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Hyperscaling and nonclassical exponents for the line tension at wetting
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We study the effect of fluctuations on the line tension 7 at first-order and continuous wetting transi-
tions. We consider thermal wandering, strong fluctuations as in random media, and weak fluctuations as
in quasiperiodic systems. We obtain a;=a,+v), relating the exponent of 7, 2—a,, to the surface
specific-heat exponent a;, and the interfacial correlation-length exponent v;. The singular behavior of 7
at first-order wetting reveals that a critical phenomenon with a diverging correlation length, akin to

complete wetting, is taking place.

PACS number(s): 68.45.Gd, 64.60.Fr, 05.70.Fh, 82.65.Dp

In this Brief Report, we are concerned with nonclassi-
cal critical phenomena associated with the contact line
where three phases meet, near a wetting transition for the
interfaces. Mean-field theory has predicted that, when
the contact angle 6 tends to zero, the line tension 7 de-
pends crucially on the order of the wetting transition. At
first-order wetting, 7 increases to a value 7,>0, or
diverges. In contrast, at continuous (critical or multicrit-
ical) wetting, 7—O0, from below [1-5]. In general, 7 was
found to be maximal at wetting, and to show interesting
singular behavior,

7—sirlg—-_'ri't'Z “ ’ (1)
with t+=(T—T,)/T,, T, the wetting temperature, 7_
(74) applying to t <0 (¢ >0), and «a,; the line specific-
heat exponent. We recall 0« (—t) 27 , with a; the
surface specific-heat exponent.

Experimentally, 7 was found to play an important role
in the nucleation of wetting layers [6]. A possible diver-
gence of 7 at first-order wetting, predicted for van der
Waals forces [1,4], would lead to extraordinarily long life-
times of metastable thick films [7]. Relaxation-time mea-
surements could thus elucidate the form of the diver-
gence of 7. Direct measurements of 7 are difficult [8], but
highly interesting, because the magnitude and sign of 7
depend so strongly on the range of the intermolecular in-
teractions, and on the character of the phase transition.
Our approach differs much from previous studies of
thermal capillary-wave fluctuations of the contact line
[9]. We opt to focus on the singular part of T and benefit
from the availability of a fairly complete mean-field
theory.

Mean-field results for 7 at nth order (multi) critical
wetting in systems with long-range forces were derived
using the interface potential -

Vihb=A4l"‘e"Vyy,-lotn=24p )

! being the interface displacement [4,5]. For van der
Waals forces o =3 (with retardation, o =4). Further-
more, n =2 for critical, n =3 for tricritical [10], » =4 for
fourth-order critical wetting [11]. On the other hand, for
short-range forces,
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V(l)=Aexp(—1)+Y,exp(—nl)+E . (3)

We propose that the effect of fluctuations on the singu-
lar behavior of 7 is described by the hyperscaling relation

2—a;=(d -2, (4)

where v, is the critical exponent of the correlation length
&, parallel to the interface and d the dimensionality [12].
The mean-field results satisfy (4), provided we set v, to its
mean-field value and d to the upper critical dimension d,,.
For thermal fluctuations d,=3—4/(0+n) [12,5]. We
expect (4) to hold in the nonclassical regime d <d,,
analogously to hyperscaling for the surface critical
behavior at wetting [12].

Furthermore, we propose a more general scaling rela-
tion, valid also for nonthermal fluctuations, e.g., due to
quenched random-field or random-bond disorder,

2—a;=min{v;—2v,(d =2)v,} , (5)

with v, the exponent of the correlation length £, perpen-
dicular to the interface. The well-known roughness ex-
ponent § is defined by v, ={v;.

If (5) is combined with the analogous relation for a;
[12], it gives the simple exponent equality

a=a;+v, (6)

expected to be valid in all fluctuation regimes (and in
mean field). We note that, at bulk criticality,
a;=a, +2v, was derived for the ordinary transition [13].

As usual, (5) is derived heuristically from esti-
mating the energy and entropy costs of line
fluctuations,  Tpx L y(dl/dx)?+kyTL} ¢ <y oig; !
+kpg Tgﬁ_“', where L, is a length scale, and x a coordi-
nate, parallel to the interface but perpendicular to the
contact line, and 7, the interfacial tension [12]. We re-
call £ =t * and § ¢t I For thermal fluctuations
£=(3—d)/2 (1=d <3), so that (4) is recovered. Weaker
than thermal fluctuations, with £ <(3—d)/2, will here be
referred to as subthermal, to avoid confusion with the
weak- and strong-fluctuation regimes discussed below.
For subthermal fluctuations, hyperscaling (4) continues to
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TABLE I. Exponents for nth-order multicritical wetting and long-range forces, for thermal or super-
thermal fluctuations. In the SF regime, v is not known explicitly, except in d =2.

Exponent
Regime Condition V) 2—aq
MF E<Ef=2/(0+n) (o+n)/[2(n—1)] (oc+n—4)/[2(n—1)]
WF §TS§<§*E2/(0+1) 1/[2(1—=£/6%)] (1—=28)/[2(1—¢/E%)]
SF §Z g* V“ (1'_2§)’V“

hold, whereas for stronger than thermal fluctuations,
here denoted by superthermal, with §>(3—d)/2, we
have 2—a;=v ,—2v,. The heuristic scaling argument
must be revised above d,, as the leading term in 7 is then
L,V (l,), I, being the equilibrium wetting layer thickness.
The mean-field (MF) value for 2—q; is then recovered for
d=d,.

To a first approximation, the effect of fluctuations is in-
corporated by adding to V(I) a term [ %, with
¢=min{2(1—§)/&,(d —1)/&}, depending on whether
the energy or entropy cost dominates in 7. An impor-
tant preliminary remark is that the interface displace-
ment model predicts that the amplitude 7_ in (1) diverges

(as a function of the system size L) if the decay of V' (I) at~

large [ is too slow. That is, for min{o—1,¢} <1 [1,4].
For example, for o =2 (relevant to nematic liquid crystals
[14]), 7_ «<InL. Similar divergences occur in surface (for
o = 1) and bulk (for o =0) phenomena [4].

For thermal or superthermal fluctuations, a standard
scaling analysis [12] leads to the results summarized in
Table I for long-range forces and (multi) critical wetting
in the weak- (WF) and strong- (SF) fluctuation regimes.
The line tension exponent for van der Waals forces
(0=3) shows a high degree of universality, since
2—a; =4 in both the MF and WF regimes, independent
of n and the type (thermal or superthermal) of fluctua-
tions. Note also that 7 is irrelevant in the WF regime.

The results for short-range forces in the MF and F re-
gimes for thermal or superthermal fluctuations are
presented in Table II. For the important case of thermal
fluctuations and critical wetting (n =2) in d =d, =3 it
follows that 2—a;=v, which is known to be a
nonuniversal exponent, varying between 1 and o« as a
function of a capillary-wave parameter [12]. However,
critical-wetting theory in d =3 is currently being refined
[15]. For d =2, we find 2—a;=0. Since logarithmic
corrections may be present, this result gives no clue as to
whether 7 vanishes, remains finite, or diverges at wetting.
An exact calculation of the point tension (since the line is
zero dimensional) near critical wetting (n =2) in the 2d
Ising model [16] appears indispensable. Note that the

TABLE II. Exponents for nth-order multicritical wetting
and short-range forces, for thermal or superthermal fluctua-
tions. In the MF regime 2—a;=v;.

Regime Condition 2—ay
MF d>d, ((£=0) n/[2(n—1)]
F d=d, ({=0) (1=28)vy

nonclassical prediction is quite different from the MF re-
sult 2—a;=1.

There is a lot of interest in systems with short-range
forces and superthermal fluctuations [12]. For quenched
random-field disorder, {=(5—d)/3 (for 2=<d <5). Thus,
for d =3, 2—a;= —wv,/3, suggesting that 7 diverges for
t—0. However, since {= % and thus ¢ =1, the amplitude
7_ is expected to diverge as InL. For random-bond dis-
order { is less well known. Since probably £=0.45£0.05
in d =3 [12,17], 7 possibly vanishes for z—0, since
2—aq;=~0.1v. In d =2 (and for £=3), v\=1/(1—=C) is
known exactly, and we find 2—a;=(1—2§)/(1—¢), for
the point tension. Since {2 % for both random fields and
random bonds, 7_ should diverge (with L) already at
t <0.

There is also much interest in subthermal fluctuations,
relevant to interfaces in aperiodic or quasiperiodic sys-
tems, like quasicrystals [18,19]. There, § is temperature
dependent and thus highly nonuniversal. For long-
range forces and (multl) critical wetting we find

2—a;=(d —2)v, for§>§ =(d—1)/(c+n—2). AWF
regime is defined by f'<e<g*=(d—1)/(o—1) and we
obtain v,=1/[d —1—{(c—1)], in agreement with an

earlier result for d =2 [19]. In the SF regime, {=&*, a
finite value v;=1/(1—¢) was obtained in d =2 (and
¢ < 1) [19], which we note to be formally the same as for
§=1. We conclude 2—a;=0 in d =2(WF and SF). For
short-range forces, we obtain d,=3, as for thermal
wandering. In the F regime (d <3), we find
2—a;=(d —2)v,.

Next we turn to the experimentally more accessible
case of first-order wetting (for which 2—a,=1). Explicit
mean-field results indicate that we may expect 7=7,, >0
or 7=+ o at wetting [1-4]. We write

T=1,+61, (7)
where 87 contains the singular part,

2—aq

Sr=71_(—1t) (8)

A first-order wetting transition is generally expected to
possess a prewetting extension into the bulk one-phase re-
gion. The thin and (finitely) thick wetting layers coexist-
ing at prewetting meet at a boundary line, with boundary
tension [20]

F=r,+6%, 9)

and, near wetting,

sp=p h’ =1 7%, (10)
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TABLE III. Exponents for first-order wetting and long-range forces, for thermal or superthermal
fluctuations.
Exponent
Regime Condition A ” 2—a,;
MF E<E=2/(c+1) g/(g—1) (e+1)/(20) (6—3)/(20)
F exgt (2=&)/[21—9)] 1/(2—¢) (1—=2£€)/(2—¢)
where the field 4 ( > 0) measures the deviation from bulk §=0), we have A=1 and 2—¢; = =%. In the F regime,

two-phase coexistence. Note that 7, if it exists, takes
the same value in (7) and (9), and that 7> 0 [20,4].
Mean-field theory [4] predicts, for long-range forces,

(0—3)/[2(c—1)] foroc>3 0or2<o0c<3

a= O(log) for o=3, an

2_
where O(log) means exponent zero but logarithmic diver-
gence. It was found that 7 diverges at wetting for
2<0 =3. Again, for 0 <2, 7_ diverges as a function of
L, already for t <0. We note that the same exponents ap-
ply to the line tension of the unstable critical droplet in
the nucleation process at complete wetting (¢ >0) [21].
Along prewetting and for 4 —0 [4],

(0—3)/(20) foro>3o0or 1<o<3

2—a;= O(log) for o=3 .

(12)

It was found that 7 diverges at wetting for o <3. For

short-range forces, mean-field theory [4] predicts
87 (—1)"’In(—1), and 8F = h'/?, 5o that
2_a1=2_&1=% . (13)
We observe that

where A is the usual crossover exponent describing the
tangential approach of the prewetting line towards the
bulk coexistence curve, near T, [12,22]. We thus expect
standard scaling,

sr=|t|" " “d(s/h172) .

Interestingly, (5) (at d =d,) and (6) hold for the mean-
field exponents at first-order wetting. The relevant corre-
lation lengths are those that diverge approaching com-

plete wetting, for h—0 [23]. We recall §”°<h—?” and

E xh oi, with #, =£%,. We now propose that (5) holds
as a scaling relation in the nonclassical regime d <d,,.
Strikingly, the singular behavior of the line tension at a
first-order wetting transition reveals that a critical
phenomenon (with a diverging correlation length) is tak-
ing place. This critical phenomenon is closely related to
that known to occur at complete wetting [23].
Considering thermal or superthermal fluctuations, we
obtain the results for long-range forces summarized in
Table III. These field-related exponents describe the ap-
proach of T, along prewetting, for #(>0)—0 and
h(>0)—0. The thermal exponents, associated with the
approach of T, from partial wetting along bulk coex-
istence, for h =0 and ¢( <0)—0, are found by multiply-
ing those in Table III by A, in accordance with (15). For
short-range forces, in the MF regime, for d >d, (and

(15)

for d =d, (and £=0), the exponents are the same as in
Table III (F).

Finally we turn to subthermal fluctuations. For long-
range forces, we find 2—qa;=(d —2v=(d —2)/(d —1)
in the F regime, for {,‘>§TE(d —1)/(oc—1). Further-
more, we obtain A=(d —1+¢)/(d —1), so that 2—&,
follows from (14). For short-range forces, we find d, =3,
as for thermal fluctuations. The exponents in the F re-
gime (d <3) are the same as in the F regime for long-
range forces.

We propose the following conclusions. (i) The effect of
fluctuations on the singular part of the line tension at
wetting is contained in the standard interfacial correla-
tions. The exponent 2—g; is related by hyperscaling (for
thermal and subthermal fluctuations), and by different
scaling (for superthermal fluctuations), to the interface
correlation-length exponents. The exponent equality
a;=a;+v is generally valid. (ii) This suggests new ex-
perimental routes, e.g., in systems with thermal or super-
thermal fluctuations, from measuring 7— 7, to estimating
v,—2v,. Combined with contact-angle measurements,
giving 2—a, and thus 2(v—v,), both correlation-length
exponents can be determined. Alternatively, in general, a
line tension measurement combined with a contact-angle
determination give v, using (6). On the other hand, a
measurement of the wetting layer thickness /, allows one
to estimate v, [12]. (iii) The global behavior of 7 at wet-
ting (vanishing, finite, or diverging) depends on the regu-
lar background 7,, the amplitude 7_, and the exponent
2—a;. Possible logarithmic corrections turn out to be
crucial (as exemplified by the mean-field results) and the
amplitude 7_ may diverge in the thermodynamic limit
(L— ).

In a future publication we will discuss the universality
of the line amplitude ratio R, _ =7, /7_ at first-order
wetting. Briefly, we propose an analogy between first-
order wetting and interface critical end points. Partial
wetting, complete wetting, and prewetting correspond to
three-interface coexistence, interface criticality, and
two-interface coexistence, respectively. An analysis of 7
in the form (7) then runs parallel to that of the interfacial
tension near bulk critical end points, leading to universal
amplitude ratios [24], of current experimental interest
[25].
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