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We propose a generalized Levy walk to model fractal landscapes observed in noncoding DNA
sequences. We find that this model provides a very close approximation to the empirical data and
explains a number of statistical properties of genomic DNA sequences such as the distribution of
strand-biased regions (those with an excess of one type of nucleotide) as we11 as local changes in the
slope of the correlation exponent n. The generalized Levy-walk model simultaneously accounts for
the long-range correlations in noncoding DNA sequences and for the apparently paradoxical finding
of long subregions of biased random walks (length iz) within these correlated sequences. In the
generalized Levy-walk model, the lz are chosen from a power-law distribution P(lz) oc l . . The
correlation exponent o. is related to p through n = 2 —p, /2 if 2 ( p ( 3. The model is consistent
with the finding of "repetitive elements" of variable length interspersed within noncoding DNA.
PACS number(s): 87.10.+e

I. INTRODUCTION

Recently there has been considerable interest in the
finding of long-range (power-law) correlations in certain
genomie DNA sequences [1—4]. While several tentative
explanations have been proposed regarding the origin,
function, or biological significance of this observation [5,
6], this question can be regarded as open. In this pa-
per, we offer a straightforward mechanism for generating
such long-range correlations in DNA sequences based on
a generalization of a Levy walk. In Sec. II, we discuss the
motivation for a model describing DNA sequences and
in Sec. III, we deFine this generalized Levy-walk model.
In Sec. IV we qualitatively compare the DNA landscape
for noncoding sequences with the landscape of the gen-
eralized Levy walk, and then quantitatively analyze the
fluctuations in these landscapes by estimating the corre-
lation exponent o, . We also consider the distribution of
regions of distinct "strand bias" in DNA, and compare
this to the predictions of the generalized Levy walk. Fi-
nally, in Sec. V we summarize our results and discuss the
possible biological implications of this type of analysis.

Some of the technical details are presented in the Ap-
pendixes, including the treatment of an alternative model
which contains a single characteristic length scale ("cor-
relation length" ). We show that this type of model can-
not adequately describe the observed long-range correla-
tion properties.

II. MOTIVATION

The method of DNA walks, introduced by Peng et al.
[1], allows graphical representation of the fluctuations of
the nucleotide content [see Fig. 1(a)]. A "DNA walk"
is initiated from the erst nucleotide of the sequence and
continued to the last nucleotide. F'or each pyrimidine at
position i, the walker takes a step up [u(i) = +1], and
for each purine, a step down [u(i) = —1]. This procedure
generates an irregular graph resembling a fractal land-
scape [Fig. 1(a)]. The defining feature of such a land-
scape is the statistical self-similarity (self-affinity) of the
plots obtained at various magnifications.

We analyze Quctuations of the actual data as described
in Ref. [1]. Specifically, we focus on the standard devia-
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tion in the nucleotide content:

L—I, 2
+'(t ~): ) (+v(to t) +u(&))

lp ——1

(2 1)

where L is the number of the nucleotides in the entire
sequence and

and

Ay(lo, l) = y(lo+ l) —y(lo), (2.3)

(2 4)

(2.2)

is the average value of Ay(lo, l) over entire sequence.
Here Ay(lo, l) is defined by F(l, L) l (2.5)

where u(i) = 1 for pyrimidines [cytosine (C) or thymine
(T), and u(i) = —1 for purines [adenine (A) or guanine
(G)]. It was found [1] that the fiuctuations can be ap-
proximated by
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FIG. 1. DNA-walk displacement y(l) (ex-
cess of purines over pyrimidines) vs nu-
cleotide distance l for (a) HUMHBB (human
beta-globin chromosomal region of the total
length L = 73239); (b) the LINE-1c region
of HUMHBB starting from 23137 to 29515;
(c) the generalized Levy-walk model of length
73326 with p = 2.45, I,, = 10, a, = 0.6, and
e = 0.2 (see Appendix B); and (d) a segment
of a Levy walk of exactly the same length
as the LINE-1c sequence from step 67048 to
the end of the sequence. This subsegment
is a Markovian random walk. Note that in
all cases the overall bias was subtracted from
the graph such that the beginning and ending
points have the same vertical displacement
(y = 0). This was done to make the graphs
clearer and does not affect the quantitative
analysis of the data.
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where n is the correlation exponent. For o, close to 0.5,
there is no correlation or only short-range correlation in
the sequence. If o, is significantly deviated from 0.5, it
indicates long-range correlation [7].

The DNA-walk analysis demonstrates a striking dif-
ference between coding and noncoding sequences: the
coding sequences usually consist of few lengthy alter-
nating regions of different nucleotide content ("strand
bias" ), corresponding to up-hill and down-hill regions of
the DNA walk, while noncoding sequences consist of very
many such regions of a wide range of length scales (see
Fig. 1 of Ref. [1]). The coding sequences can, therefore,
be easily divided into few subsequences (by eye or by
simple computer routine [1]) of different nucleotide con-
centration. The average value of o. for those subsequences
is close to 0.5 which indicates the absence of long-range
correlations within such subsequences. By contrast, non-
coding sequences cannot be divided into a small number
of such regions and their correlation exponents are sig-
nificantly greater than 0.5.

Although the correlation is long range in the noncod-
ing sequences, there seems to be a paradox: long uncor-
related regions of up to thousands of base pairs can be
found in such sequences as mell. For example, consider
the human beta-globin intergenomic sequence of length
L = 73326 (GenBank name: HUMHBB). This long non-
coding sequence has 50% purines (no overall strand bias)
and a. = 0.7 [see Fig. 1(a)]. However, from nucleotide No.
67089 to 73228, there occurs the LINE-1 region (define
in Ref. [8]). In this region of length 6139 base pairs, there
is a strong strand bias with 59% purines. In this non-
coding subregion, we find power-law scaling of F, with
F t~, with n = 0.55, quite close to that of a random
walk [7].

Even more striking is another region of 6378 base pairs,
from nucleotide No. 23137 to 29515, which has 59%
pyrimidines and is uncorretated, with remarkably good
power-law scaling and correlation exponent n = 0.49
[Fig. 1(b)]. This region actually consists of three sub-
sequences, complementary to shorter parts of the LINE-1
sequence.

These features motivate us to apply a generalized
Levy-walk model [see Figs. 1(c), l(d), and 2] for the
noncoding regions of DNA sequences. We will show in
the next section how this model can explain the long-
range correlation properties, since there is no character-
istic scale "built into" this generalized Levy walk. In
addition, the model simultaneously accounts for the ob-
served large subregions of noncorrelated sequences within
these noncoding DNA chains.

P(l, ) oc (1/1, )", (3.1)

where g, i t, = L, N is the number of substrings and
L is the total number of steps that the random walker
takes.

We consider a generalization of the Levy walk [14] to
interpret recent findings of long-range correlation in non-
coding DNA sequences described above. Instead of tak-
ing lz steps in the same direction as occurs in a classic
Levy walk, the walker takes each of t~ steps in random
directions, with a fixed bias probability

p+ = (1+e~)/2 (3.2a)

to go up and

p = (1 —ei)/2 (3.2b)
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to go down, where e~ gets the values +t or —e randomly.
Here 0 & e & 1 is a bias parameter (the case e = 1 reduces
to the Levy walk). Figure 2(b) shows such a generalized
Levy walk for the same choice of t~ as in Fig. 2(a).

As shown in Appendix A, the generalized Levy walk—
like the pure Levy walk —gives rise to a landscape with a
fluctuation exponent n that depends upon the Levy walk
parameter p [10, 14],

III. LEVY-WALK MODEL AND ITS
GENERALIZATION

-40
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The classic Levy-walk model describes a wide variety
of diverse phenomena that exhibit long-range correlations
[9—15]. The model is defined schematically in Fig. 2(a): A
random walker takes not one but l q steps in a given direc-
tion. Then the walker takes t2 steps in a new randomly-
chosen direction, and so forth. The lengths lz of each
string are chosen from a probability distribution, with

FIG. 2. Displacement y(l) vs number of steps for (a) the
classical Levy-walk model consisting of six strings of l~ steps,
each taken in alternating directions; (b) the generalized Levy-
walk model consisting of six biased random walks of the same
length with a probability of p+ that it will go up equal to
(1+e)/2 (e = 0.2); and (c) the unbiased uncorrelated random
walk. Note that the vertical scale in (b) and (c) is twice that
in (a).
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1 @&2
a= 2 —p/2, 2(p(3

1/2, p&3,
(3.3)

2

i.e. , nontrivial behavior of o. corresponds to the case
2 ( p ( 3 where the first moment of P(l~) converges
while the second moment diverges. The long-range cor-
relation property for the Levy walk, in this case, is a
consequence of the broad distribution of Eq. (3.1) that
lacks a characteristic length scale. However, for p & 3,
the distribution of P(l~) decays fast enough that an ef-
fective characteristic length scale appears. Therefore, the
resulting Levy-walk behaves like a normal random walk
for p, &3.

To be precise, we define our generalized I-step Levy-
walk model as follows.

(1) Choose a random number u which is uniformly dis-
tributed between 0 and 1, and define l~ = l,u& i where
l, is some lower cutoff characteristic length. The number

(l~ ) thus generated will obey the distribution of Eq. (3.1).
(2) Produce a biased random walk of length l~ (see

Appendix B) with p~ and p given by Eq. (3.2), where
c~ takes on the value +e or —e randomly and e is a fixed
value close to 0.2 (corresponding to the percentage of
purines vs pyrimidines in real DNA sequences).

(3) Iterate the process, attaching together biased ran-
dom walks until the total length of the sequence reaches
a given value I.

IV. COMPARISON WITH DNA DATA
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To test the generalized Levy-walk model, we have ad-
justed the two parameters p and l, [16] described in the
previous section to best approximate features of an actual
DNA sequence [the human beta-globin DNA sequence
shown in Fig. 1(a)]. The resulting landscape for the gen-
eralized Levy-walk model is presented in Fig. 1(c). The
comparison of F(l) for the model and DNA sequences is
shown in Figs. 3(a) and 3(b).

A more detailed scaling analysis [Figs. 3(c) and 3(d)],
considers the "local slopes" of successive points in the
graphs of Figs. 3(a) and 3(b):
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where l;+i and l, are values of two subsequent data
points. The local slope changes from n = 0.6 for I,~ ——1

to n = 0.75 for l, = 128, and stays at this value for

about two decades. It eventually drops down when l,
becomes too close to I, since Ii (I., I) = 0 according to
Eq. (2.1). This kind of scaling behavior is general for all

kinds of DNA sequences that contain noncoding mate-
rial. The initial monotonic increase in o., however, does
not mean that long-range correlations do not exist. In-

deed, as seen in Fig. 3(d), a similar type of behavior ex-

ists in the generalized Levy-walk model. Equation (3.3)
is valid asymptotically for very large t and L and the local
value of a(l, L) for finite values of l and L may difFer con-

siderably from its asymptotic value. The comparison of
ct(l, L) plots for human beta-globin chromosomal region

(L = 73326) and a Levy-walk model of the same size is
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FIG. 3. Double-logarithmic plots of fluctuation F(l, L) vs
nucleotide distance l [(a) and (b)] for the sequences presented
in Fig. 1 and the successive slopes of these plots n(l, L) vs

logio l [(c) and (d)]. The actual DNA sequences are presented
in (a) and (c): the entire HUMHBB sequence (o) and LINE-
1c sequence (Cl). The slopes for the linear fits are 0.72 and
0.49„respectively, The Levy model sequences are presented
in (b) and (d): the entire Levy-walk sequence of Fig. 1(c) (o),
a segment of this walk of Fig. 1(d) (Cl). The slopes for the
linear fits are 0.73 and 0.49, respectively. The solid circles
and solid squares in (a) and (b) are data omitted in linear
regression fit.
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shown in Figs. 3(c) and 3(d). In our model we use the
value of p = 2.45 which corresponds to the asymptotic
value of o. = 0.775, observed for the human beta-globin
chromosomal region. A similar comparison is made for
the largest available (I = 315357) DNA sequence [4],
that of yeast chromosome III [see Fig. 4(a)].

For any given size L, it is possible to calculate the aver-
age value and standard deviation of n(t, L) for the Levy-
walk model by calculating a(l, L) for a large number k
of statistically independent realizations of the model se-
quence of the size L The. data for yeast chromosome III
are well within a two standard deviation interval (k = 15)
for the generalized Levy-walk model with p = 2.5, which
corresponds to observed value of n = 0.75 [Fig. 4(b)].

An alternative test of Levy-walk (see also Appendix C)
structure can be made if one analyzes a "coarse-grained"
version of the original DNA sequence. To this end, we (i)
divide the entire sequence into L/i' subsequences of equal
length tU, (ii) replace each subsequence by 1 if there is an
excess of purines or by 0 if there is an excess of pyrim-
idines, and (iii) calculate the distribution P(s) of sizes
s of long runs of 1's and 0's. These calculations for hu-
man beta-globin chromosomal region show that P(s) has
a scaling region of roughly one decade, where P(s) s
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FIG. 4. Comparison of successive slopes of the scaling ex-
ponent n for yeast chromosome III (CI) and (a) successive
slopes of a realization of the generalized Levy walk with pa-
rameters I = 315000, p, = 2.5, l = 5, no ——0.55, e = 0.16
(o); (b) average successive slopes over 15 diiferent realiza-
tion of Levy walks with the same parameters (dashed line).
The shaded area corresponds to two standard deviations of
successive slopes of the model, calculated for 15 random real-
izations. The parameters for Markov process, o.o and e, used
in the model are calculated from real DNA sequence of yeast
chromosome III (see Appendix B).

with p, = 2.5. Our results are in good agreement with
the value of the exponent o; = 0.75 (see Fig. 5). Un-
fortunately, the coarse-graining process requires a long
sequence () 10 nucleotides) in order that the statis-
tics for the distribution be meaningful. To date, only
a few documented long sequences are available, but as
longer sequences become available this renormalization
test should prove to be increasingly useful.

V. DISCUSSION

The key finding of this analysis is that a generalized
Levy-walk model can account for two hitherto unex-
plained features of DNA nucleotides: (i) the long-range
power-law correlations that extend over thousands of nu-
cleotides in sequences containing noncoding regions (e.g. ,
genes with introns and intergenomic sequences), and (ii)
the presence within these correlated sequences of some-
times large subregions that correspond to biased random
walks. This apparent paradox is resolved by the gener-
alized I evy walk, a mechanism for generating long-range
correlations (no characteristic length scale), that with fi-
nite (though rare) probability also generates large regions
of uncorrelated strand bias. The uncorrelated subregions,
therefore, are an anticipated feature of this mechanism
for long-range correlations.

Prom a biological viewpoint, two questions immedi-
ately arise: (i) What is the significance of these uncor-
related subregions of strand bias? and (ii) What is the
molecular basis underlying the power-law statistics of the
Levy walk? With respect to the first question, we note
that these long uncorrelated regions at least sometimes
correspond to well described but poorly understood se-
quences termed "repetitive elements, " such as the LINE-
1 region noted above [8, 17, 18]. There are at least 53
diferent families of such repetitive elements within the
human genome. The lengths of these repetitive elements
vary from 10 to 10 nucleotides [8, 19]. At least some
of the repetitive elements are believed to be remnants of
messenger RNA molecules that formerly did code for pro-
teins [17, 18, 20, 21]. Alternatively, these segments may
represent retroviral sequences that have inserted them-
selves into the genome [22]. Our finding that these repet-
itive elements have the statistical properties of biased
random walks (e.g. , the same as that of active coding
sequences) is consistent with these hypotheses.

Finally, what are the biological implications of this
type of analysis? Our findings clearly support the fol-
lowing possible hypothesis concerning the molecular ba-
sis for the power-law distributions of elements within
DNA chains. In order to be inserted into DNA, a rnacro-
molecule should form a loop of certain length t with two
ends, separated by t nucleotides along the sequence, com-
ing close to each other in real space. The probability
of finding a loop of length t inside a very long linear
polymer scales as t " [23]. Theoretical estimates of p
made by different methods [24—27] using a self-avoiding
random-walk model [23] indicate that the value of p, for
three-dimensional model is between 2.16 and 2.42. Our
estimate made by the Rosenbluth Monte-Carlo method
[28—30] gives p = 2.22+0.05 which yields according to Eq.
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(3.3) o. = 0.89, a larger value than the effective value of
a(/, L), observed in DNA of finite length. However, the
asymptotic value of the exponent a remains uncertain
since the statistics of Levy walks converge very slowly
due to rare events associated with the very long strings
of constant bias that may occur in the sequence accord-
ing to Eq. (3.1). This results in the very large error bars
for o;(/, L) for large values of / and finite length L (see
Fig. 4). Even for the sequences of about 300 x 10s base
pairs we cannot estimate the limiting value of a with
good accuracy.

It is clear, however, that the behavior of DNA se-
quences cannot be satisfactorily explained in terms of
only one characteristic length scale even of about 10
104 base pairs long (see Appendix D). The asymptotic be-
havior of the scaling exponent n and whether it reaches
some universal value for long DNA chains must await
further data from the human genome project.

Note added. After this work was submitted, a report
appeared that con6rms the existence of long-range cor-
relations in DNA [35]. However, where Ref. [35] might
appear to disagree with Ref. [1] is in the interpretation
of that finding for coding and noncoding regions. Both
figures in [35] apply to the complete genome of the phage
A which does not contain noncoding sequences and con-
sists of only three regions of different strand bias (see
Fig. 1c of Ref. [1]). Each such region when analyzed sep-
arately by the DNA-walk method gives exponent n —0.5,
close to that of random walk. The combination of three
such regions produces a crossover in the local values of
n(/, L) —0.5 at small length scales / to a.(/, L) —1 at
large l. Thus, for coding sequences, there is indeed no
well-defined scaling exponent a for large length scales.

In contrast, the monotonically increasing local values
of n(/, L) followed by a plateau at large / for noncoding
sequences are completely explained by the generalized
Levy-walk model presented here in terms of a crossover
from an uncorrelated random walk at small length scales
to a Levy walk at large length scales. The latter has well-
defined scaling with an exponent n related to the expo-
nent p characterizing the power-law distribution of steps
of the Levy walk. Figure 3(d) of the present work clearly
demonstrates that the generalized Levy-walk model ac-
counts for the upward curvature in the values of n(/, L),
followed by a plateau with n(/, I.) —2 —p/2 [36].
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FIG. 5. The probability distribution to find a run of cer-
tain size s of purines or pyrimidines in the coarse-grained
sequence calculated using coarse-grained window size equal
to 32 (window size 32 is the minimal length in which the
bias of random walk with p = 0.6 becomes larger than stan-
dard deviation). (a) Actual sequence of HUMHBB on log-log
plot straight line has slope —2.50 and regression coefficient
0.957. (b) Actual sequence of HUMHBB on semilogarithmic
plot straight line has slope —0.0029 and regression coefficient
0.882. (c) Log-log plot for the model sequence, shown in Fig.
l(c); the slope is —2.42, the regression coeflicient 0.978. (d)
Semilogarithmic plot for the model; the slope is —0.0031, the
regression coefficient 0.933.
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APPENDIX A: DERIVATION OF EQ. (3.3)

The derivation of Eq. (3.3) is based on the fact that the
distribution of differences of altitudes of the landscape
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Ay(/p, /) separated by horizontal distance / is governed,
for large values of Ay(/p, /), by a single largest string /~~„.
The total number of strings n in the interval l for p ) 2
(with converging first moment) is proportional to /. Since
the probability for a single event lj ) x is x ~+1, the
probability for l~~„larger than x in n events is equal to
1 —(1—x "+ ) . When n is large, this probability can be
simplified as 1 —exp( —nx "+i). For large x )) ni~~"

it is asymptotic to nx I"+ . For x && n ~&& & it is close
to 1, with n /~" & being a characteristic value of l

The value n /~/" ~ l /~~ ~ serves as a natural cutoK
for the string distribution in the finite interval l. The
second moment of this truncated distribution converges
even for p, & 3:

)1/(p —&)

(A1)

strings, since there is no correlation between one string
and the others). Thus

C(/) - (m —/) P(m) dm, (A6)

C(/) m "+dm l "+ (A7)

for p, ) 2.
Since the mean-square fluctuation is a double summa-

tion of the correlation function [1], i.e. ,

where P(m) m " is the probability to find a string
with length m, and m —/ is the number of configura-
tions that both u, and u, +~ belong to the same string.
Therefore, the leading term of this integral is

Thus for Ay(/p, /) « / ~~" &, according to the central
limit theorem, the distribution of Dy(/p, /) = Q,".

i e, /, ,
the sum of n independent variables e;/, , is Gaussian with
variance n(/~ ) ~ / ~~"

P(Ay(/p, /)) - exp ( —C[Ay(/p, /)// ~~" l] ), (A2a)

for

i=1 j=1

we obtain

E~(/) / "+,
and therefore o. = 2 —p/2.

(A8)

(A9)

Ay(/p, /) « /' (A2b) APPENDIX B: MARKOV RANDOM WALKS

Hence, in almost all cases ~Ay(/p, /)~ is of the order
l1/(V —1)

However, when a rare event l~~~ )) l /'~" & happens,
then Ay(/p, /) —

/ ~„.(The contribution of all the rest
of the strings is usually of the order l /~/" 1~, as shown

above, and can be neglected. ) Thus for Zy(/p, /)

/ ~~" r& the probability density of Ay(/p, /) coincides with
the probability density of / ~„which, as shown above, is

proportional to nx " lx

P(Ay(/p, /)) /Ay(/p, /) (A3a)

gy(/p /) ~~ /ri(~-i)

It is clear, however, that Ay(/p, /) & /. Thus,

(A3b)

(0y(/p, /) ) / dxx (A4)

For /r ) 3 integral in Eq. (A4) is finite and (Ay(/p, /) ) oc

/. For 2 & p, & 3 Eq. (A4) yields (Ay(/p, /) ) oc / ".For

p & 2 we have / ~„ / and (Ay(/p, /) ) oc / . A rigorous
derivation of Eqs. (Al), (A2), and (A3) can be found in
Ref. [14].

Equation (3.3) can also be derived by studying the
correlation function

Previous studies have shown that DNA sequences ex-
hibit short-range correlations that can be well described
by a Markov chain [31]. The short-range correlation can
be found both in the coding regions (where cr = 0.5 for
large /) as well as in the noncoding regions. This short-
range correlation aKects the behavior of F(/, L) for the
range / & 10 and manifests itself through the changes of
the initial slope np ——cr(/ = 1, L) of the log-log plot of
F(/, L) versus /.

As we discuss in the main text, a generalized Levy
walk is an ensemble of many uncorrelated biased random
walks that are spliced together, where the length of these
biased random walks follows a power-law distribution. To
take into account short-range correlations such as those
found in DNA, we can use a biased Markov random walk
instead of the pure uncorrelated biased random walk. We
will discuss the procedure of generating a biased Markov
random walk in this appendix.

The probability of finding a certain type of nucleotide
at position i is represented by a state vector

where Pi (i) and PR(i) are the probabilities of finding
pyrimidine (Y) and purine (R) at position i, respectively.
Of course,

C(/)
—= u, u, +(, (A5) Pi. (i) + PR(i) = 1.

where the bar indicates average over all i, and u, is the
step (+1) of the Levy walk.

The nonvanishing contribution to C(/) is that u, and
u, +t both belong to the same string (the expectation
value for u, u, +~ is zero when they belong to different

For a first-order Markov chain, the evolution of a state
vector can be described by a master equation [32]

A(i+1) = AX(i),

where A denotes the transition matrix, i.e. ,
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P~v+&vR = &~

&a~+&~a = &.

(85a)

(84)
PYR PRR )

where P~~ is the conditional probability of finding the
next nucleotide (along the chain) to be a B (either Y' or
R) given that the present nucleotide is an A. It is obvious
that

1

Q

-1

I 2

-3
- 1

I I

0 1

ln fdy(l)/F(l, L)}

Since the sequence is biased in nucleotide concentra-
tion, therefore, the state vector X should approach a
steady state

x', =] p+
4&- ) (86)

where p+ is the concentration of pyrimidine for the whole
sequence and p = 1 —p+ is the concentration of purine.
Mathematically speaking, X, is the eigenvector of the
transition matrix A (with an eigenvalue 1). It is straight-
forward to show that, with the constraints of Eqs. (82)—
(86),

(I —p A

p A 1 —@+A) ' (87)

where 1 —A is another eigenvalue, corresponding to the
eigenvector ( i), of matrix A. The physical meaning of
this eigenvalue is that it defines short-range correlation
length ( = —1/In]1 —A]. It can also be expressed in
terms of ap = a(1, 1), the initial slope of the F(/, I)
log-log plot for large values of I,

) 1 22&o —i
2F2(1,1)

Therefore, to model an actual DNA sequence by a
Markov chain, first we need to calculate the bias for the
concentration, p+, from the actual data. Then we need to
determine the parameter A from the actual measurement
of a!p [see Fig. 3(c)]. The transition matrix A is com-
pletely determined by p+ and A according to Eq. (87).
Note that the case A = 1, corresponding to a.p = 1/2,
reduces the Markov chain to an uncorrelated biased ran-
dom walk.

2.0

1.0

0.0

~ -1.0

~ -2.0

-3.0 I

0 1

In (dy(l)/F(l, L)}

1.0

0.8-

FIG. 6. Comparison of the distributions of b,y(/p, /) for
(a) HUMHBB sequence and (b) generalized Levy-walk model,
presented in Fig. 1(e). The data presented as double-
logarithmic scaling plots of the logarithm of normalized distri-
bution vs scaling variable Ay(/p, /)/F(/, I ), for difFerent values
of / = 8 (o), / = 16 (Cl), / = 32 (~), / = 64 (a). Note that for
small values of /, F(/, I ) scales like / ~' i, where n(/, I ) 0.7
as can be seen from Figs. 3(c) and 3(d), while from Eq. (A2)
one can expect a scaling variable of the distribution to be
Ay(/p, /)// ~" ~, but for p = 2.45 1/(p —1) = 0.69. Thus,
our scaling variable approximately corresponds to the theo-
retical one. The degree to which the rescaled data fall on a
single curve ("data collapse" ) shows rather good agreement
with Eq. (A2) both for real DNA and model sequence. The
slopes of the straight lines are equal to 2 for Gaussian distri-
bution.

APPENDIX C: OTHER STATISTICAL
PROPERTIES OF LEVY WALKS

The Levy-walk model is consistent with our previous
finding [33] of Gaussian distribution of values of Ay(lp, l)
for small Ay(/p, /) ( / ~i& i&. Since it was shown that for
Levy walks this quantity has a large region of Gaussian
behavior near its maximum [Eq. (A2a)] and power-law
tails [Eq. (A3a)] for large Ey(/p, /) ) li/&~ i& (See Fig. 6).
However, suKciently long data sets are not yet available
to test the tails of this distribution directly. It should
be mentioned that a model of DNA evolution proposed
by Li [5] does not obey Gaussian distribution of Ay and,
hence, fails to describe important features of real DNA.

o

0.4-

0.0
0 2

log, g g

I IG. 7. Comparison of the successive slopes of the yeast
chromosome III (E3) with the average data for 15 realizations
of the Gnite scale model with l = 600, ao = 0.58, e = 0.074
(dashed line); the shaded area corresponds to two standard
deviations of the data for the model [compare to Fig. 4(b)].
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APPENDIX D: ALTERNATIVE MODEL
WITH FINITE CORRELATION LENGTH

In order to determine whether the behavior of long
DNA sequences can be explained using simple finite range
correlations we change the distribution of lengths of bi-
ased random walks in our model to that of a Poisson dis-
tribution with a very large characteristic length l, and
replace rule 1 of our model by /z —— lc l—n(u). We have
systematically varied l, between 100 and 1000 with dif-
ferent values of p+ and A but are unable to find param-
eter ranges that adequately fit the actual data for yeast
chromosome III. The best fit is shown in Fig. 7. We
found that the same is true for other long sequences
that we have studied: human and rabbit beta-globin
chromosomal regions, and the complete genome of hu-
man cytomegalovirus. These data are well fit by the
Levy-walk model but not by the finite correlation length
model. However, for some shorter sequences such as
myosin genes [33], one can fit the data for F(t, L) equally
well with the Levy walk model as with the finite range
model with length scale jt, = 200. Of interest, this length
corresponds to nucleosome size. This maybe related to
the complex exon-intron structure which has the prop-
erty that the total length of successive intron and exon
is usually a multiple of the nucleosome size [34].

For other types of DNA walks, e.g. , for the bonding

1.0

0.8

0.6-

0 4
g8

0
0 0
0

6
0

0
0

o ~o

0.0
0 2 3

iog~o

energy classification [with u, = 1 in Eq. (2.4) for cytosine
or guanine which are strongly bonded together and u, =
—1 for adenine or thymine which are weakly bonded], we
also found that the data may be in some cases very well
fitted by finite range model with t, = 200 or larger l,
(see Fig. 8). However, the scaling of F(t, L) for this rule
of yeast chromosome III is even better than the scaling
for the purine-pyrimidine rule and can be fitted only by
a Levy-walk model.

FIG. 8. Comparison of the successive slopes of the log-log
plot of fluctuations of CG-AT content for HUMHBB sequence
(0) and finite scale model with I, = 200, no ——0.4, p+ ——0.57
(o). The fluctuations in the CG-AT content were calculated
according to Eqs. (2.1)—(2.4), where u(i) = 1 for C or G and
u(i) = —1 for A or T.
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