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Calculating the helical twisting power of dopants in a liquid crystal
by computer simulation
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The helical twisting power determines the pitch of the helical structure produced by introduc-

ing a given concentration of chiral dopant molecules to a nematic liquid-crystal phase. By using
alternative, twisted, periodic boundary conditions, and measuring the relative chemical potentials
of right- and left-handed dopants in a twisted nematic phase, we have succeeded in measuring this
property by computer simulation of a simple molecular model. The technique should be generally
applicable.

PACS number(s): 61.20.Ja, 61.30.Cz

In the simplest liquid-crystal phase, the nematic,
molecular orientations are ordered, in the sense that there
is a preferred direction in space, the director n. Suppose
we take the undistorted director field n(r), where r is the
spatial position, to lie in the x direction, n(r) = (1,0, 0).
Splay, twist, or bend deformations are resisted by the
Frank elastic constants Ki, K2, and Ks, respectively. A
helical, or uniformly twisted, nematic state

n(r) = ( cos P(z), sin P(z), 0), = k = const,

where V is the volume of the system. Such a deforma-
tion may be induced by mechanical torques applied at the
surface of the sample, or by applied fields. Alternatively,
such a twisted director field results when small concen-
trations of chiral (left- or right-handed) dopant molecules
are added to a nematic phase; the result is termed a chiral
nematic or cholesteric phase. At low dopant concentra-
tions there is a linear relation between concentration and
equilibrium wave number ko, which we write convention-
ally [2] as

kp = 27r/Ao ——4+Pp, (2)

where p = N/V is the number density of dopant
molecules. The constant of proportionality P has the di-
mensions of area and is termed the helical twisting power.
The sign of P, and hence ko, determines the sense of the
twist. In the presence of such dopants, the twist contri-
bution to the elastic free energy becomes [2]

AX = —VK2(k —ko),=1 2

2
(3)

and this resists deviations from the uniformly twisted
state with k = kp.

characterized by its pitch A or wave number k = 2vr/A,

has an elastic free energy relative to the undistorted state
[1 2]

AP = —VK2k,
1
2

The two parameters in these equations, Kz and P, are
of great importance in determining the behavior of liquid-
crystal systems in optical devices. It is of great interest to
investigate the relationship between these quantities and
the structures of both the solvent and dopant molecules,
using theoretical methods and by computer simulation.
Recently, we obtained estimates of the elastic constants
by observing k-dependent orientational fluctuations in
computer simulations [3] and by measuring the internal
torque density present in a uniformly twisted nematic
phase [4]. At first sight, the calculation of P seems a
much more difficult task. The requirement to avoid un-

physical surface effects by using periodic boundary con-
ditions means that the helix pitch must be commensurate
with the simulation box length. Typical values of Ap, for
dopant concentrations of a few percent, are comparable
with the wavelength of visible light: far larger than acces-
sible system sizes in molecular simulations, using 1000
particles. High concentrations of dopant would be needed
to produce much smaller values of Ao, but Eq. (2) is only
valid in the dilute regime. Clearly, the properties of a
nearly pure liquid of chiral molecules will be quite differ-
ent from those of a dilute solution. In experiment, more
exotic phases (the "blue" phases) may be formed as the
dopant concentration increases, so it may not be at all

relevant to study a small, highly concentrated sample.
Moreover, we anticipate that very long simulation time
scales would be needed to establish the equilibrium helix
pitch for a given composition of liquid.

In this paper, we demonstrate that the helical twisting
power P can, in fact, be measured in a simulation, and
we illustrate this by calculating it for chiral molecules
composed of two hard-ellipsoidal units, in a scissors ar-
rangement, dissolved in a nematic phase of ellipsoidal
monomers. In this particular case we are able to inves-

tigate a range of geometries for the chiral dimer, and
relate the structure to the value of P, using the results of
a single simulation of ellipsoids at each state point. The
chiral dimer is representative of a class of molecules actu-
ally synthesized and studied experimentally, and known
to have very high values of P [5]. The method is not re-
stricted to this case, however, and we indicate later how
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BP = 8vrPK2k,

so

P — P+
8' K2k

(5)

Hence a measurement of the chemical potential difference
p, —p, + in a twisted nematic phase, with a simultaneous
determination of the elastic constant K2, should be suffi-
cient to determine P. We assume that k is sufficiently low
that the expression for the elastic free energy is correct;
also the measurements must be made at vanishingly low
dopant concentrations.

The twisted nematic phase is stabilized by conducting
the simulation in twisted periodic boundary conditions,
using a cuboidal box containing exactly one-quarter of
a turn of the director helix. The box has dimensions
L~ = L„g L, . It is surrounded by periodic replicas in
all directions. However, we adopt the convention that the
2: and y components of the center-of-mass vectors r, , the
molecular axis vectors e, , and all associated velocity and
angular velocity vectors, of image particles in the neigh-
boring box in the +z direction are rotated by vr/2 about
the z axis with respect to those in the original box. Those
in the neighboring box in the —z direction are rotated by
—7r/2. Particle coordinates r; are measured with respect
to the center of the box for convenience. This conven-
tion is implemented whenever a particle leaves the box
through one of the faces at z = kL, /2: it is replaced
by the incoming particle at the opposite face, which has
(x, y) coordinates rotated by ~sr/2 as appropriate. The
convention is also applied to the calculation of all pair-
wise vectors crossing the faces at z = kL, /2.

The efFect of this is to impose a helical structure with a
pitch equal to 4L ~ on the orientational distribution in the
system. The consequences of such a twist on the trans-
lational distribution in a solid would be dramatic: enor-
mous stresses would result from the perturbation of the
positional distribution. The same applies to any phase
for which the twist couples with long-range translational

it may be applied to more general dopants. The only
requirement is that a method be found to measure the
chemical potential difFerence between mirror-image left-
and right-handed forms of a dopant molecule, in a uni-
formly twisted nematic phase of fixed pitch. There is no
need to adjust the pitch to the equilibrium value consis-
tent with any particular dopant concentration: we simply
use thermodynamic relationships to deduce values of P.

Consider a twisted nematic phase of pitch A = 2vr/k,
containing small numbers of molecules N+ and N of
mirror-image forms of a dopant, having equal and oppo-
site values of the helical twisting power P~ = +P. Then,
from Eq. (3), the elastic part of the free energy is

2

AX= —VK2~ k — [N+ —N ] ~2 q V

Assuming that this elastic term is solely responsible for
any difference in the chemical potentials between mirror-
image forms, we have, in the limit N+, N —+ 0,

ordering (for example, smectic phases in certain circum-
stances). However, the nematic phase lacks translational
order, and so there are no undesirable consequences of
perturbing the center-of-mass positions in this way: these
fiuids are stress-free by deFinition. Because the twist is
exactly her/2, all the simulation boxes in a given xy layer
match up exactly with appropriately rotated periodic im-
age boxes in the layers above and below. This would not
be possible if the rotation angle were made an arbitrary
parameter. These boundary conditions are discussed in
more detail elsewhere [4].

Apart from these boundary conditions, our simulation
techniques are standard [6]. We conduct molecular dy-
namics simulations of hard prolate ellipsoids of axial ra-
tio e = a/b, a being half the length of the symmetry axis
and b half the length of each of the two perpendicular
axes. The molecules move in free fIight, with constant
linear and angular momenta, in between impulsive col-
lisions. They are treated kinematically as linear rotors,
having unit mass rn and a moment of inertia I (about
the nonsymmetry axes) chosen on the basis of uniform
mass distribution within the ellipsoid. The moment of
collision between each pair is determined by using two
equivalent, exact, criteria due to Vieillard-Baron [7] and
Perram and Wertheim [8]. The colliding surfaces are
smooth, with the impulse directed normal to the sur-
faces, and the magnitude of the impulse determined by
the laws of conservation of energy, linear momentum, and
angular momentum. Units of length are chosen so that
8ab = 1 and we set kBT = 1 to determine velocity and
time scales.

Here we report results for ellipsoids of axial ratio e = 5,
at densities p/p, ~ between 0.5 and 0.6, where p,~ is the
close-packed density. The lower end of this range is close
to the nematic-isotropic phase transition, while the upper
end is safely below the estimated freezing density. We use
a box length L, = 2L = 2L„15units at the densities
employed here, so the helix pitch is A = 4L, ~ 60.

The chemical potential difFerence p —p+ is measured
as follows. We restrict our interest to dopant molecules
composed of pairs of ellipsoids in surface-surface contact.
The contact pair geometry is defined by three quantities:
two parameters yq and gg determining the location of
the contact points on the surface of each ellipsoid and a
twist angle P between the unit axis vectors ei and e2 (see
Fig. 1). The yi parameter can be defined as the angle
between ei and the vector joining the center of molecule
1 with the point of contact on its surface, and similarly
for molecule 2. The excess chemical potential of such
a dimer pd",. „(yi,y2, $), dissolved at infinite dilution
in the ellipsoid fIuid, is related to the monomer excess
chemical potential p~ „~ „[9]:

pdjrn~ (Xi, X2, P) = 2p, "„,—knT In V(X&, Xp, P), (6)

where y(yi, y2, P) is the background pair-correlation
function for monomer ellipsoids. Provided the ellipsoids
do not overlap, y is identical with the equilibrium pair
distribution function g(gi, yz, P). Thus the desired quan-
tities, for all dimer configurations that arise in a simula-
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FIG. 1. Two views of the chiral dimer molecule, illustrating
the angles Xq, X2, and p defined in the text. Xq and X2 are the
colatitude angles locating the contact points on each ellipsoid
surface. P is the twist angle between the symmetry axes of the
ellipsoids eq and e2, about the line normal to both surfaces
at the point of contact.

tion of the monomer solvent, can be measured at once.
For every collision we simply increment the appropriate
counter in a three-dimensional histogram of Xq, X2, p val-
ues. For given Xq and X2, switching p ~ —p corre-
sponds to transforming between mirror-image configura-
tions. Thus

p+ = kBT[lng(X1 X2 4') inQ(X1 X& 4)] (7)
The functions ln y(Xq, Xq, +p) are illustrated in Fig 2, .

as functions of p, for values of Xq
—X2 —7r/2 corre-

sponding to collisions near the "equator" of both ellip-
soids. The dimer is thus an X shape, with one arm of the

X displaced above the other, and with P corresponding to
the twist angle between the arms The small, systematic
effect of the applied twist on y(X&, X2, p) is clearly visible
in the figure. The values of P obtained from Eqs. (7)
and (5), with the known values of Kq [4], are plotted as
functions of p, for Xq

—X2 —vr/2, at various densities,
in Fig. 3. For this family of molecules, both P = 0 and
P = +x/2 correspond to dimer molecules possessing a
mirror plane; for other values of Xq and Xq, p = +sr/2
will not have this symmetry. We can see that ~P~ reaches
a maximum near, but not exactly at, P = +7r/4, +3vr/4,
and that the helical twisting power generally increases as
the system density goes up. Results for other dimer ge-
ometries will be reported elsewhere. Prom Fig. 3, we see
that a typical value of P is 0.1 in our units. This means
that a 1% solution of the dopant would produce a helix
pitch of A = 1/2Pp 500 units. In our units, the ellipsoid
width is 26 —0.6 and the length is 2a —3. Thus the pitch
would be of the order of hundreds of molecular lengths,
as observed in experiment. It is worth re-emphasizing
that direct simulations of systems of this scale would be
very expensive.

This illustration has been for a speci6c case of dopant
molecule structure, which was advantageous because of
the good statistics obtained by recording pair collisions
in the hard-particle monomer solvent and because the
hard-ellipsoid system has already been well studied. This
type of model is, admittedly, idealized. Although the im-
portance of entropic, packing effects in condensed-matter
physics is widely recognized, there are theoretical predic-
tions that long-range attractive forces may be at least as
important in determining elastic constants and related
properties. Indeed there is scope for comparison with a
range of theories both of the Maier-Saupe kind [10,11]
and of the Van der Waals —Onsager —density-functional
type [12—14], which are more directly applicable to hard
particles (for reviews in this context see [15,16]). The ba-
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FIG. 2. The function —in&(X&, X2, p) (dashed line) and its
mirror image —iny(Xq, Xq, —p) (dotted line), as functions of
twist angle P, for contact pairs of hard ellipsoids with e = 5
in a twisted nematic phase with density p/p, ~ = 0.55. Here
Xy and X2 are both in a narrow range around 7r/2, k@T = 1,
and the absolute position of the vertical scale is arbitrary.
The points are simulation results. Statistical errors were cal-
culated by assuming a normal distribution of sub-block aver-
ages, each sub-block being 1000 Monte Carlo sweeps, but the
error bars are too small to see on this scale. The lines are
least-squares fits to the data using a Fourier series in P up to
and including the sixth-order term.
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FIG. 3. The helical twisting power p for hard ellipsoid
dimers with Xq X2 n./2 as functions of twist angle P,
at densities (a) p/p, &

= 0.50, (b) p/p p = 0.55 and (c)
p/p &

——Q.Qp. Error bars and fitting curves calculated as
in Fig. 2.
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sic simulation technique described here is not restricted
to hard particles, nor to dopants of this kind. A simu-
lation of a single dopant molecule, of any kind (whether
a dimer or not), in the twisted nematic solvent, would
suKce. It is only necessary to measure the chemical po-
tential difference between such a molecule and its rnirror-
image form. This may be achieved by a variety of Monte
Carlo techniques, involving progressive mutation of one
structure into the other, determining the free-energy dif-
ference by overlapping distribution methods, and possi-
bly using umbrella sampling [17]. We anticipate that this
will be a useful general technique for determining the
helical twisting powers for more realistic models of liquid

crystals.
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