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In this paper, we study the quantum manifestations of classica1 chaos in phase space using Wigner and
Husimi distribution functions. We test the claim that Husimi represents the correspondence better than
Wigner does. The results show the claim is valid. We also use a quantum dissipation scheme empirically
for classically damped motions often characterized by strange attractors. We believe quantum resem-
blance to classical distributions can be regarded as signatures of quantum chaos in phase space.
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With the lack of a universal definition of quantum
chaos, a systematic measure of disorder in quantum sys-
tems is still open for further exploration. In fact, by em-
ploying the definition of classical chaos for quantum
mechanics, never has its existence been reported [1] ex-
cept in the semiclassical limit. More research in the con-
text of the correspondence principle therefore seems to be
necessary at present to detect any sign of quantum mani-
festations of classical chaos. It has been shown that un-
certainty could be the measure [2,3], but generally its cal-
culations are not simple to carry out since it requires ex-
pectation values of classical observables such as momen-
tum. The calculation of a wave function from the time-
dependent Schrodinger equation, however, is relatively
easily accomplishable using well-known techniques. The
dynamical information of this wave function can then be
used to investigate quantum behavior in phase space.

To see the classical-like phase space, however, this
wave function should be put into quantum distribution
functions, such as the Wigner or Husimi functions, to
identify noncommuting variables simultaneously. Studies
containing the formulation of quantum mechanics in
terms of both Wigner [4—7] and Husimi functions [8,9]
have been carried out to some extent for various prob-
lems. These phase-space representations of quantum
mechanics have been very useful to study quantum mani-
festations of classical chaos in recent years [10—12].
However, the Husimi function has been applied some-
what slower and has attracted less attention than the
Wigner function. The immediate advantage of the
Husimi function is the non-negativeness of the distribu-
tion so that its interpretation as a probability distribution

in phase space is more convincing than for the Wigner
distribution.

In this paper, we will study quantum resemblance of
classical chaos in phase space using the Husimi distribu-
tion function as well as the Wigner function. This resem-
blance can be regarded as a signature of quantum chaos.
A qualitative measure of the correspondence can be es-
timated by the degree of the resemblance. Our analysis is
based on Schrodinger quantum mechanics, whereas some
of the previous studies [10—12] involved the Heisenberg
picture. We shaH also use the quantum-mechanical
scheme of the classical-like damping empirically [13]
without exploring its details. Our model is a driven
damped pendulum which is simple, but richly chaotic
[14,15]. The main objective of this study is to focus on
the quantum dynamics represented by the distribution
functions in the classically chaotic regime.

To find the distribution functions, we need to solve the
time-dependent Schrodinger equation. Then the solution
is inserted into the appropriate form of the distribution
functions that specify quantum conjugate variables (i.e.,
position and momentum) simultaneously. These phase-
space distributions are directly compared with a classical
distribution. A classical distribution simply represents a
result of the evolved initial distribution that portrays
many different initial conditions. An initial classical dis-
tribution should be taken according to the initial quan-
tum probability. Then signatures of quantum chaos can
be determined qualitatively from these distributions. We
discuss the model briefly followed by the results of our
calculations.

The time-dependent Hamiltonian, Bq =Hq (P,g, t),
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for the driven pendulum of mass m and length l under
the influence of the earth's gravity g is

', [p —2]'+ P, (1)

where 2 = —ml f sin(cot )/co and 0'=mgl(1 c—os/ ).
The canonical conjugate variables of angular momentum
and angular position are specified as p and q, respectively.
The externally driving field amplitude and frequency are
f and co, respectively. An equivalent classical Hamiltoni-
an 1S

2

H,~=
2 +mgl(1 cosq—) ml f—q cos(cot) .

2ml2
(2)

We recover the classical counterpart (2) from Eq. (1) after
a gauge transformation with the following gauges [3]:

(3)A ~A'=A+
BQ

where y=ml fq sin(cot)/co. These gauges are necessary
to preserve the periodic nature of the potential. This
gauge transformation is also beneficial to avoid a numeri-
cal problem at the periodic boundary for the Fourier
transforms we use.

The time-dependent Schrodinger equation for the mod-
el in dimensionless form can be written as

2
. 8 sm(cot)

aqBt 2p

+p(1 —cosq )g, (4)

where p =

iraq,

co—=co&1/g, t =t&g/l, y=f1/g, and
p=ml&gl /A'. We will not use the sign —hereafter.
The inverse of p is analogous to the usual semiclassical
limit fi —+0. This is evident from the expression p for
fixed values of the pendulum mass and length. Some
words are in order concerning the part responsible for the
damping in Eq. (4). The energy dissipation of a classical
motion in a viscous medium is phenomenologically de-
scribed by the Rayleigh term Pmq /2 [21]. This extra
dissipating kinetic energy is artificially put into the
Schrodinger equation via the term (1 ip) in—Eq. (4). It
is not our intention to consider a detailed study and re-
view existing research on this subject in this Brief Re-
port. Empirically, however, this treatment provides valid
results, specifically in the context of phase-space trajecto-
ry in several systems including the damped harmonic os-
cillator [13].

Now the solution f(q, t ) of Eq. (4) is obtained by using
the split-operator method [16,17]. The initial Gaussian
wave function is chosen because of its minimum uncer-
tainty. Then the genuine solution corresponding to the
Hamiltonian (2) becomes g'(q, t ) =exp(iy)g(q, t ) because
of the gauge transformation. This solution is utilized to
form the Wigner and Husimi distribution functions. The
Wigner function is the Fourier transform of the spatial
correlation function of f'(q, t ) [4—7]. The Husimi func-
tion can be obtained by a Gaussian smoothing method
[18,19] and is given by the amplitude squared of the pro-
jection of f' onto the coherent state [8,9] whose uncer-
tainty is minimum. As a final note, the classical distribu-

TABLE I. Initial parameter values used in the calculations.

Case Xp Po

Fig. 1

Fig. 2
Fig. 3

0.5 0.0 1.25 4/3 0.05 10 0.002 5
0.5 0.0 1.5 2/3 0.25 10 0.002 5
0.0 —0.35 3.5 1.05 0.1 20 0.001 25
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FIG. 1. Classical distributions are shown in (a), (b) and con-

tour plots of the Husimi distributions in (c), (d). The Wigner
distributions are shown in (e), (f). The pictures in the left
column are picked at t =2T, whereas the ones in the right at
t =8T.

tion is taken according to the quantum probability using
the Monte Carlo method.

Parameter values used in the calculations are listed in
Table I. We use the same uncertainty value in the
coherent state of the Husimi function as the one in the in-
itial Gaussian wave function. Apparently all the figures
have a periodic boundary in the position coordinate q at
+m. Note that we use the quantity [p —A(t)]/p for the
vertical axes to compare with the classical velocities com-
puted from the classical equations of motion using (2) by
the fourth-order Runge-Kutta method. It should also be
noted that contour plots of the Wigner distribution func-
tion are taken from the norm of the Wigner function to
avoid possible negative values.

Figure 1 shows classical distributions, the contours of
Husirni and Wigner distributions at two different times
2T, 8T, where T=2m/co. Distributions at t =2T and 8T
are shown in the left column and in the right column, re-
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spectively. The classical distributions are taken from
2000 points. It is easy to see in overall structures that
Husimi distributions in Figs. 1(c) and 1(d) are closer to
the classical ones in 1(a) and 1(b) than Wigner distribu-
tions in 1(e) and 1(f}, respectively. This clearly supports
the previous findings [10—12] that the Husimi distribu-
tion is a better representation of the correspondence. It
is also interesting to observe that the Husimi distribution
holds the correspondence somewhat longer than the
Wigner distribution. This can be inferred through pic-
tures Figs. 1(b), 1(d), and l(f) on the right column for
t =8T. In general, closer correspondence is found within
the so-called break time [20] in the classically chaotic re-
gime.

In the next case shown in Fig. 2, we observed similar
phenomena to the previous case. In this case, the classi-
cal distributions are strange attractors. At times
t-2.2T, depicted at the left, and t —8.8T, at the right,
Husimi distributions certainly resemble classical distribu-
tions more than Wigner distributions. This time we use
the larger value of P. The illustration in Fig. 2(f) does not
seem to be close to the classical one in 2(b), whereas the
Husimi distribution in 2(d) does. It is interesting to see
that structures near the origin in Figs. 2(e) and 2(f) are

Classica?
4 ~ 44 ~ %0 ~

not present both in 2(c) and 2(d) and in 2(a) and 2(b).
Thus from these two figures, it becomes more evident
that the Husimi distribution represents the correspon-
dence better than the Wigner distribution.

The parts (a) and (b) in Fig. 3 also display typical
strange attractors. The Lyapunov exponent in this case
is positive, and self-similarity is apparent. However, the
Husimi distributions in Figs. 3(c) and 3(d) do not expose
the close correspondence. Even with the moderate value
of P, the good correspondence fails to be seen in this case.
But the Wigner distributions in Figs. 3(e) and 3(f) resem-
ble the classical distributions less than the Husimi distri-
butions do because of the appearance of distinctive is-
lands around the middle of the Wigner distributions. It is
still reasonable to assume that the general configuration
in the Husimi case is better in the context of the
correspondence. In this case distributions on the left are
at t = T, and ones in the right at t =3T. Other Husimi
cases of the strange attractor we tried also showed com-
parable patterns. But we do not have a good answer why
islands appear in the Wigner case. We know that Wigner
distribution contains more detailed information about the
quantum dynamics since it has no such coarse-graining
mechanism as the Husimi's Gaussian smoothing.

In summary, we have specifically focused on the
phase-space behavior in various distributions including
classical distributions. It has been demonstrated that the
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FICx. 2. Classical distributions with strange attractors are

shown in (a), (b). Contour plots of the Husimi distributions and
of the Wigner distributions are shown in (c), (d) and in (e), (f),
respectively. The pictures in the left column are picked at
t -2.2T, whereas the ones in the right at t —8.8T.

(e)

position q
FICx. 3. All the distributions are shown in the same order as

the previous two figures. The classical distributions in (a) and
(b) have strange attractors in this case too.
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Husimi representation is generally better than the Wigner
representation of the correspondence. We found this to
be identical to the previous claim [10]. Although earlier
studies [2,3,22] reveal that the correspondence fails!n the
classically chaotic regime because of a large increase or
fiuctuation in the quantum uncertainty, these distribution
functions can be used to detect signatures of quantum
chaos. We also feel that the Husimi distribution function
deserves more attention, not necessarily limited to the
correspondence. For instance, the contour plots from
these quantum distribution functions could be useful for

the phase-space version of Heller's "scars" left by the
quantum wave function [23,24] in a quantum system
without a classical counterpart.
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