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Shape equations of the axisymmetric vesieles
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Based on the same bending energy of the spontaneous curvature model, three shape equations for ax-
isymmetric vesicles are derived from different variational methods. They are degenerate for the spheri-
cal vesicle, while for the cylindrical vesicle, two of them are the same. They all have a special toroidal
solution, Clifford tori, but the constraints on the Lagrange multipliers hP and A, and the spontaneous
curvature co are different. We consider the physical mode of variation and introduce an arbitrary pa-
rameter for the axisymmetric action; we get the shape equation in terms of this parameter from it. When
this parameter is identified as the parameter p, it reduces to the same equation that is from the general
shape equation.

PACS number(s): 82.65.—i, 68.15.+e, 46.30.—i

Because of the repulsive interactions between the hy-
drocarbon chains of the lipid and the water molecules,
lipids often assemble into bilayers that typically form
vesicles. It is believed that these almost two-dimensional
objects are dominated by the bending energy [1,2]:

Fb =
&k& f (c] +c2 cp) dA +IC f c] c2dA& (1)

where k„K, c&, c2, and co are the bending rigidity,
Gaussian curvature modulus, two principal curvatures,
and the spontaneous. curvature, respectively. As we only
consider the vesicles with definite topology, we will
neglect the last term, which is a topological contribution.

It is the incompressibility of the Quid in the vesicles
and the fluidity of the vesicles that make the volume and
area of the vesicles fixed. The shape equation of the vesi-
cle is determined by minimizing Fb for constant volume
V and total area A. In practice, we may incorporate
these constraints by Lagrange multipliers AP and X. The
shape equations are obtained from

and the contour p as the parameter, instead for the arc-
length s.

We find that these equations are different, except for
the spherical vesicles, while two of them [(i) and (ii)] are
the same in the cylinderical case. These equations all
have a sole perfect toroidal solution whose generating ra-
dii are in the ratio 1/v'2 (i.e., Clifford tori), but the con-
straints on AP and A, of different equations are different
for this solution.

We analyze the physical mode of variations and report
an alternative method in deriving the shape equation for
the axisymmetric vesicles from the axisymmetric energy
functional. By introducing an arbitrary parameter for
the axisymmetric action, we get the shape equation in

5(Fb+kA +APV) =0, (2)

where 5 denotes the variant with respect to the shape of
the vesicle. We will see that the different interpretations
of this variation result in three different shape equations
for the axisymmtric vesicles.

For the sake of simplicity, we only consider the case of
the axisymmetric vesicles. So far, there are three ways to
get the shape equation of the axisymmetric vesicle.

(i) The most straightforward method is using the gen-
eral shape equation derived by Ou-Yang and Helfrich [3];
substituting the mean and Gaussian curvatures in it, we
get the required equation.

(ii) The second way of deriving the shape equation con-
sists of writing Fb +A. A +AP V of the axisymmetric vesi-
cles in the action form (using the arclength of the contour
s as a parameter), writing down the Euler-Lagrange equa-
tion of this action, and identifying it as the shape equa-
tion [4].

(iii) The third way [5] is similar to the second one, ex-
cept here we use the distance between the symmetric axis

FICx. 1. Schematic graph of an axisymmetric vesicle. The
surface is given by the vector Y, the axis of symmetry is along
the Z axis, the arclength of the contour is denoted by s, p is the
distance to the symmetric axis, P is the azimuthal angle, and g
is the angle between the tangent to the contour and the p axis.

461 1993 The American Physical Society



462 HU JIAN-GUO AND OU- YANG ZHONG-CAN 47

sing dg(s)
p(s) ds

which can be rewritten in parameter p as

H = ——cosP(p) +
2 dp p

(3)

terms of this parameter. When this parameter is
identified as the parameter p, it reduces to the same equa-
tion from the general shape equation.

We start by parametrizing the vesicle, as in Fig. 1. An
easy calculation gives the mean curvature and Gaussian
curvature as (using the parameter s)

r

1 dP(s) sing
2 ds p(s)

Ou-Yang and Helfrich [3] have derived a general shape
equation by the shape variation of the kind 5Y = ltjn:

bP —2AH+k, (2H+co)(2H +2K—coH)+2k, V H =0;

here Y is the position vector of the vesicle, and n is the
normal vector of the surface, de6ned as

BY BY
a. ay

BY BY
a. ay

K =cosg(p)
p dp

(4)
Inserting the H and K of the axisymmetric vesicle [i.e.,

Eq. (4)] into Eq. (5), we have

d'
cos P 3

=4singcos 1tr

dp

2cos g
p

d2$

dp

d P
GP

3 2

dg
~(

. ~, 2~) dg 7singcos g de

2co 2cosing sin f A, sin g cos—P dP+ + — cosP
p 2p k p dp

b P A, sing sin g co s~n|t sing cos g
k, k p 2p 2p p

The second means of getting the shape equation of the
axisymmetric vesicle is to change Eq. (2) to an action
form [4]

I

The last term should be added when we variate I. with
respect to p(s) and P(s) independently. The Euler-
Lagrange equations for g, p, and y are, respectively,

F&+A A +APV =2vrk, 1 I. p(s), , t/r, , y ds.dp(s) d P(s) 2g

ds

r

cosg d g sin2$ y sing b,Pp cosP
P ds 2p P 2kc

(10)

Here we use the arclength s as the parameter, and the La-
grangian is

dy dg
ds ds

2
sin g bPp sing r(,

2p2 k, k,
dp(s) d P(s)psr d r r

2

p dq sing Xp aP 2.
2 ds (s) k, k,

+y —cosg
GS

GP =cosg .
ds

(12)

These differential equations have been used to calculate
the phase diagrams for axisymmetric vesicles in spherical
and toroidal topologies [4]. For the sake of comparison,
we change the parameter s to p and reduce them to a sin-
gle differential equation

d . 2 cos 6
cos g = 3 sing cos P+

dp sing
d 1t

dp
dg . 2 d—cosgsin g
dp dp

3

+ (2+5 sin g)cos g dg
2p sing dp

hP r(, sing co»&'(t'+
k,

+ kp+ 2p

2
2cosg d g

p dp

sing(1+cos g)
2p

cosmic sin g b,Pp dgcos
p p2 2k sing dp

(13)
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The third method is similar to the second, but here the
parameter p is used. The action is

F&+A, A+bPV=2mk, fL f(p), ,p dp,
8p

where

L P(p), ,p = cosg + —co
d p d sin

'
dp

' 2cosf dp p

Ap b,Pp sing
k, cosP 2k, cosf

(14)

The Euler-Lagrange equation corresponding to this La-
grangian is [5]

2

tion 5$ cannot assure the induced variation in Y along
the direction of the normal vector n, so it is different
from Y= lan.

Nevertheless, if the vesicle is a sphere, (i.e., p=rosing),
these equation are the same:

QPp p +2/I p +k cygne 2k cppp:0

(17)

where I p is the radius of the vesicle. This equation can be
viewed as a constraint on the two Lagrange multipliers
hP and k for given cp, k„and rp, so one of them can be
freely chosen.

In the case of the cylindrical vesicle, p=ro, f=m/2, .

and (6) and (12) are degenerate:
k,

KPro+Aro+ (coro —1)=0,

cos g
8p

sing cosg dP
2 Gp

cos 1t de
P ~P

while Eq. (14) is

sin2$ APp A. sing
2p~ 2k, cosf k, cosg

+ sing
2 cosg

(15)

bPro+2Aro+k, (coro —1) =0, (18)

which is different from the former two, but is also a bal-
ance equation for the cylinder [3].

Now let us discuss the vesicle whose shape is a perfect
torus. In Fig. 2, we define the parameters of the torus:

Obviously, these shape equations [i.e, . (7), (13), and
(15)] are different in general. These differences are due to
the different interpretations of the variation 5 in (2): Eq.
(5) [and thus (7)] is the extreme of the general action (2),
with respect to positional variation 5Y=gn, which has
simple geometrical meaning; while Eqs. (13) and (15) are
extreme in the variation 511 of the axisymmetric action (8)
and (14), with different parameters. This kind of varia-

I

p=R +r sing—= r(x +sing), (19)

where 0~ P~ 2~. Because we are only interested in the
ratio of the generating radii of the torus, it is convenient
to put r = 1; then p=x +sing, and 1/x is called the ratio
of the generating radii.

Substituting p =x +sing and its derivates into Eq. (7),
we have

2A, +26P + 2 —1 +2 + 3 z 2k+25.P + z
1 + z 2A, + z 4c +3

C C C

+ 3x
2A, +26P +co —1 —3x+2x +co —4co+3 sin g

2A, 2 ~ 2

C C

2A, +2bP + P
1 2+ 2A, + P 4 +3 sin3$ 0

k k
C C

(20)

so when

x =&2,
A, =k, (co —2 —co/2),
AP —k

(22)

A, =k, (2co —co/2),

AP = —2k, cp,

(21)

Eq. (20) satisfies identically. [If we change the direction
of the normal vector (i.e., n~ —n), then the A, of Eq. (21)
will be the same as that in [6].] From Eq. (21), we see
that, concerning the perfect-torus solution, Eq. (7) has
one and only one class of solution whose ratio of generat-
ing radii is I/&2 (i.e., Clifford tori), and now bP and X

are fixed by k, and co, as shown in Eq. (21). Note that
AP =A, =0 when cp =0.

Similarly, for Eq. (13) (i.e., the second method), we get

for Eq. (15) (i.e., the third method), we get

x =&2,

AP =k, ,

Cp= 1

(23)

So Eqs. (13) and (15) both admit the Clifford tori as their
solution, and that solution is also the sole solution of
torus shape. For Eq. (13), the AP =k, is independent of
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d
ds

dp
6$

GP
ds

df
Gs

L

R

I dp
GSdp

ds 5tt
(27)

d 5L
dp

5
Gp

(2&)

When dp/ds is independent of the variational field g, as
usual, the Euler-Lagrange equation reduces to

5L
5$

FIG. 2. Parameters of the torus. R and r are two radii of the
torus. Here 0~/~2'.

F&+A, A+6,PV=2vrk, J I. g(p), ,p dp .
GP

Using the parameter s instead, it is

Fb +A, A + b,PV =2m.k, f I.' P(s), ,p(s) ds ,
d
ds

(24)

where

the spontaneous curvature co, for Eq. (I&), a v«y
stringent condition is imposed, i.e., co= —

—,, for having
the solution of Clifford tori.

On the experimental side [7], it is argued that the ran-
dom partial polymerization of membranes contributes to
the spontaneous curvature co [8], so it would be very
difficult, though not impossible, to tune the co to

2
to

find the vesicles whose shapes are Clifford tori, if the
shape equation is given by Eq. (15).

On the theoretical side, it is known that the Clifford
tori are a solution of Eq. (2}, when co =A, =b,P =0 [9]. It
is easy to see that Eq. (21) is compatible with this result,
while Eqs. (22) and (23) are inconsistent with it.

Now let us have a discussion on using different param-
eters. In the third method, the action is of the form

5Y(8,$)=a;(8,$)Y;(8,$),
or reexpressed as

(29)

Y'(8, $)=Y(8,$)+ai(8, $) +a2(8, (t), (30)
BY BY

where Y, 8, and P are the position vector, and two pa-
rameters of the surface, respectively. a;(8,$) are
infinitesimal functions of 8„$.

Now we choose another set of parameters (8', (t') for
the original surface, which are related to the old parame-
ters by

8'=8+ai(8, $),
(31}

4'=4+a2(8, 4») .
We expand Y(8', P') about Y(8,$) up to the linear order
of a,.(8,$) as

this is the Euler-Lagrange equation using the parameter
p. That is to say, the Euler-Lagrange equations are the
same when the transformation matrix dp/ds does not de-
pend upon the variational field g.

But in our case, dp/ds =cosg depends on the varia-
tional field itj, so the Euler-Lagrange equation in the pa-
rameter s is different from that in p [see (15) and(10) with
@=0], so the difference in using different parameters is

easy to understand.
It seems natural that any variation of position 6Y can

be decomposed into three directions: n, BY/B8, and
BY/BP. But it can be shown that any infinitesimal varia-
tions in the tangent planes of the surface can be attribut-
ed to the reparametrization of the surface. Infinitesimal
variation in the tangent plane can be expressed as

P(s), ,p(s) =L f(p), ,p
d = d
ds dp

dp
GS

(25) Y(8', P') =Y(8,$)+(8'—8)

The corresponding Euler-Lagrange equation is

d
ds

'6L '

dg
ds

5L'
5$

(26)

BY(O', P' )

By'

=Y(8,$)a, (8,$) ' +a2(8, $)

Insert Eq. (25) into (26),: it becomes (32)
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From (4) and (6), we have

Y'(8, P ) =Y(8', P'),
So the equation

(33) —(sing)ds5$+(cosset )5(ds)

AP+A+ p sing p ds,
2

(34)

where E,~=Fb+kA+hPV. This is the axisymmetric

energy functional to which we will apply the variation
5Y= fn. In addition, there are relations

that is to say, when a surface is variated infinitesimally in
its local tangent planes, the deduced surface is the same
surface, but in different parameters.

In its L phase, the lipid bilayer has no internal coordi-
nates (i.e., fiuidity), which implies it is reparametrization
invariant, so there are no physical effects from variating
in the tangent plane; only the variations along the normal
vector n are physical. When we derive the shape equa-
tions, we only have to consider this kind of variation
5Y=gn I10].

As we have shown, the most straightforward method
to get the shape equation for the axisymmetric vesicles is
(i), in which we apply the variation 5Y=gn to the gen-
eral energy functional to find the general shape equation,
substitute the mean and Ciaussian curvatures of the ax-
isymmetric vesicles in it, and get the axisymmetric shape
equation.

Nevertheless, there is another question left. Can we
get the same shape equation for the axisymmetric vesicles
by variating the axisymmetric energy functional, instead
of the general energy functional? In the following part of
this paper, we will answer this question by giving an al-
ternative way of deriving the shape equation for the ax-
isymmetric vesicles.

Substituting (4) into the effective energy,

c d 1( singk

These relations can also be read out from the figure (see
Fig. 3).

Let us recall what we do to find the equation of geo-
desics in Riemann geometry by means of the variational
method

I
11]. Our task is to deal with this equation:

5 d$=0 . (42)

It is convenient to introduce an arbitrary parameter t
that is independent of the variation 5, so that our ques-
tion becomes the form of minimization of action

5f "'dt= f 5 "„' dt=o, (43)

where ds Idt is the "Lagrangian. " Then the Euler-
Lagrange equation is the equation of geodesics.

After we get the equation of geodesics in terms of this
arbitrary parameter, we may identify the parameter t as
the arclength $; then we have the geodesic equation in
terms of the arclength.

In order to get the shape equation of the axisymmetric
vesicles, we may use a similar trick, introducing an arbi-
trary parameter t, which has no special geometric mean-
ing, but only keeps the order of point on the generating
curve. In terms of this parameter, the effective energy is

E,it=2vr J L(p(t), f(t), 1((t),s(t))dt, (44)

=(sing)d(5f )+(cosf)de 5f (40)

is satisfied for any P. Then we have

d(5f)
ds

(41)
5(ds)=(dg)5f .

dz==sing,
8$

Qp =cosP .
8$

(35)
where g(t) =dfldt, s(t) —=—dsjdt, and

The shape equation is determined by the variational
equation 5E,&=0, in which 5 means the variation along
the normal vector n. Let 5f be the infinitesimal variation
along this direction, its induced variations in p and z are

5p = (sing)5f,

5z = —
(cosset )5f .

(36)

In order to have the shape equation, we need more re-
lations. Variating dp = (cosg)ds in terms of 5, one has

5dp = —(sing)ds(5$)+ (cosg)5(ds),

while derivating 5p=(sing)5f by d, one gets

d 5p = (cosP)d $5f + (sing)d (5f ) .

Independence between operators d and 5 gives

d5p=5dp .

(37)

(3&)

(39)

FICx. 3. The solid curve is the original generating curve for
the axisymmetric vesicle, the dashed curve is the curve deduced
by the variation 5f, and the dotted one is the curve deduced by
moving the original curve from A to C. Since

I
ABI =ds,

I~CI=5f, IBDI=5f, IDEI=5(ds), IEEI=d(5f), ~BE=d@,
and ~CF=5$, we have 5(ds) =(dg)5f and (ds)5$= d(5f ). —
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L(p 4 0s)
2

sin AP+ —co +A+ p sing ps2 s p 2

k,p(f) k, s sin g k,psco+ + —cok,pg
2$ 2p

0 c

The variational equation now is

f 5L(p(t), g(t), P(t), s(t))dt =0,
which can be changed to

f 5p+ 5$+ . 5$+ 5s dt =0 .
~p ~@ Bf Bs

(47)

(48)

+Aps+ p s sing+k, /sing cok—,s sing.
EI'
2

(45)

Expressing 5p, 5g, 5g, and 5s in terms of 5f [using (36)
and (41)j, and after some calculations, we get the shape
equation:

Here the last two terms

k, /sing —cok, s sing= —k, +cok,
d cosg dz

(46)

BL . d 1 BL d BL
sin +

Bp dt s 8@ dt ()g
+ 'L y=0.

Bs

are totally derivatives and do not contribute to the shape
equation, so we will neglect them. Written more explicitly, it becomes

(49)

k,p ... 3k,ps .. 2k,p .. k, sing .
z k,p

k, (2 —3 sin f)
2p

+ bPp cosgp—
2p

k,p k ps 3k,p(s') 3k ps

(s) (s) (s) (s)

cOkc—cok, sing+ p+ Ap

k, sin f cok,+ +A, +APp sing sing .
2p 2

(50)

This is the shape equation of the axisymmetric vesicles in
terms of an arbitrary parameter t.

For the sake of comparison, we now identify the pa-
rameter t as the parameter p, the distance between the
generating curve and the axis of symmetry. Then

~ d6 . ds 1
s — —,p —1

dp
'

dp cosg

Substituting Eq. (51) and the higher derivatives into
Eq. (50), we get the shape equation in terms of the param-
eter p, which is the same as in (7). This result implies
that it does not matter whether we calculate the extreme
of the effective energy (2) for general shapes of vesicles
first, or impose the axisymmetric condition first.

We would like to make some comments on the deriva-
tion of the shape equation by using p as the parameter in
the axisymmetric energy functional, instead of the arbi-
trary parameter t. In this case

and identifies the corresponding Euler-Lagrange equation
as the shape equation, one has obviously ignored the
change of the parameter 6dp. Actually,

5E,tt=2~ f 5L' P(p), ,p dp
dp

+2~fL' g(p), ,p 5dp;
d
dp

(54)

expressing 5dp in terms of 5f as in (37), one will get the
same shape equation as (7).

In summary, we show that the three shape equations of
axisymmetric vesicles are actually different. We consider
the physical mode of variation and introduce an arbitrary
parameter; we get the shape equation in terms of this pa-
rameter from the axisymmetric action.

E,&=2~fL g(p), ,p dp .
d
dp

If one erroneously equates

5E,tt=2vr f 5L Q(p), ,p dp
dp

(52)

(53)
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