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Exact evaluation of diffusion dynamics in a potential well with a general delocalized sink
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We derive an exact solution of the Smoluchowski equation for a Brownian particle moving in an arbi-
trary potential well with a general delocalized sink. The average rate constant for the general sink is ex-
pressed explicitly in terms of the corresponding rate constants for localized sinks with different initial
conditions and sink positions. Simple analytical expressions are provided for diffusion in a harmonic po-
tential well.

PACS number(s): 05.40.+j, 34.20.—b, 82.40.—g, 82.50.—m

The study of dynamics of diffusive motion in a poten-
tial well in the presence of a sink has long been of interest
[1] due to its applications to a wide variety of dynamical
processes [2,3] in difFerent branches of physics and chem-
istry. The modified Smoluchowski equation governing
the probability distribution f (x, t) corresponding to
diffusion in a potential V(x) in the presence of a sink
function S(x) and also a position-independent radiative
decay rate k„ is given by

a2=D, +(k T) ' f S{x)f k—„f, —(1)
at a' a d

where D is the diffusion constant at temperature T and k~
is the Boltzmann constant. Although Eq. (1) corresponds
to diffusive motion along a one-dimensional reaction
coordinate x, its generalization to higher dimensions is
straightforward. The one-dimensional model itself is
used in a variety of problems of interest, viz. proton [4] or
electron-transfer processes [5] involving an activated bar-
rier crossing or barrierless processes such as relaxation
from an excited state [6,7], etc. The purpose of the
present work is to provide an exact solution for the rate
constant corresponding to f{x,t) of Eq. (1) for a general
delocalized sink function. As will be shown, the rate con-
stant for the general sink problem in the absence of radia-
tive decay can be evaluated in terms of the corresponding
rate constants for localized sinks, with suitable sink posi-
tions and initial conditions.

To solve Eq. (1), we first use the transformation

P (x t) =Pp(x t) =5(x xp ) at t =0, although other initial
conditions discussed later are also of interest.

The forms of the potential V(x) and the sink function
S(x) depend on the physical problem of interest. In
many cases, the potential is chosen to be parabolic and
the simplest sink function is the localized sink at a suit-
able location x; given by S (x)=k;5(x —x; ), where k; is
the sink strength. The majority of the problems of in-
terest, however, do not correspond to a localized sink and
one requires a delocalized sink function S(x) for a proper
description of the dynamics in such situations. Recently
Szabo, Lamm, and Weiss [8] provided an exact Green's-
function solution of Eq. (3) for an arbitrary potential and
a sink function expressed in terms of a linear combina-
tion of 5 functions. The results of Szabo, Lamm, and
Weiss [8] is, however, quite general since an arbitrary
sink function S(x) can be written as S(x)
= J

" dx'S(x')5(x —x') and the integral can be discre-
tized as

N

S{x)=gk, 5{x—x, ),
where k; [=w;S{x;)] denotes the sink strengths, with
weight factors m; depending on the scheme of discretiza-
tion used. For this sink function, Eq. (4) becomes

P(x, t ~xo, O) =Po{x,t ~xo, 0)

N—g k, f dt'P, {x,r t'~x, ,O)—
f (x, t) =P{x,t)exp{ —k„t)

and obtain the simplified equation

ap a'p, „, , a dv
ax dx

—S(x)P .

The solution of Eq. (3) can be written as

P{x,t ~x0, 0)=Po(x, t ~xo, O)

00—f dx' f dt'P, {x,t t'i 0x)—
OO p

(2)

(3)

PX{ xt'~ x0o) . (6)

Thus the solution P(x, t ~x„O) depends on a time integral
involving its values at the special points x = [x, j and also
the function P,{x,t~x', 0) Substituting .Eq. (6) into Eq. (2)
and taking a Laplace transform, we obtain

P(x, k„+s ix0, 0)=Po{x,k„+s ~x0, 0)

N—g k, PO{x,k, +s~x, , O)

XS{x')Po{x',t'ix0, 0), (4)

where the function P, (x, t ~x„O) is the solution of Eq. (3) in
the absence of any sink term, i.e., S(x)=0. Both
P{x,t ~x„O) and P, { r~xx„0) correspond to the same initial
condition, which we consider here to be

where

XP(x, , k„+s ~xo, 0),

P{x,k„+s~xo„O)=f dt exp[ (k, +s)t jP(x, t ~xo, O)—,
p
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with a similar expression for P,{x,k„+s~x', 0).
Considering Eq. (7) at the discrete points

x =x, ,x2, . . . , x&, we obtain a set of linear equations,
which can be written as

AP=Q, (9)

where the elements of the matrices A=—[a;,.I, P= [p,—],
and Q

—= [q;] are given by

a;, =k, PO{x;,k, +s ~x, ,O)+5J, (loa)

The set of linear equations represented by Eq. (9) can
be solved by Cramer's method, and the solution for
P =P—(x,k„+s~x0, 0) is given by

Pj =det A "'/det A, (16)

where detA represents the determinant of matrix A and
A'j' is a matrix obtained by replacing the jth column of
the matrix A by the column vector Q [see Eq. (10c)]. Sub-
stituting this solution into Eq. (14) one has the result

p; =P(x;,k„+s ix0, 0), (lob)
N

kl '=lim detA —g kj detA'"
s~p j='=1

[{k,+s)detA] . (17)

q;=Po{x;,k„+s~xo,O) . (10c)
One can solve the matrix equation (9) easily and obtain
Plx;, k„+s~xo,O) for all x;. Equation (7) then yields the
Laplace transforms off (x, t) and P(x, t ~x„O).

An important quantity of interest is the survival proba-
bility F(t) defined as

F(t)= f f (x, t)dx

N t
=exp( —k, t) 1 —g k; f P{x;,t'~ x00)dt'

in terms of which one defines an average rate constant k,
as

The problem is that for k, =0, although the ratio on
the right-hand side of Eq. (17) is finite in the limit s ~0,
the elements in the matrices 3 and 3' ' appearing in the
expression are divergent in this limit if the stationary lim-
it (t~ ~ ) of Po(x, t) does not vanish. The divergence
problem, however, does not arise if one considers the La-
place transform in Eq. (15) after subtracting the station-
ary value Po'(x)—:Po(x, t= ao) from the expression of
Po(x, t), i.e., one defines the quantity

bPO{x,k„+s~x',0) = f dt exp[ —(k, +s)t]
0

kt ' = f F{t)dt,
0

and also a long-time rate constant kL as

(12) X[PO{x,tax', 0)—Po (x)], (18)

(13)kL = —lim (d/dt) lnF(t) .
t —+ oo

Clearly k, '=F(O) and kL is the negative pole of F(s)
closest to the origin. Therefore, the Laplace transform of
F(t) is sufficient to evaluate the two rate constants k, and
kL.

The average rate constant kr is thus given by
N

kt '= lim(k„+s) '
1 —g k;P{x;,k, +s~xo,0), (14)s~p i=1

where P{x,, k„+s~xo, O) is to be obtained by solving Eq. (9),
which is straightforward if the Laplace transformed
quantities Po{x;,k„+s~x, 0) and P,{x;,k„+s~x„O) appear-
ing in the matrices A and Q, respectively, can be evalu-
ated analytically. In general, however, this analytical
evaluation may not always be possible and one may have
to take recourse to numerical evaluation of the integral

Po{x;,k, +s~x', 0)=f dt exp[ k{„+s)t]P o{xt~ x'0) .—
0

(15)

Although for nonzero values of k„ there is no problem as
such in the numerical evaluation of this integral, for
k„=O, i.e., in the absence of radiative decay, divergences
appear in the evaluation of Eq. (15) in the limit s~O if
the distribution function Pp(x t) attains a nonzero station-
ary value at t~ ~. To overcome this problem, we pro-
pose a simple method, discussed below.

which is uniformly convergent and can easily be evalu-
ated numerically e~en in the limit s~O for k„=O. There-
fore, if it is possible to express the rate constant in terms
of this new quantity, the evaluation would face no diver-
gence problem.

Using simple algebraic manipulations, it is straightfor-
ward to show that the numerator of Eq. (17) remains un-
changed if in all the elements of the matrices, the quanti-
ties Po(x, , k„+s~x~,O) and Po(x;, k„+s~x0,0) are re-
placed, respectively, by bPO(x;, k„+s ~x~, 0) and
bPO(x, , k„+s~xo,O), defined by Eq. (18). Denoting the
modified A matrix as matrix 8 with elements
b;—:k EPo(x;, k„+s~x, O)+5;, the numerator of Eq.
(17) becomes (detB —g+=,k detB'1'), where in the ma-
trix 8' ' the jth column of matrix 8 has been replaced by
the column vector Q' —=

I q I with q = b,Po(x;, k„
+s ixo, O).

From Eq. (18), one has bPO(x;, k„+s~xJ,O)
=Pa(x;, k„+s ~x~, O) —(k„+s) 'Po'(x; ), and hence the
denominator of Eq. (17) can be rewritten as

N

(k„+s)detA = (k„+s)detB+ g k detB"' (19)
j=1

where the matrix B'j' is obtained from matrix B by re-
placing the elements b;,. of its jth column by the station-
ary values pp (x. ) for all the rows, i.e., i =1, . . . , X.

Thus, on taking the limit s ~0, the final expression for
the rate constant kI is given by

N

kt '= detB —g k, detB"'.N

k„detB+ g kj detB'J'
j=1

(20)
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where EP0 appearing in the matrices here correspond to s =0. Therefore if the solution for the potential in the absence
of sink is known, the evaluation of b,p, is straightforward at least numerically using Eq. (18) since there are no diver-
gences in the matrix B and the rate constant can be evaluated easily using Eq. (20).

While Eq. (20) denotes the rate constant for a delocalized sink, for the special case of a localized sink at a point x„
i.e., S(x)=k, 5(x —x, ), it can be expressed in a simple form given by

kI=[k|PO'(x~)+k, [1+k~&Po(x),k, lx|,0)]j/[1+k|[&Po(x|,k, lx|,0)—~P0(x), k, lx0, 0)]j . (21)

X [bPO(x;, Oix;, 0) —bPO(x;, Oix', 0)],
which can also be written as

(23a)

kd '(x, ,x') = [1/Po'(x; )]

X f dt[P0(x;, tax;, 0)—Po(x;, tax', 0)] .
0

(23b)

For problems with no radiative decay, i.e., k„=0, the
rate constant kI for the general delocalized sink given by
Eq. (20) can be reexpressed in terms of the rate constant
of Eq. (21). The quantities that will appear in the final ex-
pression are denoted here as ko(x;, x'), which is the rate
constant (in case of k„=O) for the 5-function sink
S(x)=k;5(x —x;) if the particle is initially fed at x =x'
and is given by

ko '(x;,x') = [k;Po'(x, )] '+kd '(x;,x'), (22)

where kd(x, ,x') represents the well dynamics rate con-
stant (also equal to the overall rate constant for a pinhole
sink, i.e., in the limit k, ~~ ), defined as

kd '(x;,x') = [1/Po'(x;)]

The matrix C'" is obtained from the matrix C by replac-
ing only its jth column by the column vector D=[d;j,
where

d; =ko '(x;,xo) . (25c)

Similarly, the matrix C"' is same as matrix C, but for the
elements of the jth column all of which are replaced by
unity.

Equations (24) and (25) imply that for k„=O, the rate
constant kt for diffusion in a potential V(x) with a gen-
eralized sink, described as a set of 1V localized sinks, can
be obtained if the corresponding localized sink rate con-
stant ko(x;, x') defined in Eq. (22) can be evaluated for ar-
bitrary values of initial feeding position (x ), sink posi-
tion (x; ), and sink strength (k; ). For potentials for which
analytical solution for Po(x, t ~x', 0) is available, ko(x;, x')
can be obtained from Eq. (22) by evaluating the integral
for kd in Eq. (23b).

As an illustrative example, we consider the case of a
particle of effective mass m diffusing in a parabolic poten-
tial V(x) =

—,'mco x, for which

Po(x, t ~x', 0)= [(y/2m)(1 —e « ')]'«

Substituting EPO(x;, O~x', 0) from Eq. (22) and (23a) into
Eq. (20), and using somewhat lengthy algebra to eliminate
P,"(x, ) and bPO(x, , O~x, , O), one finally obtains the general
rate constant given by and therefore

X exp
—(y/2)(x —x'e ~')

( ] &
—27Dt)

(26a)

N

k«
' = —detC+ g detC"' g detC'J' (24)

j=I j=1

where the elements of the matrix C = [c;,j are given by

ko '(x;,xj) for iWj (25a)
0 for i=j . (25b)

Po'(x; )=(y/2~)'«exp[ —(y/2)x; ], (26b)

with y=mc0 /(k&T). Using Eq. (26a), the integral in Eq.
(23b) can be rewritten so as to obtain an explicit depen-
dence of kd on the diffusion constant D, viz.

kq '(x;,x')=(yD) ' f dy[l —exp( —2y)] '«[exp[yx; e /(1+e )]
0

—exp(y[x;x'e —(e «/2)[x; +(x') ]j /(1 —e «))) . (27)

Equation (27) shows that the rate constant kd depends linearly on the diffusion constant D. Although in general, it
might be dificult to evaluate the integration in Eq. (27) analytically, simplified expressions result for special cases. Thus
we first rewrite Eq. (27) as

k„'(x;,x') =—f dx f dy[ 1 —exp( —2y)]D x' 0

X [2xe «(1 —e «)exp[yx e «/(1+e «)]—e (x —xe «)

Xexp(y[xx'e « —(e «/2)[x +(x') ]]/(1—e «)}], (28)
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in which the inner integration can be evaluated for the
special cases of x, =0 or x'=0. When the sink position is
at the origin (x;=0), i.e., the minimum of the potential
well, corresponding to a barrierless process, encountered
in the case of relaxation from an excited state, the expres-
sion for kd(x;, x') of Eq. (28) simplifies to

kd '(O, x') =(m/2y)' D

Ix'I
X f dx exp(yx'/2)

0

X [1—erf[(y/2)'~ x]], (29)

where erf(z) denotes the error function. The case of ini-
tial feeding position of the particle at the origin (x'=0) is
of importance in most of the activated barrier-crossing-
type processes such as the one encountered in the case of
electron-transfer reactions. For this case, Eq. (28) be-
cornes

kd '(x;,0)= ( ~/2y )
' D

which is valid for x, &x'. Results for x, &x' can be gen-
erated using the relation kd '(x, ,x') =kd '( —x;, —x'), since
the potential is symmetric.

It is interesting to note that kd (x;,x ), which depends
on both x, and x', is decoupled and is expressed in Eq.
(31) as a combination of two terms depending on x; and
x ', respectively. This leads to a tremendous
simplification in evaluating kr for a general sink using
Eq. (24), since kd '(x;,x } can be obtained from
kd '(x;+„xj~&}by adding or subtracting the value of the
integrand of Eq. (31) at x =x; or x~ in a simple scheme of
numerical integration.

While so far we have considered only the initial condi-
tion P(x, O) =5(x —xc), also of interest is the case where
initial condition is the stationary distribution, i.e.,
P(x, O) =Pc'(x). In this case, the rate constant kt for the
general sink is again given by Eqs. (24) and (25), but the
expression for d, given by Eq. (25c) is to be replaced by

I x,. I

X f dx exp(yx /2)
0

X [1+erf{(y/2)'~ x] ] . (30)

It is important to note that an analogus simplified gen-
eral expression for kd '(x, ,x') has recently been derived
by Sebastian [9] using a different approach and is given
by

k„-'(x, ,x ) =(~/2y)'"D-'
X ~

X f dx exp(yx /2)
X

d, =[k;Po'(x;)] '+[kd'(x;)]

where

[kd'(x;)] '=bPO(x;, O~x;, 0)/Po'(x, ),

which for the parabolic potential is given by

kd'(x;) =(yD)[(y/2n )x; ]'~ exp[ —(y/2)x; ]/P(x;),

(32a)

(32b)

(33)

X [1+erf[(y/2)' 'x]], (31)
I

with

P(x;)=erfj [(y/2)x; ]'~2]+[(y/2)x~]'~ exp[ —(y/2)x2]

X —2+ln2+(y/2)x, g g ( —1)"[(y/2)x, ]"+ [(k!m!(m+—')(k+m +1)]
k=0m =0

The quantity kd'(x, ) is of considerable importance in the
discussion of diffusion for a localized sink at x, , for which
an alternative expression has been derived by Hynes [10]
earlier. For the special case of high barrier limit
(~x;~ )&0) in Eq. (34), P(x;) becomes unity, while for a bar-
rierless process (x, =0), kd'(0) =(yD/1n2).

The central result of this work is Eq. (24), where the
overall rate constant for a generalized sink is expressed in
terms of localized sink rate constants with different
values for the sink position and initial positions. For a
parabolic potential, the localized sink rate constants can
be calculated easily from Eq. (31) and the form of this
equation leads to tremendous simplification in the evalua-

I

tion of the general sink rate constant, as already men-
tioned. The present results on the rate constants for a
general sink would be of much importance to a number
of studies such as activated-barrier-crossing processes
used in the study of chemical reactions in condensed
phase, electron-transfer reactions [5], as well as barrier-
less processes such as relaxation [6,7] from an excited
state in solution, etc., where the diffusive motion in a
one-dimensional parabolic potential is a tractable but still
realistic model.
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