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Continua of localized wave solutions via a complex similarity transformation
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In the following, we obtain continua of localized wave solutions to the scalar homogeneous wave,
damped wave, and Klein-Gordon equations. We do this by utilizing the fact that similar Ansatze (all of
which involve a free-particle time-dependent Schrodinger-like equation) may be used to satisfy all three
of these partial differential equations. This Schrodinger-like equation is reduced to an ordinary
differential equation (ODE) using a dimensionless complex similarity transformation. A general solution
to this ODE involving conAuent hypergeometric functions is found. For an azimuthal dependence
exp(ivy), v&R, this general solution includes many of the previously determined localized wave solu-
tions as special cases.

PACS number(s): 03.50.De, 41.20.Jb, 03.40.Kf, 02.30.Jr

I. INTRODUCTION

Over the past ten years, large numbers of new interest-
ing packetlike macroscopic solutions of Maxwell's equa-
tions [1—4], the scalar homogeneous wave equation
[2,5 —7], the Klein-Gordon equation [7,8], and other im-
portant partial differential equations of mathematical
physics have been discovered. These solutions are exact
for nondispersive media and describe localized wave
propagation in space-time. Such localized wave functions
are characterized as having shapes and/or amplitudes
that can be maintained over much larger distances than
their traditional monochromatic continuous-wave coun-
terparts. While individual localized waves share with the
plane wave the property of having infinite energy, ap-
propriate superpositions of fundamental localized waves
have resulted in wave forms having finite energy, thus
leading to the possibility of launching fields with extend-
ed localization properties from simple antennas or anten-
na arrays.

In this paper we obtain continua of localized wave
solutions to the scalar homogeneous wave, damped wave,
and Klein-Gordon equations. We do this by utilizing the
fact that similar Ansatze (all of which involve a free-
particle time-dependent Schrodinger-like equation) may
be used to satisfy all three of the above partial differential
equations. Thus, solutions of this Schrodinger-like equa-
tion take on greater significance than they had previous-
ly. We have found that this equation can be reduced to
an ordinary differential equation via a specific complex
similarity transformation. A general solution of this or-
dinary differential equation has been determined, and for
exp(ivy), v&R, azimuthal dependence, this general solu-
tion includes many of the previously determined localized
wave solutions as special cases.

In Sec. II, we discuss the AnsFitze for the wave, damped
wave, and Klein-Gordon equations and show how they
can be used on two previously known examples of local-
ized waves for the scalar wave equation. These examples
are the fundamental Gaussian solution [8,9] and the fami-
ly of Bessel-Gauss pulses [10]. In Sec. III, we solve the

II.ANSA TZE FOR THE DAMPED WAVE
AND KLEIN-GORDON EQUATIONS

It has been known for some time that localized wave
solutions of the homogeneous wave equation can be
found by transforming the wave equation variables z and
t to the characteristic variables g =z ct, g =z +—ct
[1—7]. This causes the homogeneous wave equation,

(r, t) =0, to have the form

a2
V', +4 P(r, t) =0,

where V, =V' —8 /c)z . Using cylindrical coordinates
and making the further assumption that

i/(r, t) =f (p, P, z ct) exp[i/3(z +ct) ]—, (2)

forces the function f (p, P, z ct) to satisfy a—free-particle
time-dependent Schrodinger-like equation,

V, +4iP f (p, P, g) =0 .

Thus solutions to (3) take on a new significance since any

f (p, P, g) will provide a new solution to the homogeneous
wave equation when the form (2) is used.

We use the fact that the general form [8]

N(r, t)=f (p, P, z ct) exp[ —~b~—et+i(zp, +ctp2)], (4)

where

b=, p, =P+b l4P, p2=/3 b14P—
satisfies the homogeneous damped wave equation,

free-particle time-dependent Schrodinger-like equation
for the azimuthally symmetric case using a complex sirni-

larity transformation. In Sec. IV the same transforma-
tion is used to solve the case of general azimuthal depen-
dence. Section V contains our conclusions.
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V' —ep p—o 4(r, t) =08 8
Bt

where e is the permittivity, p is the permeability, and cr is
the conductivity, provided the function f in (4) satisfies
(3).

Similarly [8],

m(r, t) =f (p, P, z ct) —exp[i(zp3+ctp4)],

where

p3=& P'~4—» p4=&+P'~413

satisfies the Klein-Gordon equation,

(7)

a&
4„(r,t) = J„

V

Ka )p
V

provided f in (7) again satisfies (3). These two forms, (4)
and (7), can be verified by direct substitution. Solutions
to (3) now take on even greater importance since they can
provide solutions to the damped wave and Klein-Gordon
equations as well as the wave equation.

Two important examples that can be used in the gen-
eral forms given by (2), (4), and (7) are the fundamental
Gaussian localized wave [8,9] and the family of Bessel-
Gauss pulses [10,11]. The original fundamental Gaussian
function was a localized solution of the homogeneous
wave equation, but recently Donnelly and Ziolkowski
have obtained fundamental Gaussian localized solutions
to the damped wave and Klein-Gordon equations also. It
follows immediately from their work and (4) and (7) that
we can obtain Bessel-Gauss solutions to the damped wave
and Klein-Gordon equations. Using Refs. [10] and [7], a
family of Bessel-Gauss damped wave equation solutions
1s

III. SOLUTION OF THE
SCHRODINGER-LIKE EQUATION USING

A COMPLEX SIMILARITY TRANSFORMATION:
AZIMUTHALLY SYMMETRIC CASE

For the azimuthally symmetric case, we wish to solve

V, +4iP'f (p, g) =0,a

with

1
V, = +-

~p P ~P
(13)

We introduce a dimensionless complex similarity variable
and attempt to reduce (12) to an ordinary differential
equation [12,13]. Let this variable be given as

1/2

difFerential equations are dependent upon solutions to (3),
we solve (3) by choosing a dimensionless complex similar-
ity variable and a specific variable separation ansatz that
reduces (3) to an ordinary differential equation (ODE).
An exact general solution to this ordinary differential
equation can be found based on the conAuent hyper-
geometric functions. The solutions of the first kind are
finite at the origin while the solutions of the second kind
are singular at the origin. Certain special cases of these
functions reduce to localized wave solutions previously
reported in the literature, but most of them are new.

We obtain a continuum of localized wave similarity
solutions of (3) and also a continuum of nonlocalized
wave similarity solutions of (3). A continuum parameter
allows us to choose a wave with almost any transverse
form in space-time. These solutions of (3) in turn give us
continua of solutions to g(r, t)=0 and Eqs. (6) and (9).
Also, we find that there are an infinite number of solu-
tions of (3) and the above partial differential equations for
every value of the azimuthal dependence.

X exp
—iv a&g2

Pp +. —
V 4PV

—
bract

a, +if (14)

+i (zp, +ctp2 ) (10)

where a, is a constant greater than zero. We set f (p, g)
equal to a formal separation of variables,

a& Ka&p
m„(r, t) = J„

V
exp

—ppz lK a if+in
V 4PV

where b, p„and p2 are given in (5), a is a spectral param-
eter, a, is a constant, and V =a, +i g [10].

Similarly, Bessel-Gauss solutions of the Klein-Gordon
equation are

f (p, g)=F(o)h (g) . . (15)

h (g)
(ai+ig)

Substitution of (14) and (15) and the appropriate deriva-
tives into (12) gives

d F(o. ) 1 dF(o )

g' 0 do

+t (zp3+ctp4)

+4' F( )=0 .'
d

By making a specific choice for h (g),

(16)

where p3 and p4 are given by (8).
We refer to any solution to (3) as an envelope function

for the solutions of the wave, damped wave, and Klein-
Gordon equations given by (2), (4), and (7), respectively.
Since localized solutions to three important partial

h (g) =co(a, +i g)t, (17)

where co is an arbitrary constant and q is any real num-
ber, substitution of (17) and its derivative into (16) yields
the ordinary differential equation
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F"+ —+2o. F' —4qF =0,1

0
(18)

where F'=dF/do. , etc.
Equation (18) can be solved for any real value of q us-

ing a standard power-series solution, but it is much more
convenient to transform (18) to a known ODE form, if
possible. Writing (18) as

F(cr; —1)=e [c,+czI (0; —o )], (24)

where I (y;x) is the complementary incomplete gamma
function [15].Thus the solution to (23) in this case is

f (p, g; —1)=e [c, +col (0; —{r )][a,+i(] ' . (25)

Choosing the second constant cz equal to zero, (25) be-
comes

oF"+(1+2cr )F' 4qcrF—=0 (19)

and letting x = —o with F now a function of x, (19) be-
comes

f{1)(p g. 1)—
—« /a& +if

c,e

(a, +it )
(26)

I

d F dx
dx

2
2+dFdx

)
dF dx

d& do. dx do

—4qiv x F =0 . (20)

e»/~
q( t )

— e {p{z+ ct)

4~i V
(27)

(The superscript 1 refers to a solution of the first kind. )

Choosing c, = 1/4mi and substituting (26) into (2) gives

dF dFx +(1—x) +qF =0 .
dx

(21)

This is a particular form of Kummer's equation and thus
(18) has the general solution [14]

Since dx/do = 2i&x—and d x/der = —2, (20) be-
comes

with V =a, +i (z ct—), which is the fundamental Gauss-
ian localized wave solution of the homogeneous wave
equation [7—9,16]. Substitution of (26) into (4) and (7)
gives fundamental Gaussian localized wave solutions of
the damped wave and Klein-Gordon equations, respec-
tively. Plots of these solutions appear in Ref. [8].

Choosing the first constant c, equal to zero in (25)
gives

F(o",q)=c, M( —q;1; —o. )+c~U( —q;1; —o ), (22) —p /(a +if)
c~e ' I [0;—Pp /(a, +i()]

where c
&

and c2 are arbitrary constants and M and U are
Kummer's functions. Returning to (15) and (17), the ax-
isymmetric solutions of the Schrodinger-like equation in
(12) are

f (p, g;q)=[c)M( —q;1; —o. )+czU( —q;1; —o )]

(28)

Equation (28) is a solution of the second kind and is
singular at p=0. Choosing cz = 1/4mi, (28) can be written
as

X [a) +if]~ (23) f{"(p,g; —I ) =f'"(p, g; —1)l [0;—Pp'/(a) +g)] . (29)

with cr =pp /(a, +i(), g=z ct, and q&—IR.

The functions f (p, g;q) can be substituted into (2) to
give solutions to the homogeneous wave equation, into (4)
to give solutions to the damped wave equation, and into
(7) to give solutions to the Klein-Gordon equation. Since
q can be any real number, (23) provides a continuum of
solutions of (12), which in turn provides continua of solu-
tions of the above partial differential equations.

Throughout the paper, we will refer to M ( —q; 1; —cr )

as solutions of the first kind which are finite at o. =0 and
to U( —q;1; —cr ) as solutions of the second kind that
are singular at o.=0. For the special case where q is a
negative integer, some of the solutions of the first kind
have been found previously [1—3]. But solutions of the
first kind containing all other values of q have not been
reported while the solutions of the second kind have not
been reported in the context of localized waves [19].

Since the con Auent hyper geometric functions are
difficult to visualize in general, we now consider some in-
teresting special cases of (22) and (23).

Substituting (28) into (2) gives

e «"~I.(0; Pp'/V)"t" +—")
4~i V

(30)

2. q=0

This case must be considered separately from the
nonzero values of q. Returning to (18) with q =0, we
have

F"(o",0)+ +2o F'(cr;0) =0 .
1

(31)

As usual, by setting F'(o;0) =u (o ), (31) becomes

Equation (30) is the singular counterpart to (27) and is
also a solution of the homogeneous wave equation. Sub-
stitution of (28) into (4) and (7) again produces singular
(at p =0) solutions of the damped wave and Klein-
Gordon equations, respectively.

1. q= —I

When q = —1, (22) becomes or

1u'+ —+2o. u =0
o

(32)
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2
u (o. ) =upe /o. , (33) fixed complex variance I /Vp = 1/[a, +i (zp —ctp) ], Refs.

[16,17]. The variable o can be rewritten as
where uo is a constant of integration.

Thus integrating again gives

F(o;0)=czEi( —o )= —c2I (0;o ) (34)

o = (a, ig—) .
ai+g

At g=gp,

(41)

when the second constant of integration is taken as the
Euler constant.

Since this is a singular solution at 0.=0, and
M (0; 1;—cr ) = 1, the general solution to (31) is

1/2

(ai —gp)'"p . (42)

F(o;0)=c, +c2Ei( —o.2) . (35)

f (p, g;0)=c, +czEi[ —
13p /(a, +i()] . (36)

Since h (g)=cp in this case (we take cp= 1 for conveni-
ence),

Thus if ai and gp are changed by identical amounts, the
variable o can be replaced by (42), which is simply a sca-
lar multiple of p in both its real and imaginary parts. Be-
cause the solutions of (12), f (p, g;q), are given by
f (p, g;q) =F(o",q)h (g), for given values of g=gp and a„
we have h (gp) =cp(a, +i gp)~, which is constant for fixed

Throughout the remainder of the paper, it is understood
that any f (p, g;q) such as (36) is an envelope function and
produces solutions of the homogeneous wave, damped
wave, and Klein-Gordon equations when using (2), (4),
and (7), respectively.

Re[& (") (p, (o;-~ )]

3. q=1

When q = 1, the general solution to (18) is

F(o",1)=c,L, ( cr )+c—2[e +L, ( —tr )Ei( —o )],
(37)

where L, ] is a Laguerre polynomial. Then

f (p, g;I)= Ic,L, ( —o. )

+c2[e +L, ( —o )Ei( —o. )]]
X [a, +i(] (38)

(a)

satisfies (12) in this case.
In general, we find that the solutions of the first kind

F"'(cr;q)= ,cM( —q;1; —cr ) can be written more famil-
iarly in terms of Laguerre functions as Im[f (1) (p,(o;-&)]

L ( o), q—~0
F(1)(o;q)=cl '

2 2e L~, ~)(o ), q (0. (39) 0.8.

0.6

When q is an integer and less than zero, the solutions in
(39) have been reported previously [2]. The remaining
solutions of the first kind in (39) are new as well as all the
solutions of the second kind,

0.4.

F' '(o; q) =c2 U( —q; 1; —cr ) . (40)

A. Similarity

The F(cr;q) functions are similarity solutions of (18).
For a given value of q, this family of functions is similar
in the following sense: for any given fixed value ofg:gp:zp ctp and a given value of a „we also have a

(b)
FIT+. 1. (a) Similarity profiles of Re[f"'(p, g&&,

—1)] with
P= 1, and a, +i $0=1+i, 2+2i, and 3+3i (b) Simila.rity
profiles of Im[f"'(p, go;

—1)] with P= 1, and a, +i' 1+i, =
2+2i, and 3+3i.
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q. Thus the envelope functions f (p, g;q) are also similari-
ty solutions in the same sense as the F(o",q).

If we choose c, =co '(a, +i $0) q, then for fixed go

f ' "(p,go;q) =M —q; 1;'a& i 0
(43a)

and if c2 =c I above,

f' )(p, go,'q)= U —q;1;' a, +iso
(43b)

Figure 1 shows plots of the real and imaginary parts of
(43a) versus p for values of Vo equal to 1+i, 2+2i, and

3+3i and q = —1. Their similarity is obvious. Figure 2
shows the same plots for (43b). Figure 3 shows what hap-
pens when go remains fixed and a, only is increased. In
Fig. 3, we have plotted the real and imaginary parts of
(43a) with q = —1, go= 1, P= 1, and a, =1,2, 5. If ai and

go do not change by identical amounts, we lose the simi-

larity of the profiles. Both Figs. 1 and 2 show that the
transverse profiles for appropriate values of a, and go
difFer only by coordinate scale changes.

B. Localized versus nonlocalized waves

Returning to (23), we find that when q is negative, (23)
provides a continuum of axisymmetric localized wave
solutions to (12). Figure 4 is a three-dimensional plot of

Re[f (2) (p,(o.,-1)]

C

3 ~

0.8.

0.4

FICx. 2. (a) Similarity profiles of Re[f' '(p, go;
—1)] with

P= 1, and a, +i go= 1+i, 2+ 2i, and 3+3i. (b) Similarity
profiles of Im[f'2'(p, go;

—1)] with P= 1, and a, +igo= 1+i,
2+2i, and 3+3i.

FIG. 3 (a) Profiles of Re[f"'(p, g~;
—1)] that do not exhibit

similarity with P= I, and ai+igo= 1+i, 2+i, and 5+i (b).
Profiles of Im[f "'(p, go;

—1)] that do not exhibit similarity with
P= 1, and a, +i/0= 1+i, 2+i, and 5+i



47 CONTINUA OF LOCALIZED WAVE SOLUTIONS VIA A. . . 4435

Re[f {1)(p, f, ;-1)
1

0.75
0.5

0.2

Re[f {2) (p f, -1)

FIG. 4. Three-dimensional plot of Re[f"'(p, g;
—1 ) ] vs

g=z ct a—nd p with P= 1, a, = l. FIG. 6. Three-dimensional plot of Re[f ' '(p, g; —1)] vs
g=z ct an—d p with P= 1, a, = 1.

the real part of f"'(p, g; —1) while Fig. 5 is a plot of the
real part of f"'(p, g; —3). Figure 4 is the real part of the
envelope of the fundamental Gaussian solutions of the
wave, damped wave, and Klein-Gordon equations. Fig-
ure 5 is the real part of the envelope of a higher-order
member of this family. Figure 6 is a plot of the real part
of f' '(p, g; —1) while Fig. 7 is a plot of f' '(p, g; —3). As
q becomes zero or positive, we have a continuum of non-
localized envelope solutions of (12) that are shown in
Figs. 8 and 9. These nonlocalized envelopes in turn pro-
vide nonlocalized solutions of the homogeneous wave,
damped wave, and Klein-Gordon equations but are
presently of little physical interest.

V, +4iP w(p, P, g) =0,a
(44)

IV. SOLUTION OF THE
SCHRODINGER-LIKE EQUATION USING

A COMPLEX SIMILARITY TRANSFORMATION:
GENERAL CASE

Assuming a P dependence of the form e' ~ and letting
w(p, P, g)=g(p, g)e' ~, we have

and the transverse Laplacian becomes

a' ia
~p P ~P p

The homogeneous wave, damped wave, and Klein-
Gordon equations are now satisfied by using w (p, {{},g) in
place off (p, g) in (2), (4), and (7), respectively.

Again, choosing (14) as the similarity variable and set-
ting

w (p, P, g) =G(tr )h (g)e' ~, (46)

where h (g) is given by (15), we derive an ordinary
differential equation in the similarity variable,

G"+ —+2u G'—
ET

V2
+4q 6 =0,

02 (47)

with G'=dG/do, etc. Naturally (47) reduces to (18)
when v=0.

We can show that (47) is a specific form of the general
confiuent hypergeometric equation [14], and we find that
the general solution of (47) is

Re[f {') (p,t;;3)-
1

Re[f {2) (p, {;;-3
8

0.

FICj. 5. Three-dimensional plot of Re[f ' "{p, g; —3 ) ] vs
g=z ct and p with P= 1, a,—= 1.

FICx. 7. Three-dimensional plot of Re[f '~'{p, g; —3) ] vs
g=z ct and p with P= 1, a,—= 1.
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Re[&"'(p ('2)l

15
10

Re[f(z) (p,(; 2)]

30
20
1

Re[f (~) (p,(;3)]

40 Re[f (z) (p f,
' 3)]

100

-100
-20

FIG. 8. (a) Three-dimensional plot of Re[f"'(p, g;2)] which
is nonlocalized (with P= 1, a, =1). (b) Three-dimensional plot
of Re[f '"(p,g;3)] which is nonlocalized (with P=1, a, =1). FIG. 9. (a) Three-dimensional plot of Re[f"'(p, g;2)] which

is nonlocalized (with P= 1, a, =1). (b) Three-dimensional plot
of Re[f"'(p, g;3)] which is nonlocalized (with P= 1, a, =1).

V
G ( rr; q, v) =c

&
oM —'—q; v+ 1;—rr z

+c2o. U ——q;V+1; —o. (48)

In terms of satisfying (44), v and q ER and can take on
any values except v cannot be a negative integer.

Again, it is informative to consider some of the special
cases of (48) and (49).

with v+ 1%—N; N =0, 1,2, . . . , and c, and c2 are arbi-
trary constants. Using the notation in Sec. III,
G(rr;q, O)=F(cr;q). As in the axisymmetric case, the
M[(v/2) —q;v+1; —cr ] are finite, well-behaved solu-
tions of the first kind at p =0, while the
U [(v/2) —q;v+1; —o' ] are singular (at p=O) solutions
of the second kind. Thus solutions of (44) are

V
ta(p, f, g;q, v)=o c,M ——q;v+1; —cT'

1. q= —2, v=1

Using (48) with cz =0, we have

—~2G'"(o", ——,', 1)=c&oM(2;2; —o )=c,oe

Then (49) becomes
—pp /(a i +i/)

ct pe e'

(50)

(51)

+c2U ——q;v+1; —o.

X [a, +i g]qe' ~,
v+1%—N, N=0, 1,2, . . . .

Substituting (51) into (2) and choosing c& =P

li"'(r i —-' 1)

pexp[ —Pp l(a, +i/)+iP+iP(z+ct)]
(52)

(a, +if)
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exp[ —Pp /(a, +i g)+i(t)]
(a, +i()
Xl [ —1; —Pp /(a, +if)] . (54)

This is the singular solution of the second kind for this
case as compared to (51). The corresponding wave equa-
tion solution is

which is the complex conjugate of Hillion s solution g1,
Eq. (2) of Ref. [5].

Using (48) with c, =0, we have
2G' (cr' ——', , l)=c2o U(2;2' cr )=c2(re I ( —1; —o ) .

(53)

Then (49) becomes (with c2=p '
)

w(2)(p P g
3 1) G' )((r; ——,'(a+1),a —1)=C2O' 'U(a;a; —O ) (58)

or

a —1 —oG' '{cr;——,'(a + 1),a —l}=c2o' 'e I (1—a; —o ) .

(59)

Using (2), if a in (57) is an integer, we obtain the solutions
in Refs. [3] and [5]. If a is a noninteger in (57) and subse-
quently used in (2), then (57) is the noninteger extension
of Hillion's and Sezginer's solutions. While having a
noninteger value may not be applicable to solutions in
free space, it may be very useful for certain types of
boundary-value problems.

The solutions of the second kind for this case are

g' '(r r ——', 1)=w' '(p P g ——' l)e'@'+"'

as usual.

(55) If c2=@ ' ' ", then

w' )(p, P, g; —
—,'(a +1},a —1)

2. q = ——(a+1), v=a —1

In general, by assuming that a is any positive integer
greater than one, we can obtain all of Hillion's solutions
[5]. In this case,

G"'(o; —
—,'(a+ 1),a —l)=c(o' 'M(a;a; —o )

=w"'(p, P, g; —
—,'(a+1),a —1}l" 1 —a;'a1 i

3. q = —
~~ &=2a —l

(60)

2~a 1e (7

If c, =P '~ ' ", the solution to (44) in this case is

w("(p, P, g; —
—,'(a +1),a —1)

p' ' exp[ —pp /(a)+i g)+i (a —1)i)(]

(a)+i()'

(56)

G' "(o",——,', 2a —1)=e I, »2
2

(61)

In this case, the solutions of the first kind given by (48)
and (49) are [if c, = ( —1/4)' '~ /I (a + 1/2)]

w"'(p, P, g; —
—,', 2a —1)=

1 '~ IP ei (2a —1)y

2(a, +if)
(a, +i()' (62)

where a can be any real number (provided v is not a negative integer) and I, 1&2 is a modified Bessel function.
The solutions of the second kind are [if c2 =&~(—1)' '~

]

G ){o.—', 2a —1)=e 2
(63)

w' )(p, P, g; —
—,', 2a —1)=

—Pp /2(a]+lg) pp
2

a —1/2 2(, + 'g)

(a, +if)'

e i(2a —1)P

(64}
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where K, i&2 is a modified Bessel function. If a is chosen
to be —,', (64) becomes

w(2)(p P g
1 0)—

—Pp l2(a&+if) —Pp
2(a, +i g)

(65)

and is very similar to one of Billion's solutions given by
Eq. (20) in Ref. [18], except for some constants. Also
with a =

—,', (62) is very similar to Eq. (22) in Ref. [18],
again except for some constants.

Obviously many more special cases of (48) and (49)
may be found which can be used in (2), (4), and (7) to
satisfy the wave, damped wave, and Klein-Gordon equa-
tions. Just as in the axisymmetric case, when (v/2) —

q is
positive, a continuum of localized solutions to (44) re-
sults. When (v/2) —

q is negative, a continuum of nonlo-
calized solutions results. Also we note that for every
value of angular dependence, there are a corresponding
infinite number of solutions to (44), the wave, damped
wave, and Klein-Gordon equations.

V. CONCLUSIONS

In this paper, we have solved a Schrodinger-like equa-
tion using a complex similarity transformation. This en-
abled the partial differential equation to be reduced to an
ordinary differential equation to which general solutions
were determined for both the axisymmetric case and the
case of general azimuthal dependence e "~. These general
solutions contained real parameters allowing continua of
solutions that satisfied the original equation. Using the
forms (2), (4), and (7), these continua of solutions to the
Schrodinger-like equation provide continua of solutions
to the homogeneous wave, damped wave, and Klein-
Gordon equations, respectively. Based on the values of
the parameters q and v, we obtained both localized and
nonlocalized solutions to the above partial diff'erential
equations.

It is worth noting that f (p, g;q) and w(p, P, g;q, v) are
also similarity solutions of the true free-particle two-
dimensional Schrodinger equation if the formal
correspondences (a, +if)~it and P&+m/2-()t are used
Similarly f and w are solutions to the diffusion equation if
(a, +i g)~t and /3~1/4D, with D as the diffusion
coefficient.
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