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Hyperscaling and nonclassical exponents for the line tension at wetting
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We study the effect of fluctuations on the line tension ~ at first-order and continuous wetting transi-
tions. We consider thermal wandering, strong fluctuations as in random media, and weak fluctuations as
in quasiperiodic systems. We obtain aI=a, +vII, relating the exponent of ~, 2—aI, to the surface
specific-heat exponent a„and the interfacial correlation-length exponent vII. The singular behavior of ~
at first-order wetting reveals that a critical phenomenon with a diverging correlation length, akin to
complete wetting, is taking place.

PACS number(s): 68.45.Gd, 64.60.Fr, 05.70.Fh, 82.65.Dp

In this Brief Report, we are concerned with nonclassi-
cal critical phenomena associated with the contact line
where three phases meet, near a wetting transition for the
interfaces. Mean-field theory has predicted that, when
the contact angle 8 tends to zero, the line tension ~ de-
pends crucially on the order of the wetting transition. At
first-order wetting, ~ increases to a value ~ &0, or
diverges. In contrast, at continuous (critical or multicrit-
ical) wetting, r~0, from below [1—5]. In general, ~ was
found to be maximal at wetting, and to show interesting
singular behavior,

V(l) gi —(v' —1)+ Y l
—(o+n —2)+E (2)

I being the interface displacement [4,5]. For van der
Waals forces o.=3 (with retardation, o =4). Further-
more, n =2 for critical, n =3 for tricritical [10],n =4 for
fourth-order critical wetting [11]. On the other hand, for
short-range forces,

with t = ( T —T ) /T, T the wetting temperature, ~
(r+) applying to t &0 (t )0), and at the line specific-

(2—a, )/2
heat exponent. We recall 8~( —t) ', with a, the
surface specific-heat exponent.

Experimentally, ~ was found to play an important role
in the nucleation of wetting layers [6]. A possible diver-
gence of ~ at first-order wetting, predicted for van der
Waals forces [1,4], would lead to extraordinarily long life-
times of metastable thick films [7]. Relaxation-time mea-
surements could thus elucidate the form of the diver-
gence of r. Direct measurements of r are difficult [8], but
highly interesting, because the magnitude and sign of ~
depend so strongly on the range of the intermolecular in-
teractions, and on the character of the phase transition.
Our approach differs much from previous studies of
thermal capillary-wave fluctuations of the contact line
[9]. We opt to focus on the singular part of r and benefit
from the availability of a fairly complete mean-field
theory.

Mean-field results for r at nth order (multi) critical
wetting in systems with long-range forces were derived
using the interface potential

V(l)= 3 exp( —l)+ Y„exp( nl)+—E . (3)

We propose that the effect of fluctuations on the singu-
lar behavior of ~ is described by the hyperscaling relation

2 —
a& =(d —2)vII, (4)

2 —a( =minI vII
—2vt, (d —

2)vII j, (5)

with vi the exponent of the correlation length gi perpen-
dicular to the interface. The well-known roughness ex-
ponent g is defined by vi = gvII~.

If (5) is combined with the analogous relation for a,
[12], it gives the simple exponent equality

al u'+vll (6)

expected to be valid in all fluctuation regimes (and in
mean field). We note that, at bulk criticality,
a& =ab + 2vb was derived for the ordinary transition [13].

As usual, (5) is derived heuristically from esti-
mating the energy and entropy costs of line
fluctuations, r„L

II
~0(dl /dx) +kit TL

+kti TgII, where LII is a length scale, and x a coordi-
nate, parallel to the interface but perpendicular to the
contact line, and yo the interfacial tension [12]. We re-

call gi~t ' and /II
~t II. For thermal fluctuations

g=(3 —d)/2 (1 &d 3), so that (4) is recovered. Weaker
than thermal fluctuations, with g & (3—d)/2, will here be
referred to as subthermal, to avoid confusion with the
weak- and strong-fluctuation regimes discussed below.
For subthermal fluctuations, hyperscaling (4) continues to

where vII is the critical exponent of the correlation length

/II parallel to the interface and d the dimensionality [12].
The mean-field results satisfy (4), provided we set vII to its
mean-field value and d to the upper critical dimension d„.
For thermal fluctuations d„=3 4/(c—r+n) [12,5]. We
expect (4) to hold in the nonclassical regime d &d„,
analogously to hyperscaling for the surface critical
behavior at wetting [12].

Furthermore, we propose a more general scaling rela-
tion, valid also for nonthermal fluctuations, e.g., due to
quenched random-field or random-bond disorder,
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TABLE I. Exponents for nth-order multicritical wetting and long-range forces, for thermal or super-
thermal fluctuations. In the SF regime, vII is not known explicitly, except in d =2.

Exponent
Regime

MF
WF

SF

Condition

g& gt:—2/(o +n)
gt & g & g*—:2/(o. +1)

(cT+ n) /[2(n —1)]
1/[2(1 —g/g*)]

2 cx I

(o + n —4)/[2(n —1)]
(1—2g) /[2(1 —g/g* ) ]

hold, whereas for stronger than thermal fluctuations,
here denoted by superthermal, with g&(3 —d)/2, we
have 2 —uI=vII —2v~. The heuristic scaling argument
must be revised above d„, as the leading term in ~ is then
L

~~

V(l, ), l, being the equilibrium wetting layer thickness.
The mean-field (MF) value for 2 —

a& is then recovered for
d ~d„.

To a first approximation, the effect of fluctuations is in-
corporated by adding to V(l) a term l ~, with

P =min{2(1 —g)/g, (d —1)/g], depending on whether
the energy or entropy cost dominates in ~F. An impor-
tant preliminary remark is that the interface displace-
ment model predicts that the amplitude r in (1) diuerges
(as a function of the system size L) if the decay of V(l) at
large l is too slow. That is, for min{o —1,$] &1 [1,4].
For example, for o =2 (relevant to nematic liquid crystals
[14]), ~ cclnL. Similar divergences occur in surface (for
o & 1) and bulk (for cr &0) phenomena [4].

For thermal or superthermal Auctuations, a standard
scaling analysis [12] leads to the results summarized in
Table I for long-range forces and (multi) critical wetting
in the weak- (WF) and strong- (SF) fluctuation regimes.
The line tension exponent for van der Waals forces
(o =3) shows a high degree of universality, since
2 —aI =

—,
' in both the MF and WF regimes, independent

of n and the type (thermal or superthermal) of fluctua-
tions. Note also that n is irrelevant in the WF regime.

The results for short-range forces in the MF and F re-
gimes for thermal or superthermal fluctuations are
presented in Table II. For the important case of thermal
fluctuations and critical wetting (n =2) in d =d„=3 it
follows that 2 —aI =

vII, which is known to be a
nonuniversal exponent, varying between 1 and ~ as a
function of a capillary-wave parameter [12]. However,
critical-wetting theory in d =3 is currently being refined
[15]. For d =2, we find 2 —cz&=0. Since logarithmic
corrections may be present, this result gives no clue as to
whether ~ vanishes, remains finite, or diverges at wetting.
An exact calculation of the point tension (since the line is
zero dimensional) near critical wetting (n =2) in the 2d
Ising model [16] appears indispensable. Note that the

TABLE II. Exponents for nth-order multicritical wetting
and short-range forces, for thermal or superthermal Auctua-

tions. In the MF regime 2 —a~ =vII.

nonclassical prediction is quite different from the MF re-
sult 2 —

a& =1.
There is a lot of interest in systems with short-range

forces and superthermal fluctuations [12]. For quenched
random-field disorder, g=(5 —d)/3 (for 2 & d & 5). Thus,
for d =3, 2 —e&= —vII/3, suggesting that r diverges for
t ~0. However, since g= —', and thus /= 1, the amplitude

is expected to diverge as lnL. For random-bond dis-
order g is less well known. Since probably /=0. 45+0.05
in d =3 [12,17], r possibly vanishes for t~0, since
2 —a&=0. 1v~~. In d =2 (and for g —,'), v~~=1/(1 —g) is
known exactly, and we find 2 —ai=(1 —2g)/(1 —g), «r
the point tension. Since g ~ —', for both random fields and
random bonds, r should diverge (with L) already at
t (0.

There is also much interest in subthermal fluctuations,
relevant to interfaces in aperiodic or quasiperiodic sys-
tems, like quasicrystals [18,19]. There, g is temperature
dependent and thus highly nonuniversal. For long-
range forces and (multi) critical wetting we find
2 —a&=(d —

2)v~~, for g~g—:(d —1)/( c+rn —2). A WF
regime is defined by g g&g'=(d —1)/(cT —1) and we
obtain v~~~= 1/[d —1 —g(cT —1)], in agreement with an
earlier result for d =2 [19]. In the SF regime, g~ g*, a
finite value v~~

= 1/(1 —g) was obtained in d =2 (and

g & —,') [19],which we note to be formally the same as for
We conclude 2 —

cc& =0 in d =2(WF and SF). For
short-range forces, we obtain d„=3, as for thermal
wandering. In the F regime (d & 3), we find
2 —a, =(d —2)v.

Next we turn to the experimentally more accessible
case of first-order wetting (for which 2 —a, =1). Explicit
mean-field results indicate that we may expect ~=~ )0
or r = + ao at wetting [1—4]. We write

where 6~ contains the singular part,

A first-order wetting transition is generally expected to
possess a prewetting extension into the bulk one-phase re-
gion. The thin and (finitely) thick wetting layers coexist-
ing at prewetting meet at a boundary line, with boundary
tension [20]

(9)
Regime

MF
F

Condition

d &d„(/=0}
d &d„($~0}

2 —o.

n/[2(n —1)]
( 1 —2$}v((

and, near wetting,

2 —aI 2—iz I5~=z+h '=g+t (10)
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TABLE III. Exponents for first-order wetting and long-range forces, for thermal or superthermal
fluctuations.

Regime

MF
F

Condition

/& /A=2/{cr+1) o /(o. —1)
(2—g)/[2(1 —g)]

Exponent

fl

(+ &)/(20 )

1/{2—g)

2

(~—3)/(2~)
(1—2g) /(2 —g)

where the field h ( &0) measures the deviation from bulk
two-phase coexistence. Note that r, if it exists, takes
the same value in (7) and (9), and that r) 0 [20,4].

Mean-field theory [4] predicts, for long-range forces,

(cr —3)/[2(cr —1)] for o &3 or 2&cr &3
0(log) for o =3, (1 1)

where 0(log) means exponent zero but logarithmic diver-
gence. It was found that ~ diverges at wetting for
Z(o ~ 3. Again, for cr ~2, ~ diverges as a function of
L, already for t (0. We note that the same exponents ap-
ply to the line tension of the unstable critical droplet in
the nucleation process at complete wetting (t &0) [21].
Along prewetting and for h ~0 [4],

(cr —3)/(2o ) for o ) 3 or 1&o &3
0(log) for a =3 .

It was found that v diverges at wetting for 0. ~3. For
short-range forces, mean-field theory [4] predicts
5r~( —t)' ln( t), and 5r~h'—, so that

(12)

2 —~, =2—&, =—,
'

~

We observe that
(13)

2 —a, =2—a', =b, (2—a, ), (14)

where 6 is the usual crossover exponent describing the
tangential approach of the prewetting line towards the
bulk coexistence curve, near T [12,22]. We thus expect
standard scaling,

Sr=(t~ "e(t/h'") . (15)

Interestingly, (5) (at d =d„) and (6) hold for the mean-
field exponents at first order wetting. -The relevant corre-
lation lengths are those that diverge approaching com-

plete wetting, for h~0 [23]. We recall /~~0-h " and

girth ', with vi=$0~~. We now propose that (5) holds
as a scaling relation in the nonclassical regime d (d„.
Strikingly, the singular behavior of the line tension at a
first order wetting tran-sition reveals that a critical
phenomenon (with a diverging correlation length) is tak-
ing place. This critical phenomenon is closely related to
that known to occur at complete wetting [23].

Considering thermal or superthermal fluctuations, we
obtain the results for long-range forces summarized in
Table III. These field-related exponents describe the ap-
proach of T along prewetting, for t ( )0)~0 and
h ( &0)~0. The thermal exponents, associated with the
approach of T„ from partial wetting along bulk coex-
istence, for h =0 and t { & 0)~0, are found by multiply-
ing those in Table III by b, , in accordance with (15). For
short-range forces, in the MF regime, for d &d„(and

(=0), we have 5= 1 and 2 —ai =v~~= —,'. In the F regime,
for d & d„(and ()0), the exponents are the same as in
Table III (F).

Finally we turn to subthermal fluctuations. For long-
range forces, we find 2 —a&=(d —2)v~~=(d —2)/(d —1)
in the F regime, for g&g—:(d —1)/(o —1). Further-
more, we obtain h=(d —I+/)/(d —1), so that 2 —at
follows from (14). For short-range forces, we find d„=3,
as for thermal fluctuations. The exponents in the F re-
gime (d &3) are the same as in the F regime for long-
range forces.

We propose the following conclusions. (i) The effect of
fluctuations on the singular part of the line tension at
wetting is contained in the standard interfacial correla-
tions. The exponent 2 —ai is related by hyperscaling (for
thermal and subthermal fiuctuations), and by different
scaling (for superthermal fiuctuations), to the interface
correlation-length exponents. The exponent equality
a&=a, +v~~ is generally valid. (ii) This suggests new ex-
perimental routes, e.g., in systems with thermal or super-
thermal fluctuations, from measuring ~—v. to estimating
v~~ ZvJ Combined with contact-angle measurements
giving 2 —a, and thus 2(v~~

—vi), both correlation-length
exponents can be determined. Alternatively, in general, a
line tension measurement combined with a contact-angle
determination give v~~, using (6). On the other hand, a
measurement of the wetting layer thickness l, allows one
to estimate vi [12]. (iii) The global behavior of r at wet-
ting (vanishing, finite, or diverging) depends on the regu-
lar background ~, the amplitude ~, and the exponent
2 —aI. Possible logarithmic corrections turn out to be
crucial (as exemplified by the mean-field results) and the
amplitude r may diverge in the thermodynamic limit
(L~oo ).

In a future publication we will discuss the universality
of the line amplitude ratio R+ =—r+/r at first-order
wetting. Briefly, we propose an analogy between first-
order wetting and interface critical end points. Partial
wetting, complete wetting, and prewetting correspond to
three interface coe-xistence, interface criticality, and
two-interface coexistence, respectively. An analysis of ~
in the form (7) then runs parallel to that of the interfacial
tension near bulk critical end points, leading to universal
amplitude ratios [24], of current experimental interest
[25].
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