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Simple stochastic model for resonant activation

C. Van den Broeck*
University of California at San Diego, La Jolla, California 92093
(Received 13 January 1993)

We present three variants of an extremely simple stochastic model, one of which does not display a
“resonant phenomenon” discussed recently [Ch. Doering and C. Gadoua, Phys. Rev. Lett. 69, 2318

(1992)], while the other two variants do.

PACS number(s): 05.40.+j

I. INTRODUCTION

The phenomenon of stochastic resonance, whereby the
effect of a small systematic periodic force can be
amplified by noise in a nonlinear system, has attracted a
lot of attention recently [1]. Another resonance
phenomenon called resonant activation was reported in
[3]. In this case, the mean first-passage time (MFPT) was
calculated for the thermal escape out of a linear potential
well, whose slope switches at random between two (high-
and low-barrier) values. It was found that the MFPT
goes though a minimum when the switching time is of the
order of the escape time over the lowest barrier. The
purpose of this paper is to present an extremely simple
model which, under appropriate conditions, gives rise to
a similar phenomenon. The advantage of such a model is
that the calculations are technically easy, and can serve
as a point of departure to answer more detailed questions
about this type of resonance phenomenon.

II. VARIANT 1

A particle randomly switches at a rate ¥ between two
“internal” states, called + and —, respectively. On the
other hand, while being in the + or — state, the particle
“exits” or ‘““decays” at corresponding rates k. and k_.
Note that such a Markovian exit mechanism correctly
represents the escape of a thermally excited particle over
a high potential barrier. The question we are asking is
how the MFPT to exit or decay is influenced by the
switching mechanism. In particular, does there exist a
value of the switching rate y for which the MFPT is
minimal?

A simple calculation shows that the survival probabili-
ty P(t), defined as the probability that the particle has
not exited at time ¢, obeys the following equation:

?P(t)=—(k,+k_~+2y)3,P(t)
—[ylky+k_)+k k_]P(2). (1
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Assuming that both + and — states are equally probable
at the initial time ¢# =0, one finds for the average exit time
or MFPT,
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We conclude that the MFPT decreases in a monotonic
way from the maximum value (1/k, +1/k_)/2 for
¥ =0 to the minimum value 2/(k +k_) for y=co. In
[4], it is proven that this monotonic behavior and an
analogous form of the two limiting values ({1/k ) and
1/{k ), respectively) hold for any number of internal
states, provided the random walk between these states
and the exit mechanism are all Markovian (i.e., charac-
terized by exponential probability densities), and as long
as the initial probability distribution is equal to the
steady state that is reached when the decay or exit mech-
anism is switched off. We conclude that the resonance
phenomenon does not occur in this type of models (for
those specific but natural initial conditions).

III. VARIANT 2

We now turn to a non-Markovian variant of the above
model and show that a resonance phenomenon becomes
possible in this case. A particle is again switching be-
tween the + and — states at random time points and at a
rate Y. On the other hand, the probability densities for
exiting the + or — state after a residence time equal to ¢
are now given by ¥, (¢) and ¥ _(¢), respectively. The re-
sults of the preceding section are recovered in the partic-
ular case that these densities are exponential. We also as-
sume that a new exit-time period for ¥ (¢) and ¥ _(¢) sets
in after each jump (i.e., the time used to calculate the exit
probabilities is reset to zero). A simple calculation shows
that the Laplace transform P(s) of the survival probabili-
ty P(¢) is given in terms of the Laplace transforms of the
exit-time densities as follows (assuming that the initial
probability to be in the + or — state is equal to 1):

s+y)+HP_(s +y)]

1063-651X/93/47(6)/4579(2)/$06.00 47

(
+
YU s +y)Fo_(s+y)— U (s +y)_(s +7)]

(3)

4579 ©1993 The American Physical Society



4580

The value of the mean exit time is found as
(7)=P(s =0). To illustrate the possibility of a reso-
nance phenomenon similar to the one discussed in [3], we
consider the particular case ¥, (t)=8(t—k!) and
Y_(t)=8(t —k=!). The following result for the mean
exit time {7) is obtained:
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(7) diverges for ¥ — o since no exits take place for visits
that last less than min(k:Ll,k:1 ). On the other hand,
() converges to (k;'+k_')/2 for y —0, as expected.
Moreover, a phenomenon of stochastic resonance occurs
when the rates k. and k_ are sufficiently different.
More precisely, {7) goes through a minimum in function
of ¥ when the rates k, and k _ differ by a factor of more
than =3.75. For the special case that kK, <<k _, one
finds that the minimum is attained for y =0.58k _ and is
given by {(7)~3.6k_!. The MFPT is thus of the order
of the smallest of the two residence times.

IV. VARIANT 3

The purpose of this variant is to show that a minimum
of the MFPT in function of the switching rate can also
arise when the exit-time density is the same for the +
and — state ¥ (¢2)=1v_(¢)=1(¢). Equation (3) simplifies
as follows:

B(s)=1=2st7) (5)
y¥(s +vy)

and the value of the mean exit time is again obtained

from {(7)=P(s =0). The behavior of {7) in function of

v depends on the form of #(¢). For example, when #(¢) is
an Erlang distribution,

_ (nk)ntn—le—nkt
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one finds
<7'>=—71/- 1+—nl”; -1 . (7

In this case, the MFPT increases (for n > 1) with the
switching rate y, in contrast with the result obtained by
the previously discussed variant 1. The origin of this
behavior is clear: the probability for exit per unit time is
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smaller for short visits, while the duration of these visits
does indeed become shorter as the switching rate in-
creases. A more interesting situation arises when consid-
ering the following density which leads to fractal time
properties with fractal dimension 1,

e/t

()y=——— . (8)
4 71724372
Note that the first moment of this density is equal to
infinity. However, the introduction of a random switch-
ing between two states characterized by this same density
leads to an exit distribution with finite average exit time.
The Laplace transform of #(¢) is given in [5], and one
finds the following result from Eq. (5):

27 —1

(r)y=—. 9)
Y

This exit or MFPT diverges for both ¥y —0 [because of
the fractal nature of exit times generated by the density
¥(t)] and Yy — o (because exits are very unlikely during
short visits) and attains a minimum at y =0.635.

V. DISCUSSION

Variant 1 of our model shows that the phenomenon re-
ported in [3] does not occur if the states between which
the switching takes place have an exponentially distribut-
ed first-passage-time density. This is in agreement with
the observation that the resonance disappears in the low-
temperature limit (whenever a positive barrier has to be
crossed in both states). On the other hand, the coupling
of states with nonexponential first-passage-time proper-
ties can lead to a wide variety of behavior, as is illustrated
by variants 2 and 3 of our model. In particular we have
proven the existence of a stochastic resonance
phenomenon similar to the one discussed in [3]. We have
not tried to give a physical meaning to the model that
was discussed here. However, our model is closely relat-
ed to the so-called continuous-time random walks, and
the latter have been applied successfully to the descrip-
tion of a wide variety of physical problems [2]. For this
reason, we believe that the stochastic resonance
phenomenon presented here is not solely of academic in-
terest, but could be observed in some of these situations.
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