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Linear waves in relativistic anisotropic magnetohydrodynamics
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Linear waves are investigated in the framework of the relativistic anisotropic magnetohydrody-

namics in a fully invariant formulation. Dispersion relations are derived for the relativistic analog

of slow, intermediate, and fast waves in a plasma with an anisotropic stress tensor. Relativistic
Chew-Goldberger-Low dispersion relations are obtained also.

PACS number(s): 52.60.+h; 52.35.Bj; 52.55.Dy

I. INTRODUCTION

Properties of relativistic plasmas embedded in a strong
external magnetic field are of considerable interest pri-
marily because of possible applications in various astro-
physical objects, such as pulsar winds and relativistic
jets. The slow and large-space-scale motion of such plas-
mas is usually described within the framework of rela-
tivistic magnetohydrodynamics (MHD) [1,2] for a single
fiuid with isotropic pressure. However, in a number of
cases the pressure apparently is not isotropic, since strong
magnetic fields suppress energy exchange among paral-
lel and perpendicular degrees of freedom in collisionless
plasmas. In this case MHD should be generalized to in-
clude anisotropic pressure, in the spirit of the mell-known
Chew-Goldberger-Low (CGL) theory [3]. In some cases
the very validity of the MHD approach is questionable
[4]

MHD equations for a single relativistic fIuid with
anisotropic pressure were derived in [5] from the rela-
tivistic Vlasov equation in a manifestly invariant way.
In the present paper we analyze properties of linear
waves within the framework of the obtained relativistic
anisotropic magnetohydrodynamics (RAM). The paper's
organization is as follows. In Sec. II the RAM basic equa-
tions are given and their derivation method is described
briefiy. In Sec. III the RAM general dispersion relations
are derived. In Sec. IV various limits are considered.

II. BASIC EQUATIONS

We consider a collisionless plasma that is embedded
in the magnetic Field. Both plasma fiuid velocity and
temperature are assumed to be relativistic. Hereafter we
will use units where light velocity c = 1. Let U be
the plasma 4-velocity and F~P be the electromagnetic-
field tensor. The plasma rest-frame electric and magnetic
fields are defined as follows:

where e~P~6 is a completely antisymmetric tensor and
~0123 = 1

We apply the usual MHD frozen-in condition E—:0.
The RAM equations can be written in the following form

[51:
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*F ~ = B(n U~ —n~U~),

T P = WiU UP —W2g P —Wgn nP,

where B = Bn and n n = —1.
These expressions are quite general. The quantities

p, U, and T~L are related to the distribution function
f(u~). We assume that the magnetic field B is strong,
i.e. , AT )) 1, AL )) 1, where A = eB/M is the ion cy-
clotron frequency and T and L are typical temporal and
spatial scales of the plasma motion. Then in the zeroth-
order approximation f = fp(u~~, uz)e('lip)6(ll~8 —1),
where uo ——u U~, uII = u n~, and u u = uo —u~~—

uz ——1. (For convenience we also set M = 1, so that one
does not have to distinguish between u~ and p~ = Mu~. )
In this ease

the following form:

F ~ = (E U~ —E~U )+ e~~—(B~Us —BsU~), (3)2

Ba o;PP6U1
p p6i2 (2)
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so that the electromagnetic field tensor can be written in
(12)
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where p = (uo), s = (uo), p)) = (u))), p~ = (uz/2), snd
the averaging is defined as follows:

k U k n =k)), (23)

(X) =
)) g g o fo( )), g) ~ (13)

k k =s =~ kll (24)

The motion equations should be completed with the
corresponding state equations, which in this case take
the following form:

where, obviously u is the wave frequency in the plasma
rest frame and kll is the wave-vector component parallel
to the magnetic field in the plasma rest frame. With
these notations (17)—(19) take the following form:

s = pe(p, B) (14) cubp+ p(k bU ) = 0, (25)

2 Be
Bp

Bs
Blnp (15)

6B(k))Up —tdnp) + B((k b'n )Up —ldhnp)

Be
p& = P)) + pBBB

BE' BE'
+ —E'

Blnp BlnB (16)

+B(k))6U~ —(k b'U )nP) = 0, (26)

Wi(~6UP + UP(k 6U )) + ~6WiUP
These state equations represent anisotropic generaliza-

tion of the isotropic state equation p = p(p) and are more
general than the usual CGL state equations [3] p~ oc pB,
p)) oc p /B . It is of interest to note that the quantities

qz = (uou~/2) and q))
= (uou))) ("modified pressure, " ac-

cording to [6]) satisfy the CGL relations: q~/pB = const
and q))B /p = const.

kbW2 ——Ws((k 6n )nP + k))6nP) —6Wsk))ni = 0,
(27)

and since W~ = W~(p, B), one has

III. RAM DISPERSION RELATIONS

For linear wave analysis we introduce small pertur-
bations in the form B —+ B + bB, p ~ p + bp,
U~ ~ U + bU, n~ —+ n~ + bn~, and assume that
bB, bp, 6'U~, 6n~ oc exp(ik~x~). It should be noted, that
because of U U = j., n n = —1, one has the follow-
ing constraints: U bU~ = n bn = 0. Substituting in
(4)—(6) B/Bx ~ ik, one obtains equations for pertur-
bations in the following form:

cu(l bU ) k))Ws(l 6n ) = 0, (29)

and the corresponding dispersion relation for the RAM
analog of the intermediate wave reads

One can simplify Eqs. (25)—(27) with the help of mul-
tiplication by four independent vectors k, U, n
l =e» kpU~n, l U =l n =l k =0.

Multiplying (25)—(27) by l, one obtains

—(uB(l 6n ) + Bk))(l 6U ) = 0,

(17)
+ B'~4~

=k Ws/Wi =k (3o)

k.6'S"P = o, (18) Multiplying by three other vectors, we obtain

k))bB+B(kahn ) —41B(U~6n ) = 0, (31)

where

bJ = bpU + pbU (2o)

~6B+ k))B(n, bU ) + B(k b'U ) = 0

2~Wi(k 6U ) +u 6Wi —s 6Wq —2k))Ws(k b'n )

(32)

6'F P = 6B(n UP —nPU ) + B(bn UP —6nPU )
+B(n 6U~ —n~6U )', (21)

—6Wsk)) ——0, (33)

6T s = 6WiU UP + W, (6U U& + U 6UP)
—bn, g ~ —bW, n n~
—Ws(6n nP + n 6nP) .

Let us introduce the following notations:

(22)

Wl(k 6U ) + (u6Wi —u)6W~ —
k)) Ws(U bn ) = 0, (34)

cuWi(n b'U ) —k))bW2+ Ws(k bn ) + k))6Ws = 0,
(35)
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together with

p(k 6U ) = —u)6p. (36)

The consistency condition for this set gives the dis-
persion relation for RAM analogs of the slow and fast
magnetosonic waves in the following form:

(, „, aw, „, ~ r', a(w, —w,),a(w, —ws)~
~alnB ~~ ') q alnp ~~ Olnp

„2 ctw2 2
/' B(wq —W2) ) 2 B(W2 —Ws)

Bln p

&+ &~~

(38)

Let us introduce the wave phase velocity v = u /k2
and angle of propagation 6I with respect to the external
magnetic field in the plasma rest frame, sin 8 = k2&/k2,
cos 8 = kz~~/k, and total wave number k = u —s .
Then, introducing characteristic velocities as follows,

IV. VARIOUS LIMITS

2= 2= 2
V1 V2 = VA)

2 2
V3 = V~ . (47)

It is of interest to analyze various special cases of the
dispersion relations (42)—(43).

(i) In the case of the parallel propagation 8 = 0 and
one immediately has

Pz
8ln p

&+ &~~

(39)
Aperiodic instability occurs when p~~ )» + (B /47').

(ii) In the case of the perpendicular propagation 8 =
vr/2 one obtains

» &II+ (B /47r)

s+» ~ (Bz/4vr) ' (4o)

PJ ~ PJ
BlnB ' Blnp + 4'

+pJ + 4
(41)

we write eventually the dispersion relation for the fast
and slow waves in the following form:

2= 2
'U1 = V~)

2 2
V2 —VA)

2
v3 ——0. (48)

(B2/4vr) —
p() cos2 8

~ + Bz/47t (49)

The instability criterion is the same as above.
(iii) In the case of the perpendicularly cold plasma» = 0 one finds s = pe(p/B) and vq ——0, and it is

easy to obtain

v —v C ((v, + v~) cos 8 + v~ sin 8)

+ cos 8(v, (v~ cos 8 + v~ sin 8)
—v,'(1 —v„') sin'8) = O, (42)

(B2/4~) —
p((

s + B2/4vr

vs = v8 cos 8.2 2 2

(5o)

while the dispersion relation for the Alfven (intermedi-
ate) wave looks as follows:

v =v~cos 8.2= 2 2 (43)

In the isotropic pressure limit, p~~
= p~ ——p and

Bz/0lnB = 0. The corresponding dispersion relations
take the following form:

Aperiodic instability occurs when p~~ ) B /4vr.
(iv) In the case of the zero parallel temperature p~~

= 0
and s = pe(B), so that one has

+»+4 ~»+4 +r 4 z ( B' &»
4vr ( 4vr ln B

V = 'UA COS 8)2= 2 2 (44) —» sin 8cos 8 = 0, (52)

B'/4vr
c+p+ B2/4 (46)

v —v (vz+ v, —vzv, sin 8) + vzv, cos 8 = 0, (45)

where now

and one of the roots is always negative. Thus, plasma
with zero parallel temperature is always unstable.

(v) Chew-Goldberger-Law state equations read
p~~~Bz/p =const and p~Bjp =const. This form of pres-
sure implies the following functional form for the specific
energy e:

In the nonrelativistic limit v, vA, v„vq, v~ &( 1,
p~~, », B /4vr (( e —p, and the well-known MHD dis-
persion relations are immediately rederived.

p'
~ = p I

1+4, + k2B
I ~ (53)
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where ki and kq are constants. In this case s = p+p]]/2+
PJ op]]/~ in p 3p[[ ~Pl /~in p = pJ ~PJ /~In B =
—p~, Bp~~/ct ln B = —2@~[, and it easy to obtain

which coincides with the well-known nonrelativistic CGL
dispersion relation [8].

3&ll
V~ p+ S i + 3p((/2

' (54) V. CONCLUSIONS

2
VA

Pl
p+ pi + 3u((/2

'

pi —pii+ (B /47r)

p + 2@~ + pii/2+ (B2/4vr) '

(55)

(56)

2p~ + Bz/4vr

p+ 2p~ + p~~/2+ (B2/4m)
' (57)

The nonrelativistic limit is achieved when
p~, p~~, B /4z (( s = p. In this case it is convenient
to introduce typical nonrelativistic notation:

&II
II P

2 PLVg= )
P

BQ2
4mp

(58)

where v~~ and v~ are the parallel and perpendicular ther-
mal velocities, respectively.

The resulting dispersion relation is

v —v [(VA + 2vi) + (2vii —vi) cos 8]

We have derived the analog for the MHD waves disper-
sion relations in a relativistic anisotropic plasma. The ob-
tained dispersion relations are reduced to the well-known
nonrelativistic relations in the isotropic case and in the
case of the relativistic CGL functional form.

The applications of the obtained RAM dispersion re-
lations are primarily to astrophysical systems with rela-
tivistic plasmas. One such system is relativistic electron-
positron pulsar wind. It is widely believed that in the
inner zone the plasma in this wind is perpendicularly
cold, p~ = 0, and the magnetic pressure dominates,
B /4vr )) p~~. If the wind is spherically symmetric [8],
then p oc B oc 1/r in the close zone where the poloidal
field dominates, or p oc B oc 1/r in the far zone where
the toroidal field dominates. In any case p/B =const
and B —+ 0 as the distance r —+ oo. Therefore, if the
relativistic CGL holds,

p~~ (p'l ('

&B'r E~(p/B)r ~Br

+ cos 8[3v~~(VA + 2v~) —v~]

+ [3v)( + v~ (3v(( —vg) cos 8] = 0, (59)

and becomes large at large distances. According to (50)
the wind becomes unstable. The developing fire-hose in-
stability should result in effective pressure isotropy.

[1] F. Hoffman and E. Teller, Phys. Rev. 80, 692 (1950).
[2] A. Lichnerowitz, Relativistic Hydrodynamics and Magne

tohydrodynamics (Benjamin, New York, 1967).
[3] G. Chew, M. Goldberger, and F. Low, Proc. R. Soc. Lon-

don, Ser. A 286, 1204 (1954).
[4] C.F. Kennel, M.E. Gedalin, and J.G. Lominadze, in

Plasma Astrophysics, edited by T.D. Guyenne (European

Space Agency, Paris, 1988), p. 137.
[5 M. Gedalin, Phys. Fluids B 8, 1871 (1991).
[6 E.G. Tsikarishvili, J.G. Lominadze, A.D. Rogava, and I.I.

Javakhishvili, Phys. Rev. A 46, 1078 (1992).
7 T.F. Volkov, Rev. Plasma Phys. 4, 3 (1966).

[8 C.F. Kennel, F.S. Fujimura, and I. Okamoto, Geophys.
Astrophys. Fluid Dyn. 26, 147 (1983).


