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Modifying the onset of homoclinic chaos: Application to a bistable potential

G. Cicogna and L. Pronzoni
Dipartimento di Fisica dell Universita di Pisa, piazza Torricelli 2, M186 Pisa, Italy
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We analyze, by means of the Melnikov method, the possibility of modifying the threshold of
homoclinic chaos in general one-dimensional problems, by introducing small periodic resonant mod-
ulations. We indicate in particular a prescription in order to increase the threshold (i.e. , to prevent
chaos), and consider then its application to the bistable DufBng-Holmes potential. All results are
con6rmed both by numerical and by analog simulations, showing that small modulations can in fact
sensibly influence the onset of chaos.

PACS number(s): 05.45.+b

q = q(t) (2)

doubly asymptotic to 2:0 for t —+ Boo. In order to obtain
a theoretical estimate of the eKect of the last term of
Eq. (1) to the threshold of chaos, let us write down the
Melnikov function M(tp) for the problem (1): taking into
account that q(t) = q( —t), it is easily seen that M(tp)
acquires the form

The problem of "controlling chaos" has received great
attention in recent years [1—4]. Even if, for many authors,
this term means in general the stabilization of unsta-
ble orbits, we are concerned here more specifically with
the modification of the threshold for the onset of chaos.
One of the simplest and most interesting methods used
in order to modify (possibly to increase) the threshold of
chaos, which appears in the presence of homoclinic orbits,
is the introduction of a periodic modulation of the param-
eters describing the unperturbed potential. This possi-
bility has been analyzed for both the Duffing-Holmes and
the Josephson-junction potential [2,3].

In the present Brief Report, we want to propose some
generalizations of this idea: we will consider first a
generic one-dimensional problem by means of Melnikov
theory [5,6], and obtain a simple criterion about the "cor-
rect" choice of this modulation; next, we will apply this
indication to the bistable Duffing-Holmes potential, in-
troducing two independent modulations: this will allow
us to confirm both the general results and the possibil-
ity of modifying the onset of chaos. All the theoretical
discussion is well supported both by numerical and by
analog simulations.

Let us start by considering the general case of a one-
dimensional "equation of motion" for the real variable
x = x(t):

x = f(x) —6 x + p cos cut + e g(x) cos(At + 8), (1)

where for e = 0 we have the standard problem of a peri-
odically forced and linearly damped motion, whereas the
additional term with e g 0 takes into account the pres-
ence of general modulating terms. We assume as usual

f = —dV/dx, where the unperturbed potential V = V(x)
has a maximum point at x = xo and a homoclinic orbit,
which we indicate by

—M(tp) = b q (t) dt+ psincutp q(t) sin ut dt

+e sin(Atp + 8) q(t) g(q(t)) sin At dt

=—6Jb + p J~ sin utp + eJ, sin(Atp + 8). (3)

At the resonant case, i.e. , when cu = A, this can be writ-
ten

—M(tp) = 6Jp + pK sin(u)tp + n)

with

J2 + 6 + 2 J J g (4')

The condition for the appearance of chaos according to
Melnikov criterion, i.e. , that M(tp) has simple zeros, be-
comes now (it is not restrictive to assume p ) 0, whereas
b ) 0 for physical reasons, and clearly Jp ) 0)

pK & AJAR. (5)

e(0 if J~J, ) 0

(or, which is the same, e ) 0 in any ease, 8 = 0 if J~J, (
0, and 8 = vr if J~J, ) 0).

With this choice for e, and observing that the ampli-
tude ~e~ of the modulation is usually very small (here we
only require ~e~ ( p~ J~/J, ~), the above condition (5) be-
comes

bJb J,

With fixed damping b, we can then use the modulation
term in order to modify the threshold of chaos: here
this amounts to modifying the range of the forcing am-
plitudes p which do not produce chaotic responses. Now,
according to Eqs. (4)—(5), the maximum increase of this
threshold is obtained by choosing 8 = 0 and the sign of
e according to the following prescription:

~&0 if J~J, &0,
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or also

where

—) a(.) =B +i.i

J(+) 4 sinh tv B sech tv B sin Ast dt

vrA'
(As + 4B) csch ) 0

2 B

x = —Az (1 + cs cos Ask) + Bx(l + Ey cos Apt)
—6 x + p cos (dC) (9)

where A, B,p, b & 0, and the signs of e~, ea are for the mo-
ment undetermined. As is well known, the unperturbed
Duffing-Holmes potential possesses two homoclinic or-
bits, given by

j./2
q(+) sech tWB, (10)

where the signs + and —denote, respectively, the or-
bit surrounding the minimum of the potential at x(+) =
+gB/A and at z( ) = —gB/A. All integrals appearing
in the Melnikov function can be evaluated exactly; in par-
ticular, the integrals J„+ and J„ take the same value
when evaluated, respectively, along the orbit q(+) (t) and
along q( )(t), the same is true for J„+) and J„):We
have

B3/2 +~
J(,+) = —2 sinh t~B sech tVB sinAqt dt

arran', ~ng
csch & 0,

2 B

is the "Melnikov ratio" in the case e = 0 of no modula-
tion.

Then Melnikov theory predicts that the presence of
modulation produces, if the phase of modulation is cho-
sen according to the above rule, an increase (proportional
to the quantity

~
J,/J~~) of the threshold of chaos.

Before further discussing this result, let us remark in-
cidentally that in the case of nonresonant modulations,
w g A, Eq. (3) suggests that one may expect [at most
after some time delay of the order 1/(w —0)] an
"in-phase" contribution of both forcing and modulating
terms p~ J~~ + ~eJ, ~. Then, the above arguments indi-
cate that a lowering of the threshold, favoring the onset of
chaos, is to be expected in this case. A careful analysis
of nonresonant modulations in the case of the Duffing-
Holmes potential can be found in Ref. [2].

We now want to provide a precise test of the above re-
sults by checking them in the case of the Duffing-Holmes
potential. We find it convenient to introduce a small
generalization of the above discussion, by choosing the
perturbation g(x) in (1) in the form of two independent
terms modulating both the linear and the cubic compo-
nents of the force: this requires the presence of Aao mod-
ulation parameters eq, es, as made in [4], where a Duffing-
Holmes-type potential was obtained by means of magne-
toelastic equipment. Precisely, we consider the equation

[notice that the results in Eq. (9) of Ref. [2] and Eq. (4) of
Ref. [4] are incorrect]. One also has J&+ ——J&, whereas
J(+) J(—) .

4 B3/2
&0 ~(+)=-..

3 A
sech ( 0.

2 B
(12)

—) R' '(Ey, cs) = Ro + eyTy + EsTs,
V (+) (13)

where again + distinguishes between the two homoclinic
orbits q(+)(t), and

2~2B 7'
Rp = cosh

3~A~~ 2~a (14)

is the well-known ratio for the unperturbed DufFing-
Holmes potential [6], and

MB 7r& GJ (Ld + 4B) 7T(d

b+2A 2~B 6b v'2A 2y B
(14')

Therefore, we can conclude: If the motion occurs near
the homoclinic orbit q(+l(t), the best choice in order to
prevent chaos (by increasing the threshold) is

ey &0 and e3) 0. (15)

This choice, however, favors the onset of chaos when the
motion is in the potential well around x( ) = gB/A. —
The opposite choice e ~ ) 0, e3 ( 0 would produce exactly
opposite effects. All these results agree with our above
discussion (cf. the signs of J~ and J„,J„).

Numerically, with, e.g. , A = B = w = 1, 6' = 0.25, we
obtain

r g
——3.08, r3 ——2.57. (16)

The relatively large numerical values of these coefFicients
(compared with Rp = 0.753) show that the role of mod-
ulation in the Duffing-Holmes potential is really impor-
tant: according to Eqs. (13) and (16), one may in fact
expect that very small e~, e3 may considerably infIuence
the onset of chaos. Another interesting remark is that
the introduction of the modulation (clearly the effect is
present also when choosing one of the two eq, e3 equal
to zero) produces a sort of "dynamical asymmetry" be-
tween the two potential wells. Let us emphasize that it
has already been noticed [7] that a small "geometrical"
asymmetry in the double-well potential sensibly rnodi-

Thus, the Melnikov condition for the appearance of
chaos, in the resonant case ~ = Ap ——03, can be finally
written in the form
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v(x) = —2: ——2: + px,
A 4 B

2
(17)

where

/2A 3vr
p Bo (19)

A = B = w = 1 as before, one has p = 1.35,With A =
that the two efFects are in fact pcorn arable.showing t a e

s for thed the above theoretical results oWe have teste~ e a
f b th numerical

'th' the chaotic region i
be resent, cf. [6]), it is sufficient

.2 ~i.e. largely wi in
no modulation would be present, c

en
' ' ' ' '

nalo simulation is another veryent initial conditions. Analog simu a io

h' ' ti 11 i '1
and [8 10,3]) to examine non

'

we use in this case is esse
d l }I (

dl d3 h'-liers o crating in e r
o the case of the mo u a e

[3] Th l ofevice discussed in detail in
db d t t

1 h d
are obtaine y iree

ircuit. In particu ar, e
ced from the resonance ban wi a

o sma a '; f this measure is actuallyof small amplitudes; therefore, t is meas

n that the Melnikov ratios B at the
first order in the asymmetry parame er
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to be compared with the theoretical values deduced from
Eqs. (14) and (14')

Bp ——2.82, rg ——11.63, r3 ——11.66. (21)

The numerical agreement is not perfect; let us stress,
however, that —apart from the uncertainties and un-
avoidable errors in the experimental determinations of
the various quantities (see [3] for some short comments
on this point) —in any case one cannot hope that the
Melnikov method is able to give a precise determina-

tion of the threshold of chaos; rather, a common and
expected result is actually that the Melnikov theory in-
dicates a somewhat smaller value than the threshold ex-
perimentally detected (see [6,3]). Let us point out, on the
other hand, the better agreement we find for the values
of rq, rs, and in particular the result rq rs [accord-
ing to Eq. (14'), rz = rs for w = /2B], and finally the
agreement shown by Fig. 2 with Eq. (13). With these
observations, we believe that all the facts discussed up
to now may be considered globally as a rather good test
for both theory and analog experiments.
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