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We derive cooling schedules for the global optimization of learning in neural networks. We discuss a
two-level system with one global and one local minimum. The analysis is extended to systems with many
minima. The optimal cooling schedule is (asymptotically) of the form 7(t)=n* /Int, with 7(t) the learn-
ing parameter at time ¢ and 7* a constant, dependent on the reference learning parameters for the vari-
ous transitions. In some simple cases, n* can be calculated. Simulations confirm the theoretical results.

PACS number(s): 87.10.+¢

I. INTRODUCTION

Global optimization of learning in neural networks is
currently an important subject. How can one be sure
that the learning network reaches the optimal state, i.e.,
the global minimum of some error criterion, and does not
get stuck in a local minimum? A well-known strategy to
find the global minimum and not just a local minimum is
simulated annealing [1]: a noise parameter, say tempera-
ture, is cooled down slowly. In the beginning of the
search for the optimal solution, temperature is relatively
high and large steps are possible. At the end, when the
system is likely to be in the vicinity of the optimal state,
temperature is low and only small steps are made.

On-line learning in neural networks is also a stochastic
process. At each learning step, a training pattern is
drawn at random from the environment (the total set of
training patterns) and presented to the network. The
learning parameter sets the typical scale of the weight
change at each update. A large learning parameter leads
to large fluctuations in the network’s representation [2].
So, in a way, the learning parameter can be viewed as a
noise parameter akin to the temperature in simulated an-
nealing. Therefore it seems worthwhile to search for
cooling schedules for the learning parameter that guaran-
tee convergence to the optimal network state.

Usually, simulated annealing techniques are applied to
stochastic processes for which the stationary probability
distribution for a fixed value of the noise parameter is a
Gibbs distribution. Well-known examples are Langevin
algorithms for diffusion-type processes [3] and annealing
algorithms for combinatorial optimization [1]. However,
for stochastic learning processes, the stationary distribu-
tion is in general unknown and is not a simple Gibbs dis-
tribution [4,5]. This makes it more difficult to find a cool-
ing schedule for the learning parameter.

Roughly speaking, there are two different approaches
to study the consequences of the noise introduced by the
random presentation of patterns. The ‘“mathematical”
approach describes learning in the context of stochastic
approximation theory and has led to many important,
rigorously proven theorems (see, e.g., [6,7]). More
specifically, Kushner [8] describes a cooling schedule of

1063-651X/93/47(6)/4457(8)/306.00 47

the type we will derive, and shows that it leads to global
optimization if one of the parameters in this schedule is
chosen large enough. We will try to derive the optimal
cooling schedule, i.e., the cooling schedule that leads to
the optimal network state, not only with probability 1,
but also as fast as possible. To this end, we will follow
the “physical” approach which treats learning as a sto-
chastic process governed by a master equation. The main
benefit of this approach is its applicability if one aims at
(approximate) quantitative results (see, e.g., [9,2]).

In Sec. IT we will briefly summarize the results of a pre-
vious study [5] that are essential for the rest of this paper.
These results will be used in Sec. III to derive a cooling
schedule for a two-level system with one global and one
local minimum. The two-level case is generalized to vari-
ous minima in Sec. IV. The simulations in Sec. V will be
used to test the derived cooling schedules. In Sec. VI we
will discuss the possible applications and the limitations
of the results.

II. LEARNING WITH LOCAL MINIMA

At every learning step, a training pattern, denoted by
an n-dimensional vector X, is drawn at random from the
environment ) and the N-dimensional weight vector w,
containing the strength of all synapses and thresholds,
changes its state from w to w-+ Aw, obeying

Aw=nf(w,X) , (1)

with the learning parameter 7 and the learning rule
f(w,X). We will restrict ourselves to learning rules that
perform stochastic gradient descent on some error func-
tion E(w), i.e., that obey

(f(w,X))q=—VE(wW),

where ( ) stands for the average over all training pat-
terns and V for the derivative with respect to the network
state w. The existence of such an error potential E (w)
facilitates a global description of the learning process:
the lower the error potential E(w), the “better” the net-
work state w. Well-known examples are backpropaga-
tion [10], Hebbian learning [11], and Kohonen-type
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learning [12].

Because of the random presentation of the training pat-
terns, the learning procedure as defined in Eq. (1) is a sto-
chastic process. The probability P(w,?) that the network
is in state w at time ¢ obeys the master equation [2]

IP(w',t)

Py = [ dMw[T(W'|w)P(w,1)—T(w|w)P(w',1)],

()
with transition probability
T(w'|w)= fd"x p(w, X)W —w—nf(w,X)) .

It is impossible to solve this master equation in general.
However, using standard arguments from the theory of
unstable stochastic processes [13], it can be shown that
after an initial time of order 1/7 the probability distribu-
tion P(w,t) obeys to a very good approximation [5]

P(w,1)= n,(t)po(W)+ P (w,1) .

n,(t) is the occupation number at minimum « and p,(w)
a local normalized probability distribution with its aver-
age at wJ, the position of minimum « of the error poten-
tial E(w). P_(w,t) stands for the probability to find a
weight vector w outside the direct vicinity of the minima.
For small learning parameters, its probability mass is
negligible in comparison with the probability mass in the
neighborhood of the minima.

Transitions between different minima are rare. The ex-
change of probability mass between the various minima is
governed by

dn,(t)
dar

nB(t) _ na(t)

’ (3)

B Tap TBa

where 7,4 is the transition time from minimum S to a.
From theory and simulations we deduce that these transi-
tion times are of the form [5]

Tap™ exp 4)

Tlap

d
Aaﬂn * K
Tlap is called the reference learning parameter for the
transition from B to a. In [5] we have described a
method to calculate, or at least estimate, this parameter.
We do not know how to calculate 4,5 and d 4, but these
parameters become less and less important for smaller
learning parameters. In the next section we will investi-

gate whether an efficient cooling schedule really depends
on these parameters.

III. A TWO-LEVEL SYSTEM

We consider a system with one global minimum
E,=E(wf) and one local minimum E,=E(wj). We
will assume that 7j;, <7,,, i.e., that for small learning pa-
rameters the transition from the local minimum to the
global minimum is easier than vice versa. In Sec. VI we
will argue that this is true in most practical situations.
Furthermore, we will treat the system as a true two-level
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system, i.e., we define the average error E(t) by
E(t)=n,(t)E,+n,(t)E, . (5)

Combining this with n(#)+n,(z)=1, the occupation
numbers are uniquely determined once E (¢) is given:

= E,—E, ’

" E(t)—E, ©

t)y=—/———— .

"2 E,—E,

Note that the possibility to express the occupation num-

bers in terms of the average error potential is particular

for a two-level system: it fails for three or more levels.

Systems with more minima will be studied in Sec. IV.
Using Egs. (3), (5), and (6), we can write a differential

equation for the average error potential (for notational

convenience we will drop the explicit time dependency):

dE _ dn, E—E,

dt (E,—Ey) dr

E2 '_"E

@)

T12 1

The optimal cooling schedule is found by choosing 7
such that the term between large parentheses is as large
as possible [14], i.e., such that

Aptdpm _ iy +dym

(E“‘El)

(EZ_E) >
T12 1

or, writing the average error E in terms of the learning
parameter 7,
E= (T tdpmE |+ 7,0, +dymE,
(Tt d )+ 7 +dy )

(8)

The fastest path specifies 7 as a function of E and vice
versa. The time trajectory of the optimal 7 can be calcu-
lated from

1
dE
dt

dE
dn

an _

dt

Using Egs. (7) and (8), we obtain

dn _

dt (T +dym) (T tdpm)

’7’]2

(dyTip—dpiy)n® |7

T~ Tt (dy—dpn
T tdum i Mptdpn

21 T12

. )

It is not possible to solve this differential equation explic-
itly. For large ¢, we expect 7—0. Keeping only the
lowest orders in 7 and noting that in this limit
T12(n) << 715,(7n7), we obtain

dn___ 7"
dt Tia7T12(m)

For large ¢ the approximate solution of this differential
equation is
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M
In{(%,4 15 /7,,)[¢ /(Int )dlz]}

(Inlnt)?
(Int )3

n(t)=

(10)

Backsubstitution in Eq. (9) confirms that this is really a
consistent approximation for 7(¢). The lowest-order ap-
proximation of Eq. (10) yields

712
=12,
n(t) Int

InIn¢
(Int )?

(11

This constitutes our final cooling schedule. It does not
depend on the parameters 4,5 and d,z in Eq. (4). We
only have to compute the reference learning parameter
7, for the transition from the local to the global
minimum.

In a sense, the derived cooling schedule is indeed op-
timal. A “faster” cooling schedule, e.g., 7(¢)=7,,/5 Int,
cannot guarantee that a network starting at the local
minimum will indeed reach the global minimum. We
could say that the transition from the local to the global
minimum is “closed.” The optimal cooling schedule
keeps this transition just “open.” A “slower” cooling
schedule, e.g., 17(¢)=57,,/Int, gives also an open transi-
tion, but convergence might take much longer than with
the optimal cooling schedule. By looking at the transi-
tion times we can easily check whether a particular tran-
sition is open or closed. If the transition time grows at
most linearly with time ¢ the transition is open, if it grows
faster than linearly with time ¢ the transition is closed.
For the optimal cooling schedule (11) the transition time
71, from the local to the global minimum grows linearly
with time 7.

IV. VARIOUS LOCAL MINIMA

We will try to find a cooling schedule in the case of
M —1 local minima and one global minimum at wf,
M > 2. Generalization to more global minima is straight-
forward. We denote the stationary distribution of the
master equation (2) for constant learning parameter 7 by
Pn(w, o ). In the limit —0, this stationary distribution
concentrates at the (local) minima of the error potential
[7], i.e.,

M
imP, (w, )= p,8Nw—w) . (12)
n—0 a=1
Since the stationary distribution does not depend explicit-
ly on the error potential, there is no guarantee that it will
concentrate near the global minimum, i.e., that p,=§,,.
Nevertheless, in order to make some progress, we will
postulate that
lim P, (w, o )=8"w—w}), (13)
n—0
i.e., that for small learning parameters the stationary
probability distribution will concentrate on the global
minimum. In Sec. VI we will argue why this postulate is
reasonable in most practical situations. However, if
another minimum is more ‘‘attractive,” e.g., minimum 2

4459

if p,=8,, in Eq. (12), then a cooling schedule, at least
one of the type we will derive, will drive all learning net-
works to this minimum.

Instead of trying to solve the master equation in weight
space, we will study the dynamics of the occupation num-
bers at the various minima given in Eq. (3). If we define
the transition matrix I'(n) by

raﬁ(n)=——71—6(n) for ap ,

1
Cpam)= 3 ,
B (7o) TBaM)

then the dynamics of the occupation numbers for time-
dependent 7(t) is written
dn(t) _
dt

Our goal is now to find a cooling schedule 7(¢) such that
the solution n{(#) of this differential equation obeys

limn(2)=(1,0,...,0,0)T,
t— oo

—T(n(e))nlz) . (14)

i.e., such that in the end all the probability mass is con-
centrated at the global minimum.

We denote the left and right eigenvectors of I'(n) by
a;(n) and E,-(n), respectively. A;(n) stands for the corre-
sponding eigenvalue, «;(7) for the real part of this eigen-
value, and A;(z) for the projection of n(z) on the left
eigenvector a;(7):

A(t)=2a;(n)ne) .

Now 1(¢) can be written

M—1 .
n)= 3 A;(t)b;(n) .
i=0
Note that 1—I'(%) is a stochastic matrix, i.e., all ele-
ments of 1—T(n) are non-negative and the elements in
each row add up to 1 (see, e.g., [15] for some general
properties of stochastic matrices). So, I'(n) has one zero
eigenvalue with corresponding left eigenvector
ag(n)=(1,1,...,1,1). All other eigenvalues have posi-

tive real parts. If we order the eigenvalues such that
0=kro(n) <Kk (M= Zkpr (M Zkpr—1(M) =2,

then A,(¢) gives the slowest convergence to the stationary
solution by(77). In these terms, postulate (13) reads

lirr%)go(n)=(l,0,...,0,0)T. (15)
T]—»

From Eq. (14) we derive the following differential equa-
tion for the projections:

dA(1)
— = MDA+ R(1) (16)
with
_dy(p) | dai(n(®) .
R;(t)= gt dn(t) (t),
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an extra term due to the time dependency of the learning
parameter. We are interested in the conditions under
which the projection A;(¢) vanishes in the limit ¢ —> oo,
In these considerations the term R;(¢) can be neglected if
the integral over R;(t) is bounded, i.e., if for some ¢,

[ 7atIR, (1) < .
)

The proof is straightforward. Rewriting the integral over
t in an integral over 7 and using ||fi(¢)|| < 1, we obtain

da;(n)
dn

© n(ty)
dt|R, (1) = d
f,o IR,(1)] fﬂ(w) n

since the second integral is over a bounded interval.

The cooling schedule 7(¢) has to guarantee that all pro-
jections A;(¢) vanish, except Ay(2), the projection on the
eigenvector with zero eigenvalue. In that case the only
remaining component is in the direction of by(7(z)). This
eigenvector must converge to (1,0, ...,0,0)7 for t— .
Comparison with Eq. (15) yields

lim (¢)=0,

t— o
i.e., in the end the learning parameter should go to zero.
The slowest convergence is determined by the eigenvalue
A(n(2)). From Eq. (16) we deduce the requirement

[ “dtk(n(n))=co .

The optimal cooling schedule is found if this condition is
just fulfilled, i.e., if

Kl(n(t))oc% for t— oo . (17)
In the Appendix we derive
*
ki(m)~exp ——7777— for n—0,
with
d
—-det[T(n)—A]l -0
* : dA
n ——Im})nln T 3
7]—)
Ewdet[r(’l])—l]!;\:o

Comparing with Eq. (17), we conclude that the optimal
cooling schedule is of the form

*

n(t)=i% for t—o0 . (18)
This kind of “exponentially slow” cooling schedule is
common ground in the theory of stochastic processes for
global optimization [1,3]. Kushner [8] already showed
that this schedule works for large enough 7%*.
Knowledge about the optimal 1* can be very useful since
it prevents the cooling schedule from being slower than
strictly necessary. In cooling schedules for simulated an-
nealing the optimal n* is called “the critical depth” [16].
It is the depth (suitably defined) of the deepest local
minimum which is not a global minimum state [17]. In
this context, the approach taken in [18,19] is most similar
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to ours: the critical depth is computed from the structure
of a Markov chain, i.e., from the transition probabilities
between different states.

In the Appendix we derive the following bounds for
*

n,
ﬁminsn* Sﬁmin_i_(M_l)(ﬁmax_ﬁmin) >

with %;, and 7)., the smallest and the largest finite
reference learning parameter, respectively. The lower
bound can be explained from the considerations at the
end of Sec. III. A choice 1* <7, is definitely wrong
since then all transition times grow faster than linearly
with time ¢ and thus all transitions are “closed.” The ei-
genvalue A;(n) that gives the slowest convergence to the
stationary solution is related to the transition time for the
most difficult transition indispensable to reach the global
minimum from any arbitrary initial weight configuration.
The optimal cooling schedule keeps this transition open
but may close transitions that are not needed.

V. SIMULATIONS

To illustrate the performance of the derived cooling
schedules we will use the same toy problems as in [5].
There it is shown that, if x is drawn according to a suit-
able conditional probability density function p(w,x), the
Grossberg learning rule [20]

Aw=n(x—w)

performs stochastic gradient descent on the error poten-
tial

Now? ]
E(W)=i§1—4" - Eln[ﬁwi +e€].

In other words, the learning process is such that
[ d% p(w,x)(x—w)=—VE(wW) .

[ and € are adjustable parameters. Roughly speaking 8
determines the steepness of the minima and € the relative
depth.

First, we will discuss simulations of Grossberg learning
with just one weight. The error potential with f=1.5
and €=0.05, shown in Fig. 1(a), has one global and one
local minimum. The reference learning parameters can
be calculated using the procedure given in [S]. We obtain
(throughout the rest of the paper we will give the numeri-
cal results in three significant digits)

7’12=O- 146 ) '7]21:0. 327 .

The difference in 7}, and 7j,; reflects the fact that transi-
tions from left to right are easier than transitions from
right to left. To make the connection with Sec. IV, the
nonzero eigenvalue of the two-dimensional transition ma-
trix I'(7) obeys

_The

A(n)~exp , 1—0.

In the derivation of our cooling schedules we have only
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FIG. 1. (a) One-dimensional error potential E (w) for 3=1.5
and €=0.05. (b) Occupation number at the local minimum
n,(t) as a function of time ¢. (c) Occupation number n,(t) vs the
learning parameter 7(¢). (b) and (c) for three different cooling
schedules: 7*=0.2 (dashed line), n*=0.04 (solid line), and
17*=1 (dash-dotted line).

studied the asymptotic behavior of the learning parame-
ter. Any cooling schedule satisfying Eq. (18) for large
times ¢ is acceptable. In our simulations we will use cool-
ing schedules of the form

*

7
. 19
In(yn*t+1)+n* (19)

This cooling schedule is such that

n(t)=

d(t)

nNO=1, dt |-

=3 —7/ .

v sets the initial rate of change of the learning parameter.
For large ¢ the parameter ¥ becomes less and less impor-
tant.

Simulations are done for three different cooling
schedules: (1) near optimal: n*=0.2, dashed line; (2)
cooling too slowly: n*=1, solid line; (3) cooling too
abruptly: n*=0.04, dash-dotted line. The parameter y
in Eq. (19) is kept constant at 0.01 and all 1000 indepen-
dently learning networks are initialized with equal proba-
bility between —1 and 1. In this way the initial dynamics
of the learning process is roughly the same for the three
cooling schedules. The relative success of the cooling
schedules is purely determined by their different large
time behavior. :

n,(t), the occupation number of networks in the vicini-
ty of the local minimum, is plotted as a function of time ¢
in Fig. 1(b) and versus the learning parameter 7(¢) in Fig.
1(c). If the learning parameter is cooled too abruptly
(p*=0.04, dash-dotted line), many learning systems, in
this case about 20%, end up not at the global minimum
but at the local minimum. If the learning parameter is
cooled too slowly (n* =1, solid line), all learning systems
may still reach the global minimum (we stopped after 10°
learning steps) but this takes a far longer time than for
the (almost) optimal cooling schedule (p*=0.2, dashed

line). After 10°® learning steps with the (almost) optimal
cooling schedule only 0.1% of the networks is still at the
local minimum and with the slow cooling schedule about
15%. The simulations stress the importance of having a
reasonable estimate for the reference learning parameter
in order to derive an acceptable cooling schedule.

How to find a cooling schedule in the case of more
minima is illustrated by simulating Grossberg learning
performing stochastic gradient descent on the two-
dimensional error potential shown in Fig. 2(a). With pa-
rameters $=2.5, €,=0.4, and €,=0.2, this error poten-
tial has four minima. Following the procedure explained
in [5], we obtain the matrix 7} with reference learning pa-
rameters

0.944 0.543

1.97 w  0.543

M= 1258 w 0.944
w 258 1.97

The possible transitions are drawn schematically in Fig.
3(a). The reference learning parameters 74, 741, 723, and
7}, are infinite since the transition times for a direct tran-
sition over the barrier in the middle grow faster than ex-
ponentially with the reciprocal value of the learning pa-
rameter (see [5] for further explanation). Straightforward
calculation of the eigenvalue A(7) yields

0.944

A(n)~exp for n—0,

so, 7*=0.944. This parameter 1* is larger than the
reference learning parameters corresponding to transi-
tions going from a higher to a lower minimum. On the
other hand, it is smaller than the reference learning pa-
rameters corresponding to transitions from a lower to a

1 T T LT T T T T
. . el
"os|" () ]
0.6 ‘
0.4}

() 02 1
'7/77/;'0\‘“ ) 10 109
N .
/AN

) .ﬁ‘:“"’"’;‘”” it) 1 N '

N SN
\{Qg}';’/ :

&Y 0.6} ,

)\ 04f 1

w w. 0'2 [ i

n(t)

FIG. 2. (a) Two-dimensional error potential E(w,,w,) for
B=2.5, €,=0.4, and €,=0.2. (b) and (c) Occupation numbers
n,(2) (solid line), n,(¢) (dashed line), n;(z) (dotted line), and
n4(t) (dash-dotted line) as a function of time ¢ and vs the learn-
ing parameter 7)(¢), respectively.
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0.543
_ —_—
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2.58
0.944 1.97 0.944 1.97 n* = 0.944
0.543
_
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2.58

FIG. 3: (a) The reference learning parameters for the error
potential shown in Fig. 2(a). (b) Transitions with #,z>7n*
=0.944 are “closed,” transitions with 7,3 <7* are still “open.”

higher minimum, since it is not necessary to go from a
lower to a higher minimum on the way to the global
minimum. The “open” and “closed” transitions are de-
picted in Fig. 3(b).

The results from learning with 100 networks, all start-
ing at the highest local minimum, and a cooling schedule
of the form (19), with parameters n* =1 and y =0.01, are
given in Figs. 2(b) and 2(c) where the occupation numbers
n(t) (solid line), n,(¢) (dashed line), n;(¢) (dotted line),
and n,(¢) (dash-dotted line) are plotted a function of time
t and versus the learning parameter 7(t), respectively. At
the end, all networks have arrived at the global
minimum.

VI. DISCUSSION

We have derived cooling schedules for learning in
neural networks. The optimal cooling schedule for global
optimization of on-line learning is of the form

*
n(t)=ﬂ—- for large ¢ .
Int

7n* can be calculated from the reference learning parame-
ters for transitions between different minima. In some
simple cases we were able to calculate n* and found good
agreement with simulation results.

Some comments should be made about the practical
use of the theory presented in this paper.

(i) The derived cooling schedule is “exponentially
slow,” i.e., it takes an exponentially long time before one
can be sure that the learning network has found the op-
timal solution. This is a fundamental problem in global
optimization and is not typical for learning processes.
For low-dimensional problems, a combination of cooling
schedules and other techniques, e.g., multistart algo-
rithms, might improve the speed of convergence. How-
ever, for large networks with many adaptable weights it
will be unlikely to improve upon this exponentially slow
cooling (see [3] for similar arguments regarding Langevin
algorithms compared with other optimization tech-
niques).

(ii) The cooling schedule will drive the networks to the
most “attractive’” minima. The question is whether these
most attractive minima will coincide with the global
minima. Let us compare stochastic learning processes
with Metropolis and diffusion-type algorithms [1,3]. For
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both the Metropolis and the diffusion-type algorithms the
stationary distribution is a Gibbs distribution which
makes the global minima always the most attractive mini-
ma. The important difference between these stochastic
processes and stochastic learning processes of the form
(1) is that for the former the noise is the same at each
minimum, whereas for the latter the noise at each
minimum in general will be different [2]. Usually we will
have that the higher the error potential, the more there is
to learn, the larger the fluctuations in the learning rule,
so the higher the noise level. Roughly speaking, the
reference learning parameter for a transition from
minimum a to 8 is proportional to the height of the bar-
rier between a and 3 and inversely proportional to the lo-
cal fluctuations at . These arguments strongly suggest
that the “colored noise” coming from the random presen-
tation of patterns in on-line learning processes helps to
find the global minimum in stochastic learning processes.
Therefore violations of the postulate (13) will be rare.

(iii) Throughout this paper we assumed that we knew
the reference learning parameters. To calculate these
reference learning parameters, one needs detailed infor-
mation about the environment. Usually, this information
is not available. And if it is available it will be easier to
compute the global minimum than all reference learning
parameters. Therefore we do not suggest that for practi-
cal applications one should try to calculate these refer-
ence learning parameters. A solution of this problem
might be a prelearning phase, during which an estimate
of n* is obtained by sampling the error surface. This is
analogous to the estimation of the initial temperature for
simulated annealing cooling schedules (see, e.g., [21]). In
this paper we merely tried to show that there exists such
a parameter 1* leading to an optimal cooling schedule
and to give an idea of the factors that determine this pa-
rameter. This knowledge is meant to provide a theoreti-
cal basis for the design of practical algorithms that lead
to global optimization of learning in neural networks.
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APPENDIX

In this Appendix we will try to find an expression for
ki(m), i.e., for the smallest nonzero eigenvalue of the ma-
trix I'(n). Let us consider the characteristic equation of
the matrix I'(n):

M
0=det[T(n)—A]=3 cp_,(m)(—A"
n=0

M—1
= I [A(m)—A] . (A1)
i=0

Typically, c,(7) is the sum of a product over »n transition
probabilities, so schematically
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(__)M—n aM—n

C(n)—A
(M = akM_"det[ (m)—A] -

b 1

products n terms TaB( n )

c,(n)=

(A2)

In terms of the eigenvalues A; the coefficient ¢, reads

Cr—Cn—1Cn41= > > A A
i erig 1) Ugs e dy)

i in—1""y

=0,

since there are more constraints on the sum over / than
on the sum over k. The inequality (A3) leads to the or-
dering
o=—M__SM-1_ &1
CM—1

. (A4)
Mm—2 Co

In the limit n—O0 the transition times given in Eq. (4)
are dominated by the reference learning parameters 7,4
Just as in Sec. III, we can neglect the influence of the pa-
rameters A4,z and d g in our search for a “lowest-order”
cooling schedule of the form (11). Furthermore, in Eq.
(A2), only the largest term in the sum will survive for
small learning parameters 7. So, we can always find a
positive parameter 7j,, such that

Cn+1(7)
—_— —— | fi 0. A5
e (m) exp or n— (AS)
Let us substitute the guess
¢ +1(m)
:ﬂ (A6)
Ci(n)

in the characteristic equation (A1). Making use of the or-
dering (A4), we note that the (M —i)th term and the
(M —i—1)th term are the largest terms in the sum.
Since these terms exactly cancel, we conclude that the
guess (A6) indeed yields (up to leading order) all eigenval-
ues of the matrix I'(n). Combining Egs. (A2) and
(A4)-(A6), we obtain the smallest nonzero eigenvalue
_n*
n

A(n)~exp for n—0,

with
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where the sum is over all possible combinations
{i{,...,i,] containing n distinct elements of the set
{1,...,M}. Since all eigenvalues are positive, we have
¢, =2 0. By simply writing out, we deduce

A b A — 2 A

In

KE (i, .. ip ) I€{j1se-2ip)

(A3)

B det[T(m) —A]lzp

n*=— lin%nln 18}52
7’—}
Esxz‘det[r(’f])—k]h:o

A lower bound for n* follows from

1 M—1
Al = A, (1)
! M—1 EO

1 1 1
= Tr'(n)= .
M—1 M—lgﬁtza) Tap

In the limit 7—0 only the largest transition probabilities,
i.e., the smallest transition times, survive and thus

77* z ﬁmin ’
with
ﬁminzmin{a,ﬂ} {ﬁaﬂ} .

To find a lower bound for A(n), we take the smallest
possible ¢, ;(77) and the largest possible ¢, _,(7). From
Eq. (A2) we obtain

CXp[ —(M —1 )ﬁmax/n]
exp[ — (M —2)7min /7]

with 7., the largest finite reference learning parameter,
ie.,

Alg) = for n—0,

ﬁmaxEmax{a,B|7’aﬁ< © }ﬁaﬁ' .
An upper bound for n* is thus
77* = ﬁmin+ (M —1X ﬁmax.—ﬁmin) .
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