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from spatiotemporally modulated electron beams
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Linear and nonlinear theory is presented for the generation of gyroharmonic radiation from spatio-
temporally modulated electron beams in cylindrical waveguides. Selection rules for axisymmetric beams
are derived that show coupling at the mth temporal harmonic to be absent for all TM modes, and for TE
modes other than those with an azimuthal mode index of m. Estimates from linear theory are given for
the effects of spreads in axial momentum and guiding-center radius. A nonlinear multimode theory is
developed in order to treat mode saturation and mode competition for TE modes in a down-tapered
guide magnetic field. Numerical simulations of the multimode nonlinear generation of fifth-harmonic ra-
diation at 94 GHz from a 150-kV, 6.667-A, +=2 beam show that nearly 90%%uo of the initial transverse en-
ergy of the beam can be converted to fifth-harmonic radiation in the TE» mode, and that less than 2.5%
of the beam energy is converted to other harmonics. Use of a linearly tapered guide magnetic field gives
lower saturated fifth-harmonic conversion efficiency than does use of a nonlinear taper. But the linear-
taper case shows greater resilience to axial momentum spread than does the nonlinear taper case. The
spent beam is nearly monoenergetic and phase coherent at saturation, suggesting that overall harmonic-
conversion efficiencies can approach 100%%uo if a single-stage depressed collector is used to recover the
spent beam energy.

PACS number{s}: 52.40.Mj, 52.75.Ms, 41.60.Ap

I. INTRODUCTION

Linear analysis of the coupling between a spatiotem-
porally modulated electron beam and the fields of a rec-
tangular waveguide has recently been published [1,2].
This work showed that cumulative exchange of trans-
verse beam energy into electromagnetic radiation can
occur at frequencies that are harmonics of the beam
modulation frequency, provided certain selection rules
and matching conditions are observed. This analysis sug-
gested that a class of devices can be contemplated to fur-
nish radiation at frequencies and power levels that have
not yet been reached with more conventional devices,
such as klystrons [3) and gyrotrons [4]. Applications for
such novel radiation sources could include drivers for
next-generation electron-positron colliders [5], sources
for fusion plasma heating and control [6], and oscillators
for advanced radar systems [7].

The harmonic conversion process examined in Refs. [1]
and [2] is fundamentally different from processes underly-
ing other gyroresonant interactions, such as the electron
cyclotron maser (ECM) [8], the cyclotron autoresonance
maser (CARM) [9], the slow-wave cyclotron amplifier
(SWCA) [10], the peniotron [11]or the wiggler-free free-
electron laser (FEL) [12]. In the ECM, azimuthal phase
bunching is induced by the relativistic interaction of
gyrating particles with fast-wave fields near the gyrofre-
quency or one of its harmonics. In the CARM, a com-
bination of azimuthal phase bunching and axial spatial

bunching is induced by the relativistic interaction of
gyrating particles with fast-wave fields near the Doppler-
shifted gyrofrequency. In the SWCA, axial spatial
bunching is induced by the relativistic interaction of
gyrating particles with slow-wave fields near the
Doppler-shifted gyrofrequency. In the peniotron no
bunching is produced, but the guiding centers of large-
orbit gyrating particles drift in a nonrelativistic interac-
tion with fast-wave azimuthally varying fields, and give
up transverse momentum, whatever the value of the ini-
tial particle phase. In the wiggler-free FEL, a time-
independent helical variation on the electron beam allows
coupling between fast or slow electromagnetic waves and
slow beam modes, with gain occurring at the Doppler-
shifted gyrofrequency. In a linearized description of any
of these interactions, power How into the fields is a pro-
cess second-order in the amplitude of the wave fields,
since the perturbed current density J,(r, t) is proportional
to the electric field E,(r, t) and the power fiow is calculat-
ed from Ji(r, t) E,(r, t). Consequently, the logarithmic
decrement of the power fIow is independent of the field
amplitude, and a linearized dispersion relation can be
found that governs the wave growth and refraction.

In contrast, the harmonic-conversion process requires
neither induced phase and/or spatial bunching nor in-
duced orbit drifts, since power fiow to the fields is a first
order process. The electron beam is taken as having been
prepared (prior to the interaction) so that its equilibrium
current density Jo(r, t) carries spatiotemporal modula-
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tion. In this case, the lowest-order contribution to the
power How into the fields is calculated from
Jo(r, t) E,(r, t). The concept of a linearized dispersion re-
lation has no meaning in this case. These ordering argu-
ments were made by Kou et al. [13] in connection with a
calculation of fields induced in a cavity by temporally
modulated beams. Indeed, it is well known that a first-
order process governs small-signal power How in the out-
put cavity of multicavity klystrons. A traveling-wave
gyro-interaction in which spatiotemporal features on the
beam govern power Bow into the fields occurs in the so-
called "gyrotwystron" [14,15], although to date this de-
vice has been considered only as an amplifier, rather than
a harmonic converter. Of course, spatiotemporal modu-
lation on a beam is related to the rf field strength in the
structure where the beam was prepared, so the overall or-
der of the radiation process is not strictly first order in E
alone.

Linear theory as presented in Refs. [1] and [2] is only
competent to describe the small-amplitude behavior of
the harmonic-conversion process. But conceptual argu-
ments suggest that conditions may be found where the
beam electrons remain in phase with the propagating ra-
diation fields and continuously lose transverse energy, al-
though the rate of energy loss may become vanishingly
small as the transverse energy approaches zero. Clearly,
an accurate description of such a process requires a non-
linear theory. Moreover, when several radiation modes
of a waveguide can interact simultaneously with the beam
electrons, a nonlinear superposition of all the interacting
modes must be taken into account. Furthermore, since a
down-tapered guide magnetic field is essential to maintain
phase synchrony between the particles and the fields,
nonlinear orbit equations must be used to find the com-
bined effects of rf electromagnetic and static radial mag-
netic fields upon the power Row process. This paper is in-
tended to address these issues by introducing a mul-
timode slow-time-scale formulation of the electromagnet-
ic fields and the exact nonlinear particle orbit equations
in a mutually coupled interaction. The theory is formu-
lated for TE and TM modes in cylindrical waveguides
(rather than only for TE modes in rectangular
waveguides as in Refs. [1]and [2]); this turns out to avoid
a plethora of waveguide modes that might be capable of
coupling simultaneously to a spatiotemporally modulated
beam. The theory takes into account spread in orbit
pitch angle and center of gyration. An abbreviated re-
port of the nonlinear theory has been published previous-
ly [16].

This paper is organized as follows. Section II is devot-
ed to development of the linear theory for harmonic con-
version from a spatiotemporally modulated beam into TE
and TM modes of a cylindrical waveguide. A general for-
mulation is given in Sec. II A that includes the effects of
pitch-angle and center-of-gyration spreads in the electron
beam, and conditions are found that limit significantly
the number of waveguide modes that can accept power
from the beam. Section II B gives results for an idealized
axisymmetric "cold" beam, i.e., one in which all electrons
have identical momenta and centers of gyration. Section
IIC provides a calculation of the diminution in power

transfer from the beam to a designated waveguide mode
arising in the linear regime from a spread in particle axial
momentum. Section II D gives an estimate for the rate of
power How into TE modes other than the design mode in
the linear regime, and gives examples of mode competi-
tion for a conceptual device designed to operate at the
fifth gyroharmonic at 94 GHz. Section III contains the
nonlinear slow-time-scale multimode formulation for TE
and TM modes, which is specialized to the case of in-
teractions with a spatiotemporally modulated beam. Sec-
tion IV describes development of a nonlinear simulation
code based on the theory of Sec. III, gives numerical non-
linear results for fifth-harmonic conversion as discussed
in a linear context in Sec. II D, and also gives numerical
results for the power How into competinp modes. Section
V contains conclusions drawn from this work and sugges-
tions for further study.

II. LINEAR THEORY

A. Basic formalism

The first-order interaction between a beam possessing
spatiotemporal modulation and the fields of a cylindrical
waveguide can be characterized along lines similar to
those employed previously [1,2] for rectangular
waveguides. The basic idea is to calculate dP (z, t) Idt,
the spatial rate of change along z of the instantaneous
wave power, from the work done by the beam particles
on the fields. The fields are assumed to be those for a uni-
form empty waveguide, but with a slowly varying
electric-field amplitude Eo(z, t). The particle trajectories
are assumed to be unaffected by the fields in such a linear
first-order analysis. A second expression for dP(z, t)ldt
can also be found from the usual Poynting relationship
between P(z, t) and the fields. Equating the two expres-
sions allows an equation for dEO(z, t) Idz to emerge. This
is then averaged over the time of interaction T =z Iv, for
particles of axial velocity U, coupling to the wave over a
distance z, and the resulting time-averaged value
dEO(z)/dz can then be integrated over z out to the total
interaction length I. to find Eo(L) in terms of the input
value Eo(0) and the beam parameters. Since growth of
the wave fields can be determined in this manner from
the zeroth-order beam parameters, rather than from a
first-order induced current (as is customary in linear
analysis of most wave-particle interactions), the coupling
is first order, rather than second. These ordering argu-
ments were made previously by Kou et al. [13],although
significant differences exist between that calculation and
what is presented in this paper; these differences will be
discussed below.

In general, we consider a class of electron beams hav-
ing a current density J(r, t) that can be characterized by
the momentum-space integral

J(r, B,z, t)= —e f du f dw w f dq& e&
—+c,—"

—oo O 0 'y 'y
L

X5(P—$0+gz pt)fo(u, w, y, r, 8)—, (1)
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dP(z t) R= —I dr r I dBJ(r, B,z, t) E(r, B,z, t),
dz 0 0

(2)

where J(r, B,z, t) is given by Eq. (1), and where R is the
waveguide radius. The electric fields of an empty uni-
form cylindrical waveguide are given by

E„(r,B,z, t) =ED(z, t) J (kyar )sin6 (3a)
k~r

and

where r and 0 are the radial and azimuthal coordinates,
and u and w are components of a beam electron's
momentum (divided by the electron rest mass m) along
and across the z axis. The relativistic Lorentz factor is
related to the momenta by y = ( u +w +c ) /c . A uni-
form static magnetic field e,B0 is imposed. Unit vectors
e& and e, are along the angular and axial momenta of the
gyrating particles. (The lowest-order particle orbits have
no motion along their radii of gyration. ) The distribution
function for the beam electrons is given by
fo(u, wp, r, B), where p is the azimuth angle in momen-
tum space. The various coordinates are shown in Fig. 1.

The 5 function in the integrand of Eq. (1) gives the
equilibrium current density its spatiotemporal character:
an individual particle moves on a helix of axial pitch
number g, and the helix rotates with an angular frequen-
cy p. When the electrons are injected adiabatically along
a slowly tapered magnetic field from an ideal cyclotron
autoresonance accelerator driven at angular frequency p,
it is shown in Ref. [1] that g =y (p —0) /u, where
Q =eB /m 0y is the gyrofrequency in the uniform region
after the taper.

The instantaneous rate of power transfer from the
beam to the fields is given by

for TE „modes, andby

k,
E„(r,B,z, t)=Eo(z, t) J' (kir)cos6 (4a)

Es(r, B,z, t) = Eo—(z, t)
k, J (kir)sin6

k~r

(4b)

and

E,(r, B,z, t) =ED(z, t)J (kir )sin6 (4c)

J (kir)e g = g J + (kirg)J&(kiri )e

for TM „modes. In Eqs. (3) and (4),
8 =I0+k,z —~t, and the forms given are for circular-
ly polarized waves with right-hand rotation for co) 0 and
left-handed rotation for co &0. The function J (s) is the
Bessel function of the first kind; J' (s)=(d/ds)J (s);
k~R =s' „ for TE „modes and k~R =s „ for TM
nodes, where s' „ is the nth zero of J' (s) and s „ is the
nth zero of J (s). The amplitude Eo(z, t) is slowly vary-
ing with both z and t such that k, 'd [lnEO(z, t) ] ldz « 1

and cg 'd[lnEO(z, t)]ldt « l.
In order to carry out the integrations in Eq. (2), it is

convenient to transform the fields given by Eqs. (3) and
(4) from spatial coordinates (r, B) to (rl, g, rg„Bs), where
rL =w/Qy is the gyration radius, and r and 8 are the
radial and azimuthal coordinates of the center of gyra-
tion. These quantities are related by
r =rs+rL +2rsrl cos(P —Bs). This procedure, rather
commonly undertaken in the theory of gyroresonant in-
teractions, has recently been clearly elucidated by Zhang
[17],who employed Graaf s addition theorem [18]

Ee(r, B,z, t) =ED(z, t)J' (kir )cos6

wave guide

(3b)
to find the following results for the TE „modes:

EL (rL, P, r, Bs,z, t)

=Eo(z, t) g J (kirg )

J= oo

x
karl

J/(kirI )sin= (5a)

and

E&(rl, g, r, B,z, t)=ED(z, t) g J (kyar )J'(kirL )

J = —oo

X cos mJ (5b)

where = „=(m j)Bs+jp cot+k—,z, EL =E —eL and
E =E e&. Similar procedures give the fields for the
TM „modes tobe

EL(rl, g, r, Bg,z, t)

k,
=ED(z, t) g J,(kirs )

j= —oo

FIG. 1. Coordinate system. XJ,'(kirI )cos= ~, (6a)
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Et (rL, P, r, 8g, z, t)

k, 1=Eo(z, t) g J,(kir~)

E,(rt, g, r, 8,z, t)=Eo(z, t) g J .(kir )J.(kirL)
J= 00

(6c)X sin=

To carry out the configuration- and momentum-space
integrals in Eqs. (1) and (2), we invoke the identity

rdr d8du dw dg=rgdrzd8&du dw dP, (7)

and

XJ.(kirL )sin= (6b)
which follows from finding the Jacobian for the coordi-
nate system transformation [17]. As a result, Eq. (2) can
be written as

dP(z, t) = —eEO(z, t)
dz

X f dr~rg f d8g f du f dw f dP —fo(r, 8,u, w, g)g(p p&+gz——pt)

wJ.'(kiw/Qy )cos= (8a)

(8b)

where Eq. (8a) applies to TE „modes and Eq. (Sb) to
TM „modes. [Below, through Eqs. (15a) and (15b), the
(a) and (b) versions of each equation will apply in the
same manner to TE „and TM „modes, respectively. ]

Equations (8a) and (Sb) show, for a beam with sufficient
azimuthal symmetry in its distribution of guiding centers,
that a powerful selection rule can emerge. If the overall
distribution function fo(rs, 8g, w, u, g) can be written as a

I

separable function go(rg, w, u, g)h (o 8&) and if
ho(8 )=g [a cos(q8 )+b sin(q8 )], then the only
terms under the summations in Eqs. (8a) and (Sb) that
have nonzero values after integration over 0 are those
for which m —j =q. In particular, for an azimuthally
symmetric beam with q =0, all terms after integration
are zero except for the j =m term, for which Eqs. (8a)
and (8b) become

dP(z, t)
2m.eEO(z, t)—

dz

X f dr r Jo(kyar )f du f dw fdago(r, w—, u, g)5(P —Po+gz pt)—
'Y

wJ' (k i w /Qy )cos@

(mQyk, /ki —u)J (kiw/Qy)sin@

(9a)

(9b)

(lob)

where @ =mP cot+k, z. We —shall henceforth limit the discussion to beams that are axisymmetric in their angular
distributions of both guiding center and momentum. It is furthermore plausible to assume that the overall distribution
function can be taken to be a separable function of momentum and guiding-center radius, so that
go(rg, w, u, g)=NOFO(w, u)GO(r ) with No the beam density on axis. As a result, Eqs. (9a) and (9b) become

wJ' (kiw/Qy)cosh, (10a)
z7 2 W

rrNoeEO(z, t)RbH—(kiRb ) du dw —Fo(u, w) X '

( Q k /k2 )J (k /Q )

where b. =m $0+ (mp —co)t —(m g
—k, )z, and where

H(k„Rb) is a dimensionless beam density form factor
given by

Rb
(HkiR)=bdrgr&JO(kir )Go(r ),

R„'

with Rb the outer guiding-center radius. If the beam is

uniform, so that Go(r ) =1 for rg ~Rb and zero beyond,
one finds that H (k&Rb ) =2J&(k&R& )/(kiRb ). In the lim-

it of a small spread in guiding centers, such that
k~Rb & 1, one may expand in powers of k~R& to yield
H (kiRb ) = 1 —(kiRb ) /8+ (k&Rb ) /192 —.. . . For
kiRb = 1.616, H(kiRb )=0.707; thus for beams with an
outer guiding-center radius larger than about 1.6kJ
one can expect the linear growth in wave power [which
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will be shown to be proportional to H (kiRb )] to be less than half that for a beam with no spread in guiding centers.
We now form a second equation for dP (z, t)/dz from the familiar Poynting relationship

mR k, c
P (z, t)= g „E,'(z, t),

2'g co
(12)

where 21=(po/eo)'~ =120m. ohms, g „=J (s'„)(I —m /s'„) for TE „modes, and g „=g'„=J' (s „~ for TM
modes. If one differentiates Eq. (12) with respect to z and equates the results to Eqs. (10a) and (10b), one finds

dEO(z, t) rtRb ~ Noe wJ' (kiw/Qy)cosh
H(kiR& } du dw Fo(—u, w)

dz R2 keg„ y
' (m Qyk, /ki —u)J (kiw/Qy)sink

(13a)

(13b)

Equations (13a) and (13b) give, for an axisymmetric
beam, the instantaneous rates of spatial evolution of the
electric-field amplitudes for TE „and TM „modes due
to interaction with the beam. These rates of change are
momentum integrals over oscillatory functions of u, w, z,
and t, which, in general, will have small time-averaged
values. Moreover, the amplitude Eo(L) will have an os-
cillatory space dependence with a small cumulative value,
after integrating the rates over a finite interaction lengthl. Only if the argument 6 of the trigonometric func-
tions in Eqs. (13a) and (13b) is relatively stationary over
the momentum, time, and space intervals of interest is
there a possibility for significant time-averaged cumula-
tive growth in the field amplitudes. Below this will be re-
duced to a quantitative requirement on the frequency
difference (co —mp) and the momentum-averaged wave-
number difFerence (k, —mg) necessary for the wave to
grow monotonically.

Averaging Eqs. (13a) and (13b) over an interaction time
T =yz/u for particles traveling with the wave over an

I

(14a)

and

I2(g„gz, mpo)= —f f dt sinb
0 Z 0

=I, g, ,g, mP +— (14b)

where gi =(co—mp)yL/u and (2=(k, —m g)L
= [k, my(p —0)/u)L. T—he general result for the am-
plitude of the field is thus

axial distance z, and subsequent integration over z for a
total interaction length L to find Eo(L), will involve the
integrals

I, (g„g„my, )= " f'"—'f" dtcosb,
0 Z 0

sin m 0+ —sin m
L &2 dg

N0egCORb wJ' ( ki w /Qy )I, (g» (2, m Po)
Eo(L)—Eo(0)=—, H(kiRi, )f du f dw Fo(u, w) '—

k k2R ckzmn

(lsa)

(15b)

where Eo(0) is the input boundary value of the field. In
the following sections of this paper, we will analyze Eqs.
(15a) and (15b) to find the linearized power transfer to the
wave for a cold beam under conditions of perfect phase
matching between the wave and the beam. In addition,
we will estimate the e6'ects upon wave growth due to a
spread in axial velocities on the beam and due to a phase
mismatch. The linear growth of those modes of the
waveguide that can compete with a design mode will also
be evaluated.

B. Cold-beam limit

co=mp (16)

For a monoenergetic beam with no spread in pitch an-
gle or guiding-center radius, we have
Fo(u, w}=5(u —U)5(w —W)/W and H(kiRb)=1. Fur-
thermore, an operating point is chosen such that both
frequency and wave-number matching occur, e.g.,

and

k, =mg=my(p —0)/U . (17)

for 0/p = 1 —P„where P, = U/cy and Pi = W/cy.
Equations (16)—(18) combine to give ck, /co=p„corre-
sponding to the so-called "grazing condition" wherein
the axial velocity of the beam and the group velocity of
the wave are equal. Under this condition, it follows that
m Qy k, /k i = U, so that from Eq. (15b) coupling between
a cold beam and all TM modes vanishes. This is evident-
ly because, in the net work done by the fields on the
beam, an exact cancellation occurs between contributions

In Ref. [1], it is shown that the harmonic coupling
coefficient, as given by IC =J' (ki W/yQ) for TE
modes, will be maximized if

mph y pi2 2 1/2

=m
( 1 p2 )1/2 1+y2p2
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from the axial and transverse components. Henceforth in
discussing linear theory we will consider only TE modes,
since even for operation slightly away from the grazing
condition and beams with a spread in pitch angle, power
fiow into TM modes (while not identically zero) is expect-
ed to be much smaller than for TE modes. This supposi-
tion is examined in the context of nonlinear theory in Sec.
III.

When Eqs. (16) and (17) are satisfied, Eq. (14a) reduces
to It (0,0, mgo) =L cos(m Po). In the absence of an exter-
nal signal Eo(0)=0, the relative phase Po adjusts itself to
maximize the power Aow into the wave. Thus

gIoL
~R'P, g.„U

10.

Eo 1

OJ
O

~ 0. 1

-1 00

0(,= 2
Grazing Condition-

0 QJ

O

C4

1.0 cL

and, from Eq. (12)

I2 2

P(L) =
2m-R P,g „

28'
U m (20)

0.01 0. 1

100 200 300 400 500 600
Beam Voltage (kV)

where Io=mRbNoeU/y is the dc beam current. Equa-
tions (19) and (20) are similar to results obtained for a
cold beam coupling to modes of rectangular waveguides,
except for factors to account for the geometric
differences. However, other than for a circularly polar-
ized TEO mode in a square waveguide, there is no selec-
tion rule for rectangular waveguides that eliminates cou-
pling to all other modes at the mth harmonic with an ax-
isymmetric beam. This fact mitigates in favor of the use
of cylindrical waveguides in devices based on this interac-
tion in order to minimize mode competition problems.

As a conceptual design example, we consider a fifth-
harmonic converter for generating power at 94 GHz us-
ing a cold 150-kV, 6.667-A beam with W/U =2.0. For
the TE5& waveguide mode, s 5&

=6.415 62 and

g5, =0.0549. The waveguide radius becomes R =0.340
cm, giving P(L)=20L kW, for L in cm. This corre-
sponds to a linear efficiency of 2 L %. If one assumes
that linear theory remains valid up to an efFiciency of
10%, these figures indicate that the wave power would
reach 100 kW in an interaction length L of 2.24 cm, or
about two guide wavelengths. In Sec. IV we will compare
this estimate with the exact prediction of nonlinear
theory.

The dependence of the fifth-harmonic linear conversion
rates at 94 GHz upon beam voltage is shown in Fig. 2,
based on Eq. (20). For a beam with W/U =2.0, and for
operation at the grazing condition for each voltage, Fig. 2
shows the linear normalized power-generation rate
P(L)/L Io, as well as the specific power-generation rate
P(L)/L for two constant values of beam power, 0.30
and 1.0 MW. As is seen, the normalized power genera-
tion rate increases monotonically as voltage increases, but
the power generation rate for constant beam power
reaches its maximum value at about 115 kV. This fact
suggests that an argument to operate a fifth-harmonic
converter with a beam having 8'/U =2.0 at beam volt-
age higher than 115 kV might be based on beam quality
considerations for high current beams, but not on conver-
sion efficiency considerations. Figure 2 shows that fifth-

FIG. 2. Predictions of linear theory for normalized fifth-
harmonic power-generation rate (left-hand scale) and specific
power-generation rate (right-hand scale) for 0.30- and 1.0-MW
beams of indicated voltage with +=2.0.

harmonic conversion employing a lower voltage beam
should be feasible, since the specific power-generation
rate does not fall below half the maximum rate unless the
beam voltage falls below about 32 kV.

C. Diminution in harmonic power generation
due to beam velocity spread

Precisely at the harmonics co=mp, where $, =0, one
finds

sin( m go+ $2) —sin( m Po)I, (0, (~,mgo) = L . (21)

Examination of Eq. (15a) indicates that the factor most
sensitive to momentum spread is I (0,t( m2g ), educ to
phase interference between contributions with different
values of g2. For a beam with electrons having equal en-

ergies but with a spread in pitch angles, as designated by
a spread in axial momentum hu =u2 —u„we estimate
the effect on the harmonic power generation rate by
evaluating the integral

I = f du F(u, w) [sin(mPo+g2) —sin(mPo)] . (22)
00 2

In order to allow Eq. (22) to be expressed in terms of tab-
ulated functions, we choose the distribution function
F(u, w)=[u, uz/u bu]5[w (c y c u—)'i ]/w— t—o
characterize a finite spread in u with constant energy.
For a narrow spread, such that b.u «uo=(u, +uz)/2,
F(u, w) is nearly constant over the interval u, & u & u2.
Changing the variable of integration in Eq. (22) from u to
(2=k,L —a/u, where a =my(p —Q)L allows Eq. (22) to
be written as
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g
& g2 k L —a/'u&

f '
dg, sin(mgo)

g Qg k L —a/ul

cosgz —1

0z

+cos( m $0)
sins gz

0z
(23)

=2I= sin(mP ) Ci ——ln ——y2 E

If the harmonic converter is designed to maximize the
linear wave growth for a cold beam with axial momen-
tum u o, then k, =m y (p —0 ) /u o and the limits of in-
tegration in Eq. (23) become +b, /2, where
b, =k,L (b, u/uo). This leads to

of 0&6&20. Since the power growth from linearized
theory in the absence of an input field Eo(0) is propor-
tional to I,„,one sees from Fig. 3 that the growth would
fall to half its value for a corresponding cold beam if
b, =7.65. This corresponds to bu /u o=7. 65 /k, L, which
is roughly equivalent to the condition Au /uo =N
where N is the number of interaction guide wavelengths
in the harmonic converter. Similarly, one sees from Fig.
3 that the power growth will not be less than 90% its
value for a cold beam if 6 & 2.90, corresponding to
b,u/uo&0. 48N . Such conditions for the diminution
of growth are not uncommon for traveling-wave interac-
tions, such as in free-electron lasers in the low gain limit
[20].

+cos(m/0) Si (24) D. Power growth in competing modes

2
4I = Ci ——ln ——y + Simax g2 2 2 E 2

2

(25)

Figure 3 is a plot of I „as a function of 6 in the range

0.9

where Si(x) and Ci(x) are the sine-integral and cosine-
integral functions [19], and where yz =0.577 216 is
Euler's constant. The relative phase angle Po between the
field and the current will adjust itself to maximize the
rate of power transfer from the beam to the fields. For a
function as is given in Eq. (24) of the form
f($0)=A sin(mgo)+Bcos(mgo) the maximum value,
found by differentiation with respect to m Po, isf,„=A +B . This gives the value of I,„correspond-
ing to maximum power transfer to the fields to be

P, (L)=Pd(L)
kzc gmnc md +md

This section presents an estimate of the rate of power
Aow into TE modes other than the design mode. The sys-
tem parameters are chosen to optimize the linear rate of
power transfer to the design mode, so that matching be-
tween the group velocity of the wave and the axial veloci-
ty of the beam will, in general, not occur for the compet-
ing modes. In addition, it will be shown that parameters
may be chosen so that radiation at harmonics lower than
the design harmonic is cut off in those waveguide modes
at which power growth is not already prohibited by the
selection rule discussed with regard to Eqs. (9a) and (9b).

For a cold axisymmetric beam, and for power growth
at the harmonics co =mp, the value of relative phase m Po
between the current and the electric field that leads to
maximum growth rate for the field can be found from Eq.
(21) to be vr gz/2 —At t.his relative phase,
I, (0, gz, m

—gz/2) = —(sin5/5)L, where 5= (k„—m, k,d /md )L/2, with k„and m, the wave number and
harmonic number for the competing mode and k,d and
md those for the design mode. As a result, we can find
the power in a competing mode P, (L) from Eq. (20) to be

2 2
sin5

6

0.7

12
0.6

0.5

0.3

0.2

0.1

I ~ I ~ I I I I I I I I ~ I I ~ I I ~ I I ~ I I I I ~ I I I I I ~ I I ~ I I ~ I ~ ~ I ~ I I ~ I I
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FIG. 3. Diminution in linearized power generation rate as a
function of axial momentum spread 6=k,L(hu/uo), as pre-
dicted by Eq. (25).

where Pd(L) is the power in the design mode, K d and
K, are the harmonic coupling coefficients for the design
mode and a competing mode, and g „d and g „, are the
geometric scaling factors [see Eq. (12)] for the design
mode and a competing mode. Equation (26) shows that
power in a competing mode will not grow cumulatively
with interaction length L due to phase mismatch with the
beam, as embodied in the factor (sin5/5) .

Of course, since Eq. (26) is based on linearized theory,
it assumes that the design mode and any competing
modes grow independently of one another. Clearly this is
not the case when the individual mode powers become
significant, and competing modes can be expected to
inhuence the beam distribution and thus one another' s
growth. Nonlinear mode competing is illustrated and
discussed in Sec. III.

To illustrate the inAuence of the aforementioned phase
mismatch on the linearized growth of competing modes,
we consider for the design mode a fifth-harmonic con-
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(1 p2)]/2 m 1 f
m

(27)

where m is the harmonic number for the design mode,
and f and f &

are cutofF frequencies for the
waveguide in the design mode and in the next lower
TE

&
mode. For the example above, with m =5 as the

design mode, this condition gives p, (0.2615, corre-
sponding to e & 2.21 for a beam voltage of 150 kV. Table
III gives the maximum values of p, that satisfy Eq. (27)
for 2 m (10, together with the respective maximum
values of velocity ratio a= W/U that these figures imply.
Such considerations indicate that it is possible to
suppress coupling to all harmonics lower than the design
harmonic by use of a beam with sufficiently high velocity
ratio.

verter discussed in Sec. II B, the parameters for which are
listed in Table I. The growth of harmonic power at com-
peting harmonics m for the device parameters given in
Table I has been calculated from Eq. (26) for harmonics
up to the eighth. Except for the TE4, mode, all TE
modes at harmonics below the design harmonic m = 5 are
cut off. Table II gives relevant parameters and the four
most serious competing modes TE4& TE6& TE7i and
TE8, at m =4, 6, 7, and 8, respectively.

Table II shows that the harmonic coupling coefficient
E decreases with harmonic number by an order of mag-
nitude between m =4 and 8. The initial growth rate
P(L)/L for m =4 exceeds that for m =5 by a factor of
12, but the growth rates for m =6, 7, and 8 are succes-
sively smaller than that for m =5. However, after an in-
teraction length L of 5 cm, the m =4 and 6 modes have
grown to only 4.7% and 1.2% of the m =5 mode due to
phase mismatch. While these predictions are based on
linearized theory, which is neither competent to treat the
mutual interaction of several modes, nor indeed the
(clearly nonlinear) growth of the m = 5 mode to 500 kW,
the results suggest strongly that the powerful effect of
phase mismatch can be highly effective in suppressing po-
tentially competitive modes.

In the above example, it was noted that the harmonics
m = 1, 2, and 3 did not interact with the beam because
the TE», TE2&, and TE3& modes are all cut off at the cor-
responding harmonic frequencies. One can derive a con-
dition that would insure that all harmonics lower than
the design harmonic be cut off for TE

&
modes of a cylin-

drical waveguide. This condition is simply

TABLE I. Parameters for conceptual design device to gen-
erate fifth-harmonic power at 94-GHz. These parameters are
used in calculating the growth of competing models in Table II.

Frequency co/2m

Waveguide radius R
Waveguide design mode
Beam voltage
Beam current Io
Velocity ratio a= 8'/U
Magnetic field 8
Power growth rate P(L)/L

94.0 GHz
0.3398 cm
TE»
150 kv
6.667 A
2.0
7.983 kG
20.05 kW/cm~

III. SLOW- TIME-SCALE FORMULATION
OF NONLINEAR DYNAMICS

Since the linear theory for harmonic conversion given
above shows that modes at undesired harmonics could
compete with the design mode, a multimode nonlinear
analysis is needed to determine efficiency limits and mode
purity. The analysis to be presented here is based on a
three-dimensional slow-time-scale formulation [21—24]
developed for steady-state operation of gyrotrons
traveling-wave amplifiers. In this formulation, the elec-
tromagnetic field is expanded as a superposition of unper-
turbed TE and TM modes of an empty waveguide.
Maxwell's equations are averaged over a wave period, al-
lowing a series of slow-time-scale equations to be derived
for the evolution of the amplitude and phase of each TE
and TM mode as driven by an electron beam in an exter-
nal guide magnetic field. In general, the guide magnetic
field is axisymmetric but nonuniform. The modes are
coupled through their mutual nonlinear interaction with
the ensemble of beam electrons. The wave-period averag-
ing allows multimode interactions to be considered pro-
vided the frequencies are integral multiples of a funda-
mental frequency, and provided the time average is done
over the fundamental wave period. In this case, the par-
ticles that enter the interaction region at times separated
by integral multiples of the fundamental wave period will
execute identical trajectories even though they interact
with many modes. The time-averaged field equations are
integrated simultaneously with the three-dimensional
Lorentz force equations that determine the particle or-
bits. No averaging is done for the orbit equations. The
trajectory of each particle is calculated by summing con-

TABLE II. Parameters at harmonics up to m =8 for modes that can compete with the fifth-harmonic design mode TE», based on
linearized theory. The cutoff frequencies are given under the column headed f

mode

TE4l
TE»
TE6,
TE7l
TEsl

(GHz)

75.20
94.00

112.80
131.60
150.40

f
(GHz)

74.72
90.15

105.40
120.53
135.56

k,
(cm ')

1.779
5.578
8.414

11.065
13.644

0.1299
0.0616
0.0354
0.0212
0.0130

P (L)/L
(kW/cm )

248.2
20.0

5.1

1.6
0.6

P (L =1 cm)
(kw)

130.8
20.1

4.4
0.6
0.005

P (L =5 cm)
(kw)

23.6
500.1

5.8
0.56
0.005
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TABLE III. Maximum P, values for suppression of coupling to TE, modes at all harmonics below
the design harmonic for harmonics from 2 to 10. Also shown are the corresponding values for the
minimum velocity ratio a;„for several beam voltages, including the limit of infinite beam voltage. The
asymptotic value of P, ,„for large m is 1.038 34m

Design
harmonic

number m

2
3
4
5
6
7
8
9

10

z max

0.558 63
0.398 84
0.31440
0.261 51
0.225 04
0.198 21
0.177 62
0.161 33
0.147 76

150 kv

0.5379
1.2367
1.7523
2.2099
2.6353
3.0400
3.4283
3.8025
4.1748

500 kV

1 ~ 1772
1.9184
2.5558
3.1444
3.7016
4.2369
4.7539
5.2541
5.7534

+min

1 MV

1.3557
2.1372
2.8213
3.4569
4.0605
4.6414
5.2031
5.7469
6.2900

5 MV

1.4754
2.2874
3.0049
3.6738
4.3100
4.9229
5.5158
6.0902
6.6640

1.4847
2.2992
3.0194
3.6909
4.3297
4.9451
5.5405
6.1173
6.6934

tributions from each mode. The nonlinear single-mode
equations for gyrotron traveling-wave amplifiers includ-
ing the effects of guiding-center motion, axial electron ve-
locity spread, and nonuniform guide field have been de-
rived for TE modes in rectangular electrodynamic struc-
tures [21,22] and in cylindrical geometry. The theory is
extended here to multimode interactions with both TE
and TM modes.

The self-consistent evolution of the electromagnetic
field and the trajectories of an ensemble of electrons are
determined by solving Maxwell's wave equation and the
Lorentz force equation simultaneously, e.g. ,

d
dt

(yv)=—
mo

(8+v X [Bo+B]), (29)

where Bo is the axial guide magnetic field, and E and B
are the rf electric and magnetic fields, respectively. The
electron velocity is v and the current density is J. The
relativistic factor y =(1—v v/c ) '=1+(w +u )/c .
We will hereafter use v, =u/y and ui=w/y, the magni-
tudes of the axial and transverse components of the ve-
locity of the electron. The guide magnetic field Bo(z)
may be weakly nonuniform but axisymmetric. Thus we
write

O'E BJ~ E Po&o 2 =Ho
Bt

(28)

1 ()Bo
Bc(r)=Bc(z)e, —— re„.

The source current may be expressed [12] as

J(r, z, t)= —,', f f f d v f f d rc f dtofo(v, ro, to)u, (0) ' ' 5(r' —r(ro, z, to))5(t' ~(ro, z, t)), —
~ vzo~

(30)

where the dc current Ic=enb(v, c) Ab, with nb the aver-
age electron density, Ab the cross-sectional area of the
beam and (u, &&) the average velocity of the electrons at
z =0, the entrance to the interaction region. The vector
r denotes the transverse position of an electron. The
quantities at z =0 are denoted by a subscript "0";
v(z, ro, to ) is the velocity of an electron which crossed the
z =0 plane at time to in the transverse position ro, and T
is the interaction time. The system is assumed to be time
Periodic, so that v(z, ro, to) =v(z, r t c+o2m j/coo), where j
is an integer. The time interval ~ is defined by

Z
~(z, rc, to ) = to+ dz'[u, (z', ro, to ) ]

The initial distribution function of the electrons in cross
section, time and velocity is denoted by fo(v, ro, to) sub-
ject to the normalization

—f dto f f f d'u f fd'rofo(v, rc, to)=1 . = —uisin(P —8)e„+vicos(P —8)ee+ u, e, , (32)

In the absence of an input signal, the solution of Eq.
(29) in a uniform field Bo represents Larmor rotation
around a guiding center that drifts along the axis with ve-
locity v, . The gyration frequency is Q=eBo/ymo, and
the gyration radius rl = v ~ /Q. When E and B are
nonzero and Bo is weakly nonuniform, the electron tra-
jectories can still be described as a superposition of the
guiding-center motion and a Larmor precession about the
guiding center (see Fig. 1) where u„vi, 0, rL, and the
guiding-center coordinates (r, 8 ) vary slowly in space.
Thus

r=(r cos8 +rL cosP)e„+(r sin8g+rL sing)e~+ze,

=re, +ze, , (31)

where r = r + rL +2r rL cos( P 8g ),and—
dr =v= —(uisinP)e +(uicosP)e +u, e,dt
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where u~=rLQ(z)=rLQo(z)ly(z). The gyration phase P
reduces to Q,t in the limit E=B=O. Equations (31) and
(32) imply that the guiding-center motion in the trans-
verse plane is determined by

dry drL+ cos(P —
8g ) —rL —0 sin(P —8 ) =0,

dt dt dt

(33)

d8s drL dpr + sin(P —8 ) —rt —Q cos(P —8 )=0,
dt dt dt

(34)
I

It will be convenient to use a complex notation for v, E,
and B and take real parts. Hence, we write Eq. (32) in
the form

v =Re(ie„+ee)v j exp[i (P —8)]+u, e, , (35)

where Re denotes the real part.
Similarly, in the absence of a source current (J=0), the

solutions to Eq. (28) form a complete set of orthogonal
basis functions comprising the TE and TM modes of the
vacuum waveguide where the amplitude and axial wave
vector are constants. In the presence of a tenuous beam,
we may expand E and B in terms of this compete set of
basis functions and assume that the amplitude and axial
wave vector vary slowly in space. Thus we write

Pl OC
2 oo

E(r, t)= g g 3'~„'(z)e'~„'(r, 8)exp i co'~„'t —j dz'k, '~'„(z')

m=0

e"„'(r,8)=C' „s' „
imJ (k' „r)

e +J' (k' r)e e ™k'„r
(37)

and

where the superscript q represents TE (q =1) and TM
(q =2) modes, respectively. The wave amplitude A'~„'(z)
and the axial wave vector k,'~'„(z) vary slowly along the
axis of the waveguide. The angular frequency of the
mode co „must be an integral multiple of a fundamental
frequency coo. The set of basis functions e'q„'(r, 8) for TE
and TM modes are given by

g=z/R, p=r/R, y „=k, „R

co =coR /c, P, =v, /c, PI = v j /c;

E= eR E, B=eRB.
PlC 01C

(42)
q=1 m, n C~mn

From Maxwell's equation V X E= —BB/Bt, the
magnetic-field components may be expressed as

B„(r,8,z, t)= Re g—g E'g' „,
q =1 m, n CCOmn

k (q)

Be(r, 8,z, t)= —Re g g ' E„'~'„,

imJ (k „r)
k „r

ik „+ J (k„r)e, e ™,
zmn

(38)

where for TE modes k' „R =s' „, the nth zero of J' (s);
and for TM modes k „R =s „, the nth zero of J (s).
Equations (37) and (38) satisfy the customary boundary
conditions at the perfectly conducting waveguide wall,
namely the vanishing of tangential E and normal B. The
coefficients C „are given for TM modes by

(2) —~(2)
mn ~mn '

Smn

(2)
+mn

2

-+ir"„),

with the normalized growth rate

(q) 1 d Amn
mn

mn

s 2

B,(r, 8,z, t)= —Re g ' E„"'„,
m, n CCOmnm

where the normalized wave numbers are

(43)

(44)

C „'=&a.s „J' (s „)=s „(m.g „)'~

and for TE modes by

(39)

(40)

The basis functions as given in Eqs. (37) and (38) are
for right-hand circularly polarized waves. It is con-
venient to introduce a normalization scheme in which the
waveguide radius R is scaled out of the equations. The
appropriate normalized variables are defined as follows:

For clarity, the superscript "q" will be suppressed un-
less required to avoid ambiguity. Substitution of the
fields [Eqs. (36)—(43)] and the source current [Eqs. (30)
and (35)] in Eq. (28) leads to the dynamical equations
which govern the evolution of the slowly varying ampli-
tude A'„' and axial wave vector y' „' of each mode.
These equations are obtained by taking the scalar prod-
uct of E with the terms on both sides of Eq. (28), averag-
ing over a fundamental wave period T =2~/coo and in-

tegrating over the cross section of the waveguide, using
the orthogonality properties of the basis functions. The
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resulting expressions involve Bessel functions with argu-
ment k „r or k' „r S.ince r is given by Eq. (31), Graff's
addition theorem [18] can be used to expand the Bessel
functions in an infinite series of cyclotron harmonics,
with phases for the terms in the expansion varying as
exp(i(Io „),where

„=co „t—sP —(m —s)9s —f dz'k, „(z') .
0

(45)

The harmonic number s ranges from —~ to + ~. From
the infinite series, we will retain a single sth cyclotron
harmonic for which the beam mode and the guide mode
are close to resonance and for which the phase detuning
parameter y „varies slowly in time. The phase detuning
for all other harmonics will vary rapidly with time and
the time-averaged contribution of the terms will tend to
vanish, as discussed in Sec. II A.

After some lengthy algebra, the dispersion of each TE
mode in the presence of the electron beam is found to be

d A

d

and the amplification of the mode is given by

Po Pg
mn COS pmn

where

I~ =Eomoc le,3

Q' „=J,(s' „ps )J,'(s' „pL ),

pg
= rs/R,

PL rL /R

(47)

(48)

I0 r I= —2 Fmn CmnSmn
A

Po Pg
mn Vmn

zO z

(46)

The angular brackets in Eqs. (46) and (47) denote an aver-

age over the initial phase space distribution of the elec-
trons.

Similarly, we find that the evolution of the TM modes
is governed by

P.o
d (2

smn pLpz

sp&, cos(q „„(), (49)

mn p mn 2 I ~mn mn mnsmn (P ) (P
~

mn

2
smn pLpz

s(n(g „(),
Rmn

(50)

where

sJ, (s „PL )
Hmn m —s( mnPg )

SmnPL

The two terms in the factor

(51)

2
smn pLpz1—
spa .

that arise from J~ E~ and J,E, are of opposite sign. When the wave group velocity k, „c leo „equals the axial beam
velocity v„ the two terms cancel one another. For a cold beam this indicates that the TM mode interaction does not
affect the wave dispersion or growth, as was shown in the linear analysis of Eq. (15b).

The electron orbit equations in the presence of the static and rf fields have to be calculated by summing the contribu-
tions for each mode, where the mode coupling arises through the orbit equations. On substitution of the superposition
of fields from all TE and TM modes in the complete Lorentz force equation, we obtain the slow-time-scale orbit equa-
tions after applying Graff's theorem and keeping a single cyclotron harmonic with resonant phase as described above.
For spatial growth of a steady-state excitation, it is convenient to integrate the equations of motion in z rather that t us-

ing the relation along electron trajectories.

dw 1

dg p,

where the normalized time is defined by ~=et/R.
The variations of electron momentum and phase are given by

(52)
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dg
1 an,
2 a( pL ~ p

Qmn
p,x .

~mn

rp,
cos(y „)+ sin(y „)

~mn

H „
TM modes

p. (x .+s'. /x .)

~mn

IP,
cos(y „) (53)

d (yP, )

dg
1 an,

ap
TE modes ~mn

„a Q' „[X „cos(y „)—I sin(qr „)]

„a
H „

TM modes ~mn

2

X..+
+mn

PL. +mn1—
spi

sin(y „)+I cos(y „) . , (54)

00
dg yP,

„H'„
TE modes

p,x .
~mn

'2 2
~mnPI. &0

~7~mn

rp,
sin(y „)—

~mn
cos(y „)

mn QmnO

TM modes mn

p, ~mn
+mn

+mn

rp,
cos(y „)+ sin(y „) -,

~mn
(55)

where A „=C'„s'„A „ for TE modes, A „=C „s „A „ for TM modes, 00=00R/c, and a=u~/u, . In Eq. (55)

Q „ is given by Eq. (48) with s „ in place of s'„, while H'„ is given by Eq. (51) with s'„ in place of s „. The rate of
change of energy of an electron can be calculated from Eqs. (53) and (54):

A „Q'„acos(q& „)— g A „H „a 1—
TE modes TM modes

2
SmnPLPz

sin(y „) .
JXm n

(56)

Equation (56) also shows that the interaction with TM modes vanishes at grazing incidence.

8pg

dg

an,
pg+ X

2I10 0 TE modes

~mn&mn

P, 00
p, x . SQ0 M' „S'„Pl 00+

/CO +mn /CO

rp,
cos(y „)+ sin(q& „)

~mn ~mn

TM modes Pz f10

2p, ~mn
1 — y n+

Xmn
sin(y „)—rp,

cos(y „) .
, (57)

~ mn ~mn

TE modes Pz +0

~mn&mn

TM modes Pz +0

p,x . rp,

rp,
cos(p „)+ sin(y „)

SA0 N'„S' PLQ0+ sin(q& „)—
~mn

cos(y „)

(58)

where for TE modes P= ,'Re J d—r r f dg(EXH) e,
0 0

N „=J,(s „p )J (s „pL),

(m —s)J,(s'„p )J,(s'„pL)

~mnPg

N' „=J', (s' „ps )J,'(s' „pI ),
(59)

2 5
C0m 0C

2e
+mn

mn
TE modes ~mn

Xmn

TM modes ~mn

S2
1+

2 mn
+mn

(60)

(m —s)J,(s „p )J,'(s' „pL )M'„=
~mnPg

For TM modes, the eigenvalues s „appear in place of

The total transmitted power in the circuit from all TE
and TM modes is calculated from the Poynting Aux. The
time-averaged power Aow is given by

The nonlinear equations for the fields [Eqs. (46)—(51)] and
the electron orbits [Eqs. (52)—(58)] apply to arbitrary
values of the guiding-center radius and the Larmor ra-
dius. We have included a single cyclotron harmonic at
each frequency in the multimode formulation. The
theory can be easily adapted to treat the excitation of
multiple cyclotron harmonics at a given frequency by in-
cluding appropriate number of terms from Graff's addi-
tion theorem in the field and orbit equations.
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IV. NUMERICAL RESULTS

The set of coupled field and orbit equations derived in
Sec. III is numerically integrated in z employing a
modified version of the fourth-order Runge-Kutta algo-
rithm (Gill's method) [25]. The two second-order equa-
tions [Eqs. (46) and (47), and Eqs. (49) and (50)] for the
amplitude and phase of each waveguide mode are con-
verted into four first-order differential equations for com-
putational convenience. Hence the system of equations
to be solved consist of 6N, +4N first-order differential
equations, where N, is the number of electrons and N
the numbers of waveguide modes. Conservation of ener-
gy is tested at each axial position by comparing the
efficiencies calculated with

rI(z) = ( y(z) y,—) /(y 1)—
g(z) = [P (z) P;„]/VOIO—,

where Vo is the beam voltage and P;„ is the input signal
power. The power in the circuit P(z) is calculated from
Eq. (60). The conservation of energy is found to be
satisfied to an accuracy of one part in 10 .

The initial conditions on the beam are chosen to model
an axisymmetric monoenergetic beam entering the in-
teraction waveguide with a spatiotemporally modulated
gyration angle /=$0 —gz+pt, as indicated in Eq. (1).
Axial velocity spread of the electron beam is introduced
through a Gaussian pitch-angle distribution of the form

fo -exp[ —(U, —
U,o) /2(b U, ) ]5(y —yo)

Initial conditions on the radiation field are chosen such
that 3 „ is at the noise level, d 3 „/dz =0, and
k2 —

( 2/ 2 k'2 )1/2
zmn & C mn

The dependence of the rate of beam-wave energy
transfer on the guiding-center location is determined byJ,(k' „rs). Hence efficient harmonic interaction for an
axisymmetric beam (r ~0) is absent unless m =s, as
shown in Eqs. (8a), (8b), (48), (50), and (56). We will thus
not consider any case where the cyclotron harmonic
number and the azimuthal index number are not equal
for all waveguide modes under consideration. Further-
more, we assume that operation is under matching con-
ditions for strong interaction, as given in Eqs. (16)—(18).
The matching conditions signify that the beam line and
the waveguide dispersion curve are tangential; this is
commonly termed the "grazing condition. " At this
point, the operating frequency and the cyclotron frequen-
cies are connected to the cutoff frequency co,„t by

7 zo~cut &

tion at the fifth cyclotron harmonic (s = 5), with parame-
ters as given in Table I. The most dangerous competing
modes are TE4& and TE6& at s =4 and 6, respectively.
Power How to the TM modes has been found to be negli-
gible, even for conditions that depart from exact match-
ing.

We first show the evolution of the design mode (TE»)
through the linear regime to saturation neglecting other
competing modes. Efficiency as a function of interaction
length is shown in Fig. 4 for a cold beam, i.e., 5v, /v, o=0.
For a uniform magnetic field 8 =8 „the efficiency for
fifth-harmonic generation is small as shown by the
dashed curve in Fig. 4. The peak efficiency is 9.62% at
an interaction length of 2.92 cm. All particles in the
beam enter the interaction region at the same phase and
the efficiency saturates as all particles slip out of synch-
ronism with the wave due to energy depletion. However,
the initial efficiency follows closely 2z %, the dependence
found for this example from linear theory in Sec. II C.
The efficiency may be greatly enhanced by tapering the
magnetic field to maintain synchronism over a longer in-
teraction time. The solid curve in Fig. 4 shows the
enhancement of efficiency in a linearly tapered magnetic
field; B =B, for z &0.5R and B =Bg,[1—0.003(z
—R)/R] for z )0.5R, where Bs,=7.983 kG. These are
the values which optimized the efficiency. In the tapered
field the peak efficiency increases to 57.7%%uo at an interac-
tion length of 18.6 cm.

We now investigate the effect of mode competition on
the saturation characteristics of the desired mode. The
efficiency as a function of interaction distance is plotted
in Fig. 5 for a cold beam in a linearly tapered B field
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where Bg, is the grazing magnetic field and
y2 (1 P2 )

—i

Numerical results are shown for fifth-harmonic fre-
quency converter at 94 GHz, as discussed in Sec. IIB.
The pump frequency p =18.8 GHz. The operating mode
in the output section is a TE5, mode accumulating radia-

10

z (cm)

20 25

FIG. 4. Nonlinear efficiency for fifth-harmonic power gen-
eration in a uniform magnetic field (dashed curve) and a linearly
tapered magnetic field (solid curve) for a cold beam. Parameters
are as shown in figure.



47 LINEAR AND NONLINEAR THEORY OF GYROHARMONIC. . . 4377

60 I I I I
]

I I I I I I I I

50

40

o&
0

30
C3

CO
~~
~— 20
UJ

667 A, (x=2.0
O/

z
c = 0.002

70

50

o~0

OC
30Q)

~
Oe

LLI

6.667 A, a=2.0

GHz
R

cm
83 kG

10
10

0
TE„{s= 6) TE, ( s= 6)

-10
0 10 20

z(cm)
30 40 50

-10
0 20 30 40 50 60

z(cm)

FIG. 5. Nonlinear efFiciency for fourth-, fifth-, and sixth-
harmonic power generation (acting simultaneously) for a cold
beam and a linearly tapered magnetic field. Parameters are as
shown in figure.

FIG. 6. Nonlinear efficiency for fourth-, fifth-, and sixth-
harmonic power generation (acting simultaneously) for a cold
beam and a nonlinearly tapered magnetic field. Parameters are
as shown in figure.

when TE4„TE5&, and TE&, modes are excited simultane-
ously. The magnetic field B =B, for z &R and B =B,
[1—0.002(z —R)/R] for z )R. The grazing condition is
satisfied only by the operating mode (TE» at s =5). With
these tapering parameters, the peak efficiency of the TE»
mode is found to be 57%, which is the same as in Fig. 4.
However, the saturation length is increased to 28.3 cm,
since some power flows to the TE4, mode initially. The
efficiency of the TE~, mode increases to 6% at a distance
of 4 cm. But beyond that point, the power gradually
flows back to the Gfth-harmonic TE5, mode as the sixth-
harmonic efficiency settles down to about 2%. The TE&,
mode barely grows above the noise level. Thus the TE»
mode attains a peak output power of 570 kW with negli-
gible effect from the other two competing modes.

The linearly tapered B field is not the optimum for
efficiency enhancement. This is illustrated in Fig. 6,
where a nonlinear B-Geld taper is used to preserve the ex-
act phase matching condition for the desired mode over
the entire interaction length. Figure 6 also shows the
efficiency 2z % predicted from linear theory (see Sec.
II B); it is evident that nonlinear effects cause the
efficiency to fall below the linear prediction once the
efficiency exceeds about 10%. Other factors infiuencing
the startup of the growth are too small to show up on the
scale of Figs. 4—6. No extended region of either quadra-
tic or exponential growth is seen for this interaction. The
magnetic field profile found is shown in Fig. 7. In this
case a peak efficiency of 70.5% is found at a distance of
50.3 cm for a cold beam. The power flow to the two com-
peting modes is negligible in this case also.

The effect of a spread in axial velocity of the particles
is shown in Figs. 8 and 9. The saturated efficiency for
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FIG. 7. Nonlinear magnetic field taper for the example
shown in Fig. 6.

the TE» is plotted as a function of 5v, /U 0 in Fig. 8 for
the linearly tapered case. The efficiencies of the two com-
peting modes are negligible and not shown. The
efficiency drops from 57% to 40% as 5u, /u, o increase
from 0 to 15%. A slight adjustment of the tapered pa-
rameters is necessary at each fractional velocity spread to
maximize the efficiency. The effects of beam thermal
effects on efficiency for the nonlinear B-field taper are
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The number of such particles decreases rapidly with in-
crease in the axial momentum spread. For 5v, /v o) 1%,
the linearly tapered field gives higher efficiency than the
nonlinearly tapered case considered in this paper.
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FIG. 8. Saturated efficiency for fifth-harmonic power conver-
sion as a function of axial velocity spread for a linearly tapered
magnetic field. Parameters are as shown in figure.

shown in Fig. 9. In this case, the efficiency decreases
drastically with increase in the axial velocity spread. The
synchronous conditions apply to all particles in a cold
beam, but for a warm beam the conditions can be main-
tained only for a subset of the particles, which have been
arbitrarily selected to be particles with v, =v, o at z =0.
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FIG. 9. Saturated efficiency for fourth-, fifth-, and sixth-

harmonic power conversation as a function of axial velocity
spread for a nonlinearly tapered magnetic field. Parameters are
shown in figure.

V. CONCLUSIONS

A linear and nonlinear theory for the generation of
gyroharmonic radiation from spatiotemporally modulat-
ed beams in cylindrical waveguides has been presented.
Numerical results from the linear theory and particle
simulation code results from the nonlinear theory have
been given for fifth-harmonic generation of 94-GHz
power using a 150-keV, 6.7-A beam. The main results of
the theory can be summarized as follows:

(i) Power growth is absent from an axisymmetric beam
at the mth temporal harmonic of the beam rotation fre-
quency except for waveguide modes having an azimuthal
mode index m. This greatly reduces the threat of mode
competition at each harmonic, in contrast to the case
with rectangular waveguides [2], where many waveguide
modes can couple to the beam at each harmonic.

(ii) A beam with a uniform distribution of guiding
centers will have a linearized mth harmonic power
growth rate in the TE „mode no less than 90% that of a
beam having no guiding-center spread if the ratio of the
outer guiding-center radius Rb to the waveguide radius R
is less than 0.8944/s'„, where s'„, is the nth zero of
J' (s). For a fifth-harmonic device operating with a TE&&

mode this reduces to Rb /R & 0. 1394.
(iii) The diminution in linearized mth-harmonic power

growth due to a uniform distribution of electron axial
momentum will not be greater than 10% of the power
growth rate for a cold beam if the normalized momentum
spread is less than 48/1V%, where N is the number of in-
teraction guide wavelengths in the harmonic converter.

(iv) Power transfer from a cold beam to TM modes is
absent under matching conditions, in which the beam ax-
ial velocity is equal to the group velocity for the TM
mode. This results from an exact cancellation between
contributions from the axial and transverse field com-
ponents. For a beam with a small axial velocity spread,
nonlinear simulations have shown negligible power
transfer into TM modes as well. This fact diminishes fur-
ther the threat from mode competition beyond what is
stated in (i) above.

(v) Nonlinear particle simulations have shown that
nearly 90% of the initial transverse energy on a cold
beam can be converted to radiation at the fifth-harmonic
of the beam rotation frequency if a tapered B field that
preserves phase matching is used. Saturation is due to
complete depletion of the transverse momentum of the
electrons. For any other 8-field taper (including no
taper) saturation is due to particle slippage to a phase
where wave growth is zero or negative. The spent beam
is nearly monoenergetic, and the particles are all nearly
in phase with one another. This indicates that a single-
stage depressed collector could recover nearly all the re-
sidual beam energy, thus permitting the overall converter
electronic efficiency to approach 100%.

(vi) For a fifth-harmonic converter, nonlinear simula-
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tions have shown that conditions can be found where less
tan 2% (0.5%) of the beam energy is converted to fourth-
(sixth-) harmonic radiation. In addition, conditions can
be found where all harmonics below a designated har-
monic will be cut off, and thus cannot extract power from
the beam. These results suggests that mode competition
may not be a serious issue for converters designed in the
parameter range for the examples shown in this paper.

(vii) For a linear 8-field taper in a fifth-harmonic con-
verter, a perpendicular efficiency of 71% has been found;
this does not fall below 50% unless the relative axial ve-
locity spread exceeds 14%. For the resonant B-field
taper in a fifth-harmonic converter, a perpendicular
efficiency of 88% has been found; this falls to below 40%
for a relative axial velocity spread of greater than 1.0%.
However, the efficiency calculations with finite-velocity
spread were carried out for the same B-field profiles
found to optimize power growth for a cold beam. It
could be that a different taper would optimize power
growth for each value of velocity spread, but this specula-
tion has not been examined as yet.

In Ref. [13],a linear first order theory was derived for
power transfer into an output cavity from a beam spun
up at cyclotron resonance in short accelerator cavity.
That theory accounted for temporal modulation imparted
to the beam by the accelerator cavity fields in calculating
power flow to the output cavity at the harmonic of the
accelerator frequency. The power transfer was found to
be proportional to (aLIoK /R ), the same scaling found
here. [see Eq. (20).] However, spatial modulation on the
beam was not treated systematically, in an approximation
reminiscent of theories of the gyroklystron [26], where
spatial phase slip over a short output gap may not be
significant. In a related work [27] by some of same work-
ers as in [13],observations were made of eighth-harmonic
gain in a traveling-wave interaction between a similarly
spun-up beam and fields of a TE8& waveguide mode.
However, the data were compared with a second-order

theory invoking a dispersion relation that takes neither
spatial nor temporal initial beam modulations into ac-
count. No justifications for overlooking the possibility of
wave-number mismatch in the first work or the influence
of initial spatiotemporal modulations on the beam in the
second were given in these papers. We have thus con-
cluded that the linear and nonlinear analysis presented in
this paper could be important, not only for the design of
future experiments, but for helping to understand past
work as well.

Taken together, other results of this paper suggest that
practical devices can be contemplated for production of
millimeter wavelength radiation at power levels above
and wavelengths below those that can be reached with
conventional amplifiers or oscillators. The harmonic ra-
diation would be phase locked to the rf source that drives
the beam accelerator, but may exhibit only a small-
frequency tunability due to the highly resonant nature of
the process whereby power is transferred from the beam
to the radiation. The converter output structure is a
smooth-wall cylindrical waveguide, and the tapered mag-
netic field (for the 94-GHz example presented in this pa-
per) can be produced with noncryogenic coils surround-
ing the waveguide. The analysis presented here omits
any effects due to beam space charge, which could de-
grade the beam quality during the harmonic interaction
and thereby decrease the interaction efficiency below the
values found in this work. But if studies outside of the
scope of the work described here can show that beam
with sufFicient quality in the parameter range required
(150 keV, 7 A) can be produced, it could well be that a
new class of millimeter wave sources may be possible.
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