-
cle species a (having charge Z, e and mass m, ). The ker-
nels 8'

b are fully determined by the equilibrium parame-
ters of the plasma: temperature T and densities n, for
which the electric neutrality condition is valid:

QZ, en, =O .

Within the framework of the KE method, the kernels
8'

b can be calculated accurately to order A, , where A, is
the interaction constant (proportional to e ) [I—4]. In
particular, for weakly nonideal two-component fully ion-
ized plasmas, the functions Wb(p, p„ )tohave the follow-
ing form in the limit co—+0:
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W, (, (p, pi)= lim W',
(, (p, p„co)

co~0

X g J 1 J sinh ((rico, /2T) l u„(q,co() l

(2M) (2m. )
— 2m.

X ImQ„(p„p+fiq, co, )™Q„(pi—fiq, p2, co i )

X [ [5(p—p, )
—5(p —p, +irtq) ]5,

+ [5(p —pz) —5(p —p2+i)iq)]5(, , j . (3)

Here, f,' '(p) is the Fermi-Dirac (or Bose-Einstein) distri-
bution function with respect to energies s' =p /2m, for
particles of species a characterized by spin S,:

(0)( ) (0)(p )Q„(,„co)=(2S, +1), (4)
Pl

u (, (q, co) is the screened Coulomb interaction potential
for particles of species a and b:

I

ascertain that in the limit case (8) one must also have

Ale

III. LINEAR-RESPONSE THEORY VERSUS
KINETIC-EQUATION METHOD:

THE LIMIT A, ~O FOLLOWED BY a)~0

(12)

4~Z, Zbe
(5)

e ( q, co ) is the dielectric function in random-phase ap-
proximation (RPA):

e (q, co)=1—g u„(q)II„(q,co), (6)

us(, (q, co) =u, (, (q)/e (q, co), u, i, (q) =

icof,("(p,k~—O, co) eE —(k~O, co)
~Pa

= —v„"(p)f,' "(p,k ~0,co), (9)

where the static electron-ion collision frequency is given
by

„"(p)= 3 J dq q lu„(q)l [e (q, o)e„(q,O)]
4m@

and II„(q,co) is the polarization operator for particles
of species a in RPA:

d pII„(q,co)= J Q„(p,p+A'q, co) . (7)
( 2rci)i )

3

The functions W,& of (3) determine a linearized CI corre-
sponding to the quantum generalization of the Balescu-
Lenard KE [2—4,6,7]. Up till now, there exists no exact
solution of the linearized KE (1) with the W,&" of (3).
The only exception is the Lorentz plasma characterized
by

Z, »1, M,. »M, .
In this case and for frequencies much less than the plas-
ma frequency, the linearized KE can be presented in the
form of [8]:

The above results have been checked and generalized
on basis of LRT [4] allowing a linear (with respect to the
electric field) approximation to account exactly for arbi-
trarily strong particle interactions. Particularly, an exact
OPDF f,'"(p, k ~O, co) has been defined by the following
relation [9—11]:

gf (0)(p)—icof,"'(p,k~ ,0co) +Z, e E (k~O, co)
Bp

=«&p, l&»~.(k 0,~), (13)

and &, are the creation and annihilation operators for
particles of species a characterized by momentum p and
spin number s, « AlB )) is the retarded Green's function
(GF) of operators A and k
« A lS))„=——lim f dt exp(icot —5t)& [A(t),k(0)]),

A 5~0 0

A (t) is the operator A in Heisenberg representation, and
& ) is the average value with respect to the Gibbs grand
canonical ensemble containing the exact Hamiltonian of
the plasma. From (13) the well-known Kubo formula
[11]for the frequency-dependent plasma conductivity fol-
lows directly [15].

Direct substitution shows that the OPDF
f,'"(p, k ~0,co) from (13) satisfies Eq. (1), if the functions
W, & are defined by [12]

~.b(p pi ~)
=icov«8', ll

e„(q,co)=1—u„(q)II„(q,co) .
(10)

(11)
«8 ... Ipi I )) m(, /Z), ep, .

ac,'Pl

At the same time, using relations (3)—(7), one can easily (14)
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where V is the volume of the system. Relation (14) is to
be understood in the thermodynamic limit. The more
general form of 8',b for the inhomogeneous case was
found in [13]. So the use of LRT allows us to determine
an exact form of the functions W, b in Eq. (1). This form
is such that the functions W, b of (14) are expressed in
terms of the exact equilibrium GF. It allows us to make
use of the well-known methods for calculating the tem-
perature GF on the basis of diagram techniques of per-
turbation theory [14].

According to [15,16], the calculation of functions like
8'

b within the framework of the diagram technique for a
plasma amounts to a series expansion with respect to
three dimensionless parameters describing the interaction
between particles: the thermodynamic parameter of
nonideality y, Born's scattering parameter u, and the dy-
namic parameter &~ -v/co, where v is a characteristic col-
lision frequency. Thus, the corresponding series of per-
turbation theory for the kernels 8',b has the following
structure:

W,b(p, p„n))= g W,'b'(p, p„co;a,y), (15)

where

W b (p, p(, ~,~, r)=(&)
gf (o)

aeb
icov« 8', lP

(16)
The superscript for functions W,'b' in (15) indicates the
order with respect to parameter sc. Some features of the
series (15) require attention. The first term (16) of the ex-
pansion (15) is finite at n)~0, while the remaining ones
diverge [15,16]. The divergence problem connected with
co dependence is known in the theory of kinetic equations
[17,18]. It arises from the attempt to go beyond the
lowest order of perturbation theory in terms of the in-
teraction between particles or their density.

Then the first term (16) in the expansion (15) is expect-
ed to comply with the usual results of kinetic theory for
weakly nonideal plasma: a « 1, y « 1 [1—4]. Indeed, if

we calculate the function W, b and restrict ourselves to
the diagrams shown in Fig. 1, we obtain [15,16] the
known results of kinetic theory for a weakly nonideal
plasma in a weak electric field including relation (3).

As for the remaining terms of series (15), there is the
possibility of partial summation of the most diverging
terms at co~0. This leads no doubt to an OPDF f,"'
which is finite in the limit co~0.

However, the KE method implies that the result of
summing diverging terms of series (15) corresponds to a
higher order of magnitude with respect to the interaction
between particles as compared with the first term (16). It
is not possible to prove this statement within the frame-
work of the KE method; in fact, as we will see from Sec.
IV, it is incorrect.

IV. LINEAR-RESPONSE THEORY VERSUS
KINETIC-EQUATION METHOD:

THK LIMIT co~0 FOLLOWED BY A, ~o
On the basis of relations (1), (13), and (14), it is possible

to define the structure of the kernels 8',b in the static
limit for the case of weak interaction between particles
without using series expansions of perturbation theory.
Let us first note that using diagram techniques one can
easily verify that

«8;, lg,'„,».=«8,',
„

lk;. ». (17)

Next, generalizing relation (12), we consider the efFective
collision frequency v, (p, n) ) for particles of species a:

Plg d p& Zfep~&

Z, eP b (2m%)
W (, , n)) .

(18)
Using (14), (17), and (18), we obtain

gf (0)(p)
v. (p, ~)=tm&&g;, lp I &&

—Z.ep
Bp

+(&8'„lJ~I&&.
.

(19)
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P Pl
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FIG. 1. Diagram expansion of the correla-
tion function ((N~lN~ &&;n, which leads to a

n

generalized Balescu-Lenard equation. The
wavy lines are the screened potentials; the
straight lines are the Green's functions.

p&a p)a
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Hence, for the OPDF f,"'(p, k~0, co), the following ex-
act relation is valid [9,10]:

af.'"(p)
i—cof,"'(p, k~0, co) +Z, e E (k —+O, co)

Bp

= —v, (p, co)f,'"(p, k ~0,co),

where in the limit case of weak interaction we have
v A, and

(21)

~1+ +
v, (p)

Substituting (22) into (14), we obtain

W,b(p, p, ) = lim W,b(p, p„co)
co~0

tlf„'"(p,)= —vb(Pi) .
Bsp

limv, (p, co)=v, (p)( ~ .
60~0

VA'thin the framework of the usual KE method, the KE
takes the form (20) only in the case of a Lorentz plasma
[cf. (8)] and then only the static approximation (21) for
the collision frequency v, (p, co) is used [see (9)—(12)].

The nonintegral form (20) of the exact KE and the in-
tegral form (1) with (14) lead, in weak interaction approx-
imation, as shown in [15], to different results in the static
limit co~0, whereas both coincide with results of the KE
method at high frequencies [7,19]. The last statement is
true for all frequencies, if e-e interactions are formally
omitted. Next, taking into account (21), we find from (19)
for the limit case of low frequencies co:

(0)

((8', ~p I ))„=Z.ep (22)
Bp

in the lowest approximation with respect to the interac-
tion between particles, which can be done easily as fol-
lows [13]:

»m V((]V';, ~]V,', ))„"'

(25)

V. CONCLUSIQNS

Relation (25) means that for the calculation of kernels
R,b from the perturbation theory, one should not restrict
oneself to the first term (16) of series (15), which leads to
the usual results of kinetic theory including the Balescu-
Lenard KE. It is necessary to carry out a partial summa-
tion of the divergent terms of series (15) in the limit
~0. Then a contribution of the same order with

respect to the integration between particles as the first
term (16) of the series (15) must appear. From this point
of view, the usual results of the kinetic theory comply
with the calculation of 8',b at the high-frequency limit:
co »V only.

At the same time, there is the possibility of using the
first term (16) of the series with respect to parameter
n-v/co for the calculation of the collision frequency
v, (p, co) from (19) for a weakly nonideal plasma. In any
case, the results of such calculations [9] do not contradict
the results described above and expressed by (25).

, af.(')(p)
=(2M) 5, b5, , 5(p —p, ) . (24)

IJ

As a result, in the limit of weak interaction the functions
W,b(p, p, ) must have the following structure:

W,b(p, p, )= —(2rrirt) v, (p)5, b5, , 5(p —p, ) .

But this structure does not follow from the KE method;
even the Lorentz model has a different structure.

X lim V«A'„~P', , )). . (23)
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