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with 7.. The field builds up exponentially as the electrons
bunch. After the bunched electrons are captured in buck-
ets, the radiation oscillates with modest amplitude about
an equilibrium distribution. In Fig. 2 we show the phase
of the radiation as a function of r. It appears that this
phase is very nearly linear with r. We shall take advan-
tage of this behavior and recast our equations by writing

X = (P+iQ)e'"~ -"& (1 6)

g —P i&(«o)p8

where Pp is constant. We introduce the displaced elec-
tron phase P~ (r) in the equilibrium state

where v and ~p are chosen to correspond to the average
slope and intercept in Fig. 2. In fact we will later predict
(Sec. IIIB) the value of v, and it will agree closely with
the value appropriate to Fig. 2.

The saturated state of the FEL is described by oscil-
lations about an equilibrium state [2—5]. This equilib-
rium state corresponds to a steady-state solution of Eqs.
(1.1)—(1.3). The proper choice of the equilibrium solution
is significantly restricted [2] by the two invariants of Eqs.
(1.4) and (1.5), relating properties of the saturated state
back to the initial conditions at the startup of the FEL.
In Sec. III, we study the properties of the equilibrium
solution. The equilibrium radiation field has the form

The equilibrium electron distribution has the form

f(4' 4") = f(H)
where

H = P' /2 —2Pp cosP.

(1.14)

(1.15)

We consider three quite diferent choices for I"(H):

(1) fKv (H) = Nib(H —Hp)
Vladimirskiy (KV) distribution[8]],

(2) f iyz (H) = Nz (Hp H)

(3) f~(H) = Ns exp( —nH) (Boltzmann distribution).

[Kapchinsky-

P(r) = Pp+ Pi cosAr,

Q(r) = Qi sin Ar,

Surprisingly, we find that in all three cases Pp = 0.81, in
good agreement with Fig. 1. Moreover, from computer
simulation results, it appears that the actual electron dis-
tribution arising after the saturation of the initial expo-
nential growth is similar to the Boltzmann distribution.

A simplified model of oscillations about the equilib-
rium state is presented in Sec. IV, based on an ansatz
retaining only a single harmonic:

P~
—0'& + v(r —rp) + —,2'

and require v to be chosen such that

(1.8)
P, (r) =—~T, (r) + i (r —rp) + —= P, (r) + a sin nr.

2 2

(sing~) = 0,

(cosP~) = Pp,

(p~/2 ) 3p4

(1.10)

(i.i2)

v= Pp.2
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I"IG. 2. Phase of the radiation field as a function of 7.

(&,') = I1.

Here the prime stands for d/dr. In the case of zero de-
tuning, b = 0, we find

A more exact treatment is given in Sec. V, using the
Vlasov equation. The coherent frequency 0 is determined
and shown to agree with computer simulation.

The work presented in this paper carries forward that
of Lane and Davidson [2], who used the invariants to con-
strain the equilibrium solutions, relating them to the ini-
tial conditions at startup, and that of O' Neil, Winfrey,
and Malmberg [6] and Mynick and Kaufman [7] in the
treatment of nonlinear beam-plasma interactions. The
equations we use are equivalent to those employed by
Sharp and Yu [4, 5] in their study of the sideband insta-
bility; however, in our ease we consider a radiation field
depending on axial coordinate z, but independent of time
t. Sharp and Yu do not use the invariants to restrict the
equilibrium solutions. In this paper we provide explicit
numerical comparisons between our analytical work and
computer simulations, finding good agreement.

The paper is organized as follows. In Sec. II we review
the derivation of the growth rate of the radiation in the
exponential regime. In Sec. III we obtain the differential
equations for P and Q as functions of r, and discuss the
formulation of the equilibrium distribution in the satu-
ration regime. In Sec. IV we solve these equations for P
and Q as functions of r by assuming that the oseillations
about equilibrium are dominated by a first harmonic. In
Sec. V we use the Vlasov equation to explore the co-
herent frequency of small oscillations about equilibrium,
and discuss the stability of these oscillations. In Sec. VI
we utilize numerical simulations to further study the sta-
bility of these oscillations. Theory and simulation both
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show that for the case of interest, the small-amplitude
oscillations are unstable. The moderate-amplitude oscil-
lations observed in the saturated state presumably cor-
respond to saturation of this instability at large enough
amplitude. In Sec. VII we examine the effects of de-
tuning and energy spread. In Sec. VIII we explore the
consequences of using an electron beam with a finite ra-
dial extent. Sec. IX is then a summary of the main
conclusions of this paper.

As a final comment, we note that the practical de-
velopment of FEL devices emphasizes the extraction of
maximum power, which occurs before saturation sets in.
Nevertheless, our analysis of the saturation region may
provide insights into other problems associated with the
nonlinear interaction of a charged-particle beam with its
environment.

II. EXPONENTIAL GROWTH REGIME [9]

We start with a low level of radiation (~A~ && ].) and
an approximately uniform distribution in electron phase,
0~. Taking two derivatives of Eq. (1.3) leads to

. dsA d~A

dr dr
d'o, . («, 5'
dry (dr) (2.1)

Since we are interested only in terms linear in p~ and
A here, we drop the quadratic term involving (der~/dr)
and use Eqs. (1.1) and (1.2) to obtain

ds d~A
(2.2)

dsA d2A—ib —iA = 0.
d7 d7

(2.3)

The general solution of Eq. (2.3) is the sum of three
terms of the form

Since the right side of Eq. (2.2) is quadratic in A if
we start with a distribution in electron phase which is
approximately uniform, we obtain the linear equation for

A ~ A e+(1—
a )~+a(k+x+ b)~ (2 8)

Equation (2.7) [or its generalization in Eq. (2.8) for 6 g
0] is expected to govern the evolution of Eqs. (1.1)—(1.3)
until ~A(r)~ becomes of order 1, when our assumptions
are no longer appropriate and some form of saturation
will take place.

III. SATURATION REGIME

A. Behavior of the radiation phase

Numerical simulations [10] of Eqs. (1.1)—(1.3) starting
with a monoenergetic uniform electron phase distribution
and a low radiation level indicate that the phase of the
complex radiation amplitude A is very nearly linear with

A typical result is shown in Fig. 2 for the phase of
the radiation as a function of ~ for a starting radiation
level corresponding to ~A~ = 0.01. In Fig. 1 we show
the corresponding field amplitude ~A~ as a function of r
which clearly exhibits the early exponential growth as
well as the transition to saturation when ~A~ is of order
1. And in Fig. 3 we show the phase space distribution
of the electrons, which initially were monoenergetic with
a uniform phase distribution, in the saturation regime at

9.
It is clear that the electrons have been bunched during

the buildup of the radiation, and are now oscillating with
fairly large amplitudes. The oscillation of the radiation
shown in Fig. 1 is also of large amplitude (+50%). But
there is a clear indication that some sort of steady state
has been reached in the saturation regime. In fact, simu-
lations show that the steady-state configuration is essen-
tially independent of the initial electron and radiation
configuration, provided we start with an approximately
monoenergetic unbunched electron beam, and a low level
of radiation.

We now rewrite Eqs. (1.1)—(1.5) in terms of
P(r), Q(r), and the electron phase P~ given by

P, = cr, + v(r —rp) + vr/2.

where the three values of p are the solutions of

p, —bp, +1 =0.

(2.4)

(2.5)

The exponential-growth solution corresponds to the com-
plex root for p with a negative imaginary part. For zero
detuning (6 = 0) this is

-2—

.~3
P = ——l

2 2 '

corresponding to the exponential growth

(2 6)
I

-10
I

-8
I

-6
0)

I

-4

A = A.e(++').. (2 7)

For small nonzero detuning (b ( 1), the growth in the
radiation amplitude is approximately

FIG. 3. Phase-space distribution of the electrons, which
were initially monoenergetic with uniform phase distribution,
in the saturation regime ~ 9.
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Thus the combination of Eqs. (3.18) and (3.19) and ei-
ther (3.13), (3.15), or (3.17) determine the value of Pp
snd gp (or n) for each distribution.

I et us now consider the case 6 = 0, in which case we
can write

Pp ——0.807,

(H) = —O.212.

(3.23)

(P~ ) = 3Pp(cosg~).

For the KV beam [8], this requires

2E(m)
K(m)

(3.2o)

(3.21)

For the Boltzmann distribution we require

2aPp = 1.257 (Boltzmann),

Pp ——0.809, (3.24)

which leads to

m = 0.433 (KV),

8p ——82.3', (3.22)

Pp = 0.813, (H) = —0.218.

For the (Hp H) ~~ distribution —we find tan Hp = —26jp,

which leads to

(H) = —0.214.

Note that, in all cases, we have used (H) = (P~ )/2—
2Pp (cos P~ ) = Pp /2. —

Remarkably, the value of Pp is insensitive to the nature
of the distribution. Furthermore, the simulation in Fig.
1 corresponds to an actual value Pp ——0.8, in excellent
agreement with the prediction of the three distributions
we have explored Moreover, . from Eq. (3.10), we find
v = Pp = 0.66, in good agreement with the result v =
0.70 given in Fig. 2 obtained from the simulation.
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(Ho-H)

for 7 = 10, 20, 30, 40. The background from the electrons
which are not trapped is seen to be more or less indepen-
dent of H, and the distributions of the trapped electrons
seems to most resemble the Boltzmann distribution.

+ 2— IV. SINGLE HARMONIC MODEL
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A. First-order treatment of radiation oscillations

We now explore the oscillations about the equilibrium
by assuming that only a single harmonic of relatively
small amplitude is present. Thus we write

FIG. 6. The three distributions, KV, (He —H), and
Boltzmann, plotted as functions of H defined in Eq. (3.11).

P(w) = Po+ Pi cos Ar,

Q(~) = Qi sin A~,

(4.1)

(4.2)

We can explore the electron distribution by compar-
ing the results of simulations starting with a low radia-
tion level with the three explicit distributions analyzed
above. In Fig. 6 we show the three distributions as a
function of H defined in Eq. (3.11). In Fig. 7 we show
the electron distributions obtained from the simulation

p~(z) = p~(7.) + asinAr, (4 3)

where we have assumed a coherent dipole oscillation of
the electron phase-space distribution. Expanding (sin p~)
to first order in a and using Eq. (3.9), we find

(sin p~ (r)) = ca sin Ar,
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FIG. 7. Electron distributions obtained
from simulation for v = 10, 20, 30, 40 plot-
ted as functions of H.
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where

c = cos (4.5)
0.4—

AQ& + (v —b)P& ——0, (4.6)

The first harmonic terms in Eqs. (3.4) and (3.5) now
lead to

0.2—

U

0 0—
CL,'a

(v —b)Qi + APi = —ca,

from which we find

c(v —6)a cAa
A2 —(v —6)z ' A~ —(v —b')2

'

(4.7)
-0.2—

-0.4—

I

0.0
I

0.2
I

0.4
I

0.6
P(&)

I

0.8
I

1.0

We also average Eq. (3.3) over j and obtain from the
first harmonic

FIG. 8. Plot of P'(~) vs P(7.).

(A —2Ppc)a = 2cQi.

Combining Eqs. (4.8) and (4.9), we obtain

(A —2Ppc)[A —(v —6) ] =2c (v —b)
= 2c(v —6)2Pp,

(4 9)

(4.10)
1dP v3
Pdv 2' (4.13)

ear regime, given approximately by Eq. (2.7) for b = 0,
or its equivalent

where the last form results from using Eq. (3.8). We then
obtain a prediction for 0, the frequency of the oscillations
about the equilibrium in the saturation regime

A = 2Ppc+ (v —6') = (Pp —6)(3Pp —6), (4.11)

where we have used Eq. (3.18) for c—:(cosP~). For
b = 0, this corresponds to

A = ~3Pp —1.14 (Boltzmann). (4.12)

This prediction is somewhat smaller than the value A =
1.25 obtained from the simulation in Fig. 1. A more
accurate determination of the coherent frequency A is
given in Sec. V.

Finally, we can also use the first harmonic components
of the two invariants. Not surprisingly, they each repro-
duce Eq. (4.11).

To summarize, we consider equilibrium solutions, and
utilize the two invariants for an initial monoenergetic un-
bunched electron beam and a low initial level of radia-
tion to determine the radiation parameters v, Pp, and the
electron phase space averages (cos P~) and (P' ). We then
consider a first harmonic oscillation of the radiation and
a coherent dipole oscillation of the electron distribution,
from which we determine the oscillation frequency A, as
well as the relative oscillations amplitudes Pi, Qi, a. The
remaining question is to predict the magnitude of the am-
plitude of oscillation which, in fact, is not small.

is equal in the saturation regime to that of the oscillatory
behavior of Eq. (4.1). This leads to the relation

1P' v3 Pi
AP 2A (4.14)

V. SMALL OSCILLATIONS ABOUT THE
STATIONARY DISTRIBUTIONS

A. Action-angle variables

We take the stationary-state Hamiltonian to be

/2

which suggests a value Pi = 0.49, about 20% larger than
that seen in the simulation. Also we have from Eq. (4.8),
~Qi~ = (v/A)~Pi~ = 0.28, about 30% larger than that
seen in the simulation. However, the transition region is
undoubtedly more complicated than the simple sudden
change from one behavior to another, and the agreement
is therefore reasonable.

Thus, we confirm the validity of our general picture of
the way in which saturation sets in, although our small
oscillation assumption is only approximately valid. In the
next section, we explore the solutions of Eqs. (1.1)—(1.3)
in the saturation region more rigorously.

B. Transition model
2

—2Pp cos P (5.1)

and introduce the radiation field variable P(7.), given by
An approximate model for the transition to the satu-

ration regime is suggested by the plot of P'(r) vs P(r) in
Fig. 8. It appears that the linear variation, correspond-
ing to the exponential growth regime, is approximately
tangent to the elliptical trajectories which correspond to
the oscillations in the saturation regime. Quantitatively
this requires that the logarithmic growth rate in the lin-

P(~) = P(~) —Pp.

Equations (3.2) and (3.3) then become

P" + 2Pp sin P = —2[P sin P + Q cos P].

For 6 = 0, Eqs. (3.4) and (3.5) lead to

(5 2)
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Q'+ vP = (cosP) —vPp

P —vQ = (sin P),

(5.4)

(5 5)

(-~K(1 —m) &

m m 21m1+—+ + ~ ~ ~

16 2 64
(5.15)

analogous to Eqs. (3.3)—(3.5). The Hamiltonian corre-
sponding to Eq. (5.3) is

we can write for the harmonic decomposition of the pen-
dulum motion

H =Hp+V
where the perturbation V is given by

V(~) = 2[P(~) cosP —Q(r) sin P].

(5.6)

(5.7)

cosP = ) A„(I)cos2n@,
n=p

(5.16)

The unperturbed stationary system corresponds to the
action-angle variables

sin P = ) B„(I)sin(2n + 1)tP, (5.17)

I

[E(m) —(1 —m) K(rn)],
8+2Pp

(5.8)

where A„(I) and B„(I)are related to the coefficients in
Eqs. (5.13) and (5.14).

B. Perturbation treatment and dispersion relation

dH vr/2P
dI 2K(m) '

Hp ——4Ppm —2Pp, (5 9)

BH Bf
cia M (5.18)

The behavior of the perturbed system is governed by
the Vlasov equation

where rn = sin (8/2), with 8 being the maximum pendu-
lum angle corresponding to a given value of I. Here Pp 1s

considered as a constant, and the stationary phase-space
distribution in the I, @ space is taken to be

In the Appendix we explore oscillations about the equi-
librium solution by treating f —fp, P(7), and Q(~. ) as
small quantities. This linearized system has oscillation
modes with frequency 0 given by the dispersion relation

fstationary(P~ P ) = fp(I) ~ (5.10)

The solutions of the pendulum system can be written
in terms of the Jacobi elliptic functions as

( oo ) ( oo

v —) S„(A) i
v —) T„(A) =0

n=1 n=p

where

(5.19)

(2l
P = 2 sin v m sn —

~ K(m)@ (5.11)
S„(A) = 2vr dIf,(I)—d ( (2n) cuA

T„(A) = 2a dIf,(I) d ( (2n+ 1) ~B

(5.20)

(5.21)

P' = +8Ppm cn — K(m)@ (5.12)

Using the expansion of the periodic functions sn, cn into
Fourier series [12],

fp(I) = b(I —Ip)
1

(5.22)

Since A„and B„, defined in Eqs. (5.16) and (5.17),
are real, stability requires that all solutions for 0 in Eq.
(5.19) be real.

For the normalized b-function (KV) distribution

( 2 ~ 2~ ).q"+~ sin(2n+ l)gsn —K m
q

7r ) ~rnK 1 —q2"+1

(5.13)

corresponding to Eq. (3.12), we have

( (2n) z~Az

dHp (2n) ~~2 —A~ (5.23)

(2 ) 2m .qn+~ cos(2n+ 1)@cn —K m Q
) ~m, K 1+q2"+'

d ( (2n+ l)2~Bz
dHp ((2n+ 1)~co~ —A2) " (5.24)

where

(5.14)
where I = Ip is given in Eq. (5.8) and where the rela-
tion between Ip, Hp and rn is given in Eq. (5.9), with
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16nm"„=G2„= 2, n&l,42n (5.25)

Pp taken as a constant. Thus d/dHp ——(1/4Pp)d/dm,
and the derivatives in Eqs. (5.22) and (5.23) act on
u, A„(I),B„(I),where cu and I are expressed in terms
of m in Eqs. (5.8) and (5.9).

The exact solutions to Eq. (5.19), with S„(A) and
T„(A) given by Eqs. (5.23) and (5.24) can only be ob-
tained numerically. Moreover, the discussion in Sec. III
and the corresponding simulations show that the elec-
tron bunch will be relatively large, corresponding to a
relatively large value of Ho, the maximum pendulum an-
gle. Nevertheless we can obtain a guide to the location
and stability of the oscillation modes, as well as a useful
starting value for the numerical search for these modes,
by exploring approximate analytic solutions correspond-
ing to the KV distribution for small m = sin (8p/2).

We start by expanding A and B„ in powers of m.
Specifically we find

both the phase-space density and the radiation. In fact,
this is the small-angle limit of the dipole root in Eq.
(4.11) obtained without a self-consistent calculation. A
more accurate calculation of the root Ao requires addi-
tional terms in the expansion near m = 0. Both roots
turn out to be real for small 80 implying stability of the
equilibrium distribution for these modes.

The singular behavior of H„ implies the existence of
additional roots of Eq. (5.27) near A2 = p3u2 = 2p~Po.
Inclusion of appropriate terms for small eo leads to the
conclusion that the root Aq is real but that the roots 0„,
p & 2, each have a small imaginary part proportional to
0~0. These roots appear to be associated with a phase
space distribution where there are p wiggles along the
boundary of the distribution. The growth rate for these
modes is expected to be slow for small Oo. These predic-
tions appear to be consistent with the exact numerical
solutions of Eq. (5.27) as well as with several numerical
simulations illustrating the modes. This numerical work
is described in the next section.

8(2n+ 1)B„:—G3„+y =
2 ~

m"+&, n & 0.42n+1 (5.26) VI. NUMERICAL RESULTS

The dispersion equation can then be written more com-
pactly as

(v — ) H„)(v — ) H„) = 03 (5.27)

with

P=2
(p even)

p=l
(p odd)

where

f p2~G&

4Pp dm ~@2~2 —A2)
(5.28)

(5.29)

with

v(v —Hg) = 0 (5.30)

Since G2 m", the dominant term for small m is the
one for p = 1. In this approximation, Eq. (5.27) becomes

In Figs. 9 and 10 we show the result of a simulation
to check the equilibrium solution for a small pendulum
angle t90

——O'. Figure 9 shows the corresponding sta-
tionary phase-space distribution and Fig. 10 shows the
equilibrium value of P(w) = Pp = 1.00.

In Fig. 11 we explore the oscillation of ~A(r)~ which
occurs when we start with the phase-space distribution in
Fig. 9, but with P(0)/Pp = 0.99. The dipole oscillation
with frequency (2Po + v )~~2 = 1.73 shows clearly, and
appears to be stable. A similar result is shown in Fig. 12
for 9p ——30' with P(0)/Pp = 0.99. But the simulations
for 80 ——55' and 80 shown in Figs. 13 and 14 show an
unstable dipole oscillation.

We then obtained the numerical solution of the dis-
persion equation, Eq. (5.19), and this is displayed in
Fig. 15, where we have only included the dipole term
To. Clearly an instability is predicted for Oo ) 50, con-
sistent with our observations in Figs. 11—14. We then
included several additional terms in Eq. (5.19) and the

and

~2 da21 ~2

4Po(cu3 —A2) dm Po(~2 —02) (5.31)
80—

60—

40—

u)(0) = +2Po. (5.32)
0—

According to Eq. (5.4), vPp = 1 for an equilibrium dis-
tribution with small ep. As a result Eqs. (5.30)—(5.32)
lead to -40—

f1 [0 —(2Pp+ v )j = 0,

predicting roots at

(5.33) -60—

-3-80x10
I

-60x10
I

-40
I

-20
I

20
I

40
I

60

Og —2PO+ v, Ao —0. (5.34)

The root Og corresponds to a dipolelike oscillation of
FIG. 9. Electron phase-space distribution corresponding

to KV equilibrium solution for small pendulum angle Oo
——3'.
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(7.3)

2E(m)0 =3
)

—& (6.2)
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1.0—

0.8—

& Simula
2*'c =0, +:c u(r)(p~) = — (AA') —iV' (AVA' —A'VA). (8.4)

Integrating over d~r then leads to the vanishing of the
divergence term, and the first invariant

o 0.6—

0.2—
c =02

(Theoretical Prediction)

r dr [(p~ )u(r) +
~

A
~ ] = Ct.

0

A similar analysis leads to the second invariant

(8.5)

r dr[(p )u(r) —2i(AA" —A'A') —2~V'A~ ] = C2.

0.0—
I

-1.0
I

-0.5
I

0.0
Detuning 5

I

0.5
I

1.0 (s.6)

FIG. 17. Solution of Eqs. (7.2) and (7.3) for Po as a func-
tion of 6, for e = 0, is plotted as solid curve. In addition,
results from simulation are also shown.

well as the way in which Eqs. (7.2) and (7.3) should be
modified to take into account the untrapped electrons.
This is a subject for future study.

A(r, r) = [P(r, r) + i Q(r, r)]e'"(

and introduce the electron phase P~ given by

(s.7)

Comparing these results with the one-dimensional invari-
ants of Eqs. (1.4) and (1.5), we see there is a new term
in the second invariant,

~

V'A~, and the electron averages
are weighted by the transverse electron beam density.
Each invariant is expressed as an integral over the elec-
tron beam and radiation radial densities.

As in the one-dimensional treatment of saturation, we
extract a phase factor and write

VIII. ELECTRON BEAM WITH FINITE
RADIAL EXTENT P, = o, + v(r —ro) + ~/2. (8.8)

We shall now extend the single harmonic model in-
troduced in Secs. III and IV for the one-dimensional
FEI dynamics to the two-dimensional case of an elec-
tron beam with finite radial extent. We ignore betatron
oscillations, assuming the electron beam has no angular
spread, but include the diEraction of the radiation and
the radiation focusing properties of the electron beam
bunched by the FEL interaction.

A. Equations of motion and invariants

We consider a fixed electron-beam density profile, u(r).
The equations for the electron motion are

We asume v is independent of r; hence using Eq. (8.3)
we can write [ll]

Q'+ vP —V P = u(r)(cos P~), (8.9)

P' + vQ ——V' Q = —u(r) (sin P, ) .

The equation for the electron phase becomes

P" = —2P sin P~. —2QcosP~,

(8.10)

(8.11)

(P". ) = —2P(sinP~) —2Q(cosP~).

and averaging over the electron longitudinal-phase-space
distribution at each radius, we obtain

/

Og = Pz~ (8.1)
The first and second invariants are written as

p' = —Ae~~' —A~e (8.2)

where the scaled amplitude of the radiation A(r, r) de-
pends on both the scaled longitudinal position r = 2pk~z
and the scaled transverse coordinates r = v'4pk~k, r~,
where k, is the resonant radiation wave number and r~
is the unscaled transverse coordinate vector. The wave
equation in the case of zero detuning is

r dr[(P,')u+ P2+ Q —vu] = Cg (s.13)

A' —iV' A = u(r)(e ' '), (8.3)

where V'2 = 8 /Or~~ + cI2/cIr22 is the two-dimensional
Laplacian in the scaled transverse coordinates r
(rq, r2), and r = gr~ + rz is the magnitude of the vector
r.

Equations (8.1)—(8.3) have two invariants of the mo-
tion. We can use Eqs. (8.2) and (8.3) to obtain

r dr[(P,' )u —v u —2v(P + Q ) —2(V'P)

—2(V'Q)' —4(PQ' —QP')] = C, . (s.14)

The constants Cq and C2 are taken as zero corresponding
to an initial electron distribution with the correct energy
and no energy spread and a very low initial radiation
amplitude.
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B. Equilibrium solutions

We now consider the description of the equilibrium
state. Let P~ denote an equilibrium electron phase dis-
tribution, and take P = Pp(r) and Q = 0. From Eqs.
(8.9) and (8.10) we find

vPp(r) —V Pp = u(r)(cosP, ), (s.i5)

(sing~) = 0. (s.i6)

T(&PO = V T dT tL) (8.17)

Utilizing (P') = 0 and the first and second invariants of
Eqs. (8.13) and (8.14) with Ci = Cz = 0, we obtain

where we have used Eq. (8.23) in Eq. (8.18) to derive
Eq. (8.25).

We now consider the electron beam density to be given
by

(8.26)

In this case the solution of Eq. (8.23) is

(c/v) [1 —xKi(x)Ip(~vr)], r & R
(c/v)xIi(x)Kp(~vr), r ) R (8.27)

where x = JvR. The two invariants of Eqs. (8.24) and
(8.25) can be expressed as

r dr(P,'~)u = r dr [v u + 2vPp + 2(V'Pp) ].

(s.is)

+3—
2

= 2xKi(x)Ig(x),
C

+3 = 2xKi(x)I2(x) + 2xIi(x)Kp(x).c c —2cp

(8.28)

(8.29)

It follows from Eq. (8.11) that for any given r, any func-
tion of

From Eqs. (8.28) and (8.29), we obtain

H(P~, P'; r) = P'. /2 —2Pp(r) cosP~ (8.19) = 1+ Ig (x)Ki (x)
Ii(x)Kp(x)

' (8.30)

„.„.~p(r)
2

(8.21)

will be a stationary distribution. For example, one could
consider the KV distribution

fKv(P, , P';r) = N(r)6[2Pp(r) cosg, —P' /2
—2Pp(r) cos 8p(r)]. (8.20)

In this case

c(r):—(cos P~) = —1,
2E(m)

The one-dimensional results of Sec. III are recovered in
the limit x = ~vR —+ oo. From Eq. (8.27) it is seen that
Pp(r) = c/v:—Pp (independent of r) inside the electron
beam, and Pp (r) = 0 outside the electron beam, except in
a region Ar ~ v i~z near the edge r = R. In the x ~ oo
limit, Eq. (8.28) becomes vs = c . Hence, using c = vPp
we find v = Po and c = Po, the one-dimensional results.
Also, when x ~ oo, Eq. (8.30) implies c = 4cp which is
the one-dimensional result of Eq. (3.21), so one obtains
the one-dimensional values m = 0.433, 8p = 82.3', and
Pp ——0.813 given in Eq. (3.22) for the KV distribution.

(P,
'

) = 4Pp(r)[c(r) —cp(r)],

cp(r) = cos ep(r) = 1 —2m. (8.22)

vPp(r) —V2Pp = u(r)c, (s.23)

In the discussion which follows, we shall explore the
consequences of the simplifying assumption that ep is in-
dependent of r, which of course also implies m, c, and cp
are r independent. In this case Eq. (8.15) becomes

C. Single harmonic model

As in the one-dimensional case discussed in Sec. IV,
we assume that the radiation amplitude oscillates with
a single harmonic about the equilibrium value, but in
this ease the equilibrium value as well as the oscillation
amplitude depend on radius. We assume, however, that
the oscillation frequency is independent of radius. Thus
we write

and the invariants can be expressed in the form

r dr P02

(8.24)

P( ) =P( )+~( ) +( ( )

Q(r, r) = rI(r) e' + g'(r) e '~*

(8.31)

(8.32)

2(c —2cp) r dr uPp
(8.25)

where 0 may have a positive imaginary part describing
the damping of the oscillations resulting from the radi-
ation of energy out of the region occupied by the elec-
tron beam. The spirit of Eqs. (8.31) and (8.32) is that
((r) and g(r) are first order, and we neglect second-order
terms. Moreover, we ignore second and higher harmon-
1cs.

We make a similar assumption about the electron
phase Pz, writing
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P~ = P~ + a(r)e' + a*(r)e (8.33) rn = 0.433, Hp = 82.3, Pp = 0.813 (KV) (8.43)

where P~ is the equilibrium phase discussed in Sec.
VIII B, and a(r) is the first-order amplitude of the co-
herent dipole oscillation mode of the electron beam in
longitudinal phase space. We also employ the approxi-
mations

as given in Eq. (3.22).
We now must solve Eqs. (8.36) and (8.39) for constant

A in order to obtain an equation for the frequency A.
Outside the electron beam we have from Eqs. (8.36) and
(8.39) with A(r) = 0,

cos g
= cos g

= c) (8.34) g'(t, + iq) = +(0 + v)(( + irI), r )R (8.44)

(sinP, ) = c[a(r)e' + a" (r)e '
], (8.35)

so that

2( = AKp(pr/R) + BHp (qr/R) (8.45)
Using expansions of Eqs. (8.31)—(8.35) in the wave

equations (8.9) and (8.10), we find
2g = AKp(pr/R) —BHp (qr/R), (8.46)

(7' —v)((r) = iOg(r),

(7' —v) q(r) = —iA$(r) + cu(r) a(r). (8.37)

~~ere

p = QA + vR, q = v'& —vR, (8.47)

Similarly, utilizing the expansions of Eqs. (8.31)—(8.35)
in the pendulum Eq. (8.12), we obtain

(~1' —2cPp(r)la(r) = 2cn(r)- (8.38)

Now eliminating a(r) in Eq. (8.37) by using Eq. (8.38),
we derive

and where Hp has been chosen to correspond to an out-(2)

going wave. Note that there is both a guided and prop-
agsting component in Eqs. (8.45) and (8.46).

Inside the electron beam, we also have two Bessel func-
tion solutions, which depend in this case on A given in

Eq. (8.42). We write

[7' —v —2A(r)]g(r) = —iAg(r), ( = CIp(o!r/R) + DJp(Pr/R), (8.48)

where

cpu(r)
02 —2cPp(r)

' (8.40)

iArj = (o,z/R2 —v)CIp(o.r/R) —(p /R + v)DJp(pr/R)

(8.49)

where
The coherent oscillation frequency 0 and the oscillation
amplitudes ((r) and q(r) are determined from solving the
eigenvalue problem specified by Eqs. (8.36) and (8.39).

n2/R = /02+A2+ v+ A,

p2/Rs = QO~ + A~ —v —A.

(8.50)

(8.51)

D. Large electron-beam radius

A( )
A, r(R
O, r &R, (8.41)

In order to proceed further, we must now obtain the
eigenvalue 0 from the solution of Eqs. (8.36) and (8.39).
Since A(r) in Eq. (8.40) depends on r, even under the as-

sumption that c is independent of r, solution of the eigen-
value problem is dificult. However, results can be ob-
tained in a straightforward manner in the limit R ~ oo.
We shall examine this limit to see if physically sensible
results are obtained.

When 2: = ~vR in Eq. (8.27) is much larger than
unity, we find that Pp(r) = c/v = Pp (independent of r)
inside the electron beam and Pp(r) = 0 outside the elec-
tron beam, except for a region Ar v ~ near the edge
r = B. Hence, for x )& 1 we can make the approximation

Continuity of (, il, d(/dr, drI/dr at r = R leads after con-
siderable algebra to

( + )(~ + ) (J K)(I H)
(~' —p')(q' /3') (i K—)(H —J) '—

where

pKp(p) - qHp( l
(q)

Kp(p)
'

H,'"(q) '

(8.52)

(8.53)

~Ip(~) J PJp(&)
Ip(a) '

Jp(P)
' (8.54)

~~ —p, H~ —iq, I —+o. asR —+oo (8.55)

In the limit R —+ oo, it turns out that p, q, a each
approach oo, but P remains finite. To confirm this, we

use the limiting values

where
—2eA= 02 —2cPp

(8.42)

and neglect P compared with p, q, n in all terms except
J. In this way we find

Furthermore, for large x, Eqs. (8.28) and (8.29) lead to
the one-dimensional results v = Pp, c = Pp with

J + p —(o. —iq)p2

J + iq (~ —p)q'
(8.56)
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or

Jo(p) 1 1 i

pJ.'(p) ~ s
(s.57)

Using Eq. (8.28), we derive

cR
2' (8.63)

Since n i,p, q approach zero proportionally to R
we see that P ~ s~, the zeros of Jo(s). In fact, setting
P = si + 6, where si = 2.405, we find C ~ 2Cp. (8.64)

and from Eq. (8.30), neglecting L compared to unity,

t'
p=-s,

i
1+ ———+ —i.

v)
(8.5s)

Now employing Eqs. (8.21) and (8.22) one obtains

8o ——71', cp = 0.32, c = 0.64. (8.65)

2 2

Pn =R iA —v
Az —2cPp)

' (8.59)

Using Eq. (8.58) together with c = Pos, v = Poz, Eq.
(8.59) can be rewritten as

Using the one-dimensional values v = Pp, c = Pp, 0 =
~3PO, we find A = Po [Eq. (8.42)], a = 4POR
[Eq. (8.50)], p = (~3 + l)PozR [Eq. (8.47)], and
qz = (~3 —l)P)Rz [Eq. (8.47)]. The terms in a; i and
p i are small compared to unity and can therefore be ig-
nored in Eq. (8.58). However, the term in q

i introduces
damping arising from electromagnetic energy propagat-
ing out of the region occupied by the electron beam. The
net frequency shift due to the finite, but large, electron-
beam radius is obtained from Eqs. (8.50) and (8.51),
writing

i@i' = 4~pm, W[A/', (8.66)

where np is the peak density of the electron beam and
W = pmc2 is the average electron energy, with c being
the velocity of light. The power in the guided radiation
ls

Plead = c
2~rgdrg iE~, (8.67)

where the dimensioned radial coordinate rg is related to
the scaled radial coordinate r via

r = +4pk k, rd, . (8.68)

Using Eqs. (8.66) and (8.68) in Eq. (8.67) leads to

We recall [1] that the scaled electric field A is related
to the actual electric field E by

szo.z f
4(O —3PO) =

~

1+—

Finally we obtain

(8.60)
cnoW

Pj-a,g = 27l T GT Pp .
tU 8

From Eq. (8.24), we observe

(8.69)

2si 2in=-~u", + '
i
1+

PcR(~g 1)i/&) ' (8.61) T dT Po = 27I'v
OO

rdru = (vrR )2
(s.70)

corresponding to a frequency shift proportional to B
and a damping rate proportional to B c

P~~d = vpP, = —DP) (s.71)

where Eq. (8.63) has been used. It now follows that

E. Small electron-beam radius

Let us now consider the limit x = ~vR —+ 0. The
small argument approximations to the Bessel functions
are

where P, is the electron-beam power,

P = IDW/e,

Ip is the electron current,

Ip ——enactor Rd,2

(8.72)

(8.73)

x 1 xL
Ii(x) = —,Ki(x) = ——

2
' x 2 '

Rg is the dimensioned electron-beam radius related to
the scaled radius by [13, 14]

=x'
I2(x) = —,Kp(x) = 4[in(2/x) —p~],8

where p@ = 0.577 is the Euler constant and

L = ln(2/x) + ~i —pa.

R = 4pk, k R&,

and (in mks units)

2eZp X2
D=2pR=

xmc2 1

(8.74)

(8.75)

cR2L
Pp =

2
(8.62)

When x = ~vR is much smaller than unity, we see from
Eq. (8.27) that Po is approximately constant within the
electron beam. Speci6.cally, it has the limiting form

is the scaled current defined in Ref. [10]. Note that D is
independent of the electron-beam radius, and hence so is
P, d in Eq. (8.71) for the limit R (( 1. From Eqs. (8.71),
(8.72), and (8.75) it follows that for small electron-beam
1adlus
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3/2
Prad (x Io (8.76) Q 27t

H = ln —+p~+ —,
2 2'

The average energy lost by an electron from startup to
saturation is determined from [1] I=n /2.

(8.77) It follows that in the limit R —+ 0, the dispersion rela-
tion of Eq. (8.52) becomes

Using Eqs. (8.63) and (8.77) we find

—ijp ~ —D)

1 1+
K H

(8.78) yielding

2
AJ

consistent with Eq. (8.71). The energy spread at satu-
ration is determined from

ln(pq/4) + 2p@ + Ar/2 = Jo(P) (8.84)

(8.79)

Since the left-hand side of Eq. (8.84) diverges as R ~ 0,
one solution corresponds to P = Pi = 3.83, the first zero
of Ji(P). In this case

where the second equality follows from Eqs. (8.22) and
(8.64). Now using Eqs. (8.62) and (8.76) we obtain for
B«1

2 B2

Using Eq. (8.62) for Po, we find

(8.85)

= cDv L. (8.80)
f12 c2R2(L 2/P2) c2R2(L 0 14) (8.86)

The size of the radiation mode is seen from Eq. (8.27)
to be given by

where the logarithmic factor L was defined preceding Eq.
(s.62).

Let us now solve Eq. (8.84) more accurately by ex-
panding about P = Pi. We find

1
TEM = (8.81) 1 —1 2~

Py Li 2I2 (s.s7)

2 2 1 2
TEM 4P~s aud (Td)FM v cR'

where we used Eq. (8.63). Hence,

(8.82)

1
( d)EM (8,83)

Introducing the actual size (Td)EM in dimensioned units,
we observe that

where Li = 1n(pq/4) + 2p@. As a consequence it is seen
from Eq. (8.86) that 0 has a positive imaginary part of
order R/(lnR)s~ .

There are other solutions of the dispersion relation,
Eq. (8.52), but we shall not consider them here. To
understand the coherent dipole mode oscillation better,
it seems necessary to compare the analytic results with
simulations.

Note that the size of the radiation beam given in Eq.
(8.83) js independent of the electron-beam radius in the
small electron-beam size limit.

Let us conclude this discussion of the small electron-
beam radius limit with a brief consideration of the dipole
oscillation mode described by Eqs. (8.44)—(8.54). In the
limit R ~ 0, we observe that p, q, n each approach zero,
but P may remain finite. This is true because it turns
out that A, as defined in Eq. (8.42), is negative and
approaches zero slowly, as the reciprocal of a logarithm.
AVe find

n —vR, P - 2iAiR,

+q =OR, o, —p = —OB,

K = ln —+p@,
"—1

2

IX. SUMMARY

Starting with the equations of Bonifacio, Casagrande,
and DeSalvo Souza [1] we explore the behavior of an un-
bunched electron beam interacting with a low amplitude
of radiation. The level of radiation grows exponentially
causing the electrons to bunch. When the bunching sat-
urates, the radiation amplitude starts to perform what
appears to be oscillations in the saturation region. By
making an assumption regarding the phase of the radi-
ation which is suggested by the simulations, we predict
the general features of the electron bunching, average ra-
diation amplitude, and the frequency and magnitude of
the oscillations of the radiation amplitude which are in
good agreement with the results of detailed simulations
of the starting equations.

We consider three quite difFerent equilibrium electron
phase-space distributions, and find the surprising result
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that the equilibrium radiation amplitude Pp = 0.81, in-
dependent of the distribution. In addition, from simu-
lations of startup from an initially unbunched electron
beam and a small radiation amplitude, we find that the
saturated state is described by oscillations about a dis-
tribution similar to the Boltzmann distribution. This
observation might provide the starting point for a future
investigation.

In the case of the KV distribution [8], we use the
Vlasov equation to study the stability of the oscillations
about the equilibrium state. For a small bunch (Hp small)
the oscillations are stable. However, for a large bunch
(Hp = 81 ) required by the invariants in the case of start-
up from an unbunched electron beam and a low radiation
amplitude, the coherent dipole oscillation mode is found
to be unstable. We believe that the moderate ampli-
tude oscillations, observed in the simulation from start-
up with an unbunched electron beam and a low radiation
amplitude, correspond to the stabilization of the dipole
mode at large oscillation amplitude. The real part of
the coherent dipole mode frequency is in good agreement
with the oscillation frequency observed in the saturated
state. There are some instabilities in the higher-order
coherent oscillation modes, but these are not seen in the
simulations since they are not stimulated by our starting
conditions.

Finally, we extend the analysis to the two-dimensional
case of an electron beam with finite radial extent. We find
an equilibrium guided solution and oscillations about it.
There are two types of oscillation modes, one guided and
one corresponding to radiation propagating to r = oo.
The escape of radiation from the electron beam leads to a
damping of the oscillations. Explicit results are obtained
in the limits of large and small electron-beam radius.

In saturation, the output power has contributions from
the equilibrium (z-independent) mode and the coherent
dipole oscillation (z-dependent) mode. In the case of
startup from an unbunched electron beam and a low ini-
tial radiation level, the saturated power P,~d in the equi-
librium mode is given by [Eq. (8.71)]:

3/2P, d OC IO (9.5)

a current dependence intermediate between the incoher-
ent (Ip) and fully coherent (Ip2) limits.

Comparison of the two-dimensional analysis with com-
puter simulations is an interesting subject for future in-
vestigation.
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APPENDIX: DISPERSION RELATION FOR
SMALL OSCILLATIONS

The behavior of small oscillations about the equilib-
rium solution is governed by the Vlasov equation

Of OH Of OH Of
Or OI Og O$ OI (A1)

Using the Hamiltonian in Eqs. (5.6) and (5.7) and lin-
earizing the distribution function in the form

f(Q, I; r) = f (I) + fi(g, I;r),
we find in the linear approximation

Ofi Ofi OV Ofp

OQ Og OI

Using Eqs. (5.7), (5.15), and (5.16), we find

Ofi Ofi
Or Og

(A2)

(A3)

2Pp fp(I) —) [ 2nQA„sin 2ng
n=O

+(2n+ 1)RB„cos(2n+ 1)g], (A4)

whose solution is
Prad/Pe = &p~ (9.1)

where P, is the power in the electron beam. In general v
can be determined by solving Eqs. (8.21), (8.22), (8.28),
and (8.30). In the limits of large and small electron-beam
radius

+E„cos(2n+ 1)@
+F„sin(2n + 1)g], (A5)

fi(g, I; r) = 2Pp fp(I) ) —
[ C~ cos 2ng + D„sin 2ng

n=G

V = 0.70, P,ad/P, = 0.35D/R (R )) 1)

v = 0.32R, P, d/P, = 0.16D (R (( 1)

(9 2) where Eq. (A4) requires that

C„'+ 2nuD„= 0, D„' —2nwC„= 2nPA„,
(9.3)

(A6)

R = 4Pk k, Rd. (9.4)

where D [Eq. (8.75)] depends on the electron-beam cur-
rent, but is independent of the radius, and the scaled
electron-beam radius B is related to the dimensioned ra-
dius Rd by Eq. (8.74),

E„'+ (2n+ l)~F„= (2n+ 1)QB„,

F„' —(2n+ l)~E„=0. (A7)

We now assume an oscillation mode for P, Q, C„,
D„,E„,F„ofthe form exp( —iver) and find

In the limit of small radius, we find that the equilibrium
mode power P,ad increases with current Ip according to

(2n)

~(GAPA„

(2n) ~co~ —Az ' (A8)
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—(2n+ l)io
iA

(2n + 1)2~QB„
(2n + 1)2cd2 0 (A9) (A12)

We must now relate P and Q to the perturbed distri-
bution by using Eqs. (5.4) and (5.5). After performing
the integration over Q, and integrating by parts over I,
we obtain

2n+ 1 2(uB2
T.(n) = 2. drf. (I)dI (2n+ I)2~2 —Q2

Finally, Eqs. (A10) and (All) yield the dispersion rela-
tion for the oscillation modes,—iAQ+ v —) S„(A) P = 0,

n=O
(Al0)

v —) S„(A) v —) T„(A) = 0 ,
n=1 n=O

(A14)

iAP+ v —) T„(A) Q = 0,
n=O

where

(All) whose solution determines the modes of oscillation. Since
A„and B„,defined in Eqs. (5.16) and (5.17), are real,
stability requires that all solutions for 0 in Eq. (5.19) be
real.

' On leave from the Institute for Chemical Research, Kyoto
University, Kyoto 611, Japan.
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