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Nonlinear radiative-condensation instability and pattern formation: One-dimensional dynamics
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Nonlinear evolution of the radiative-condensation instability is investigated in the intermediate-
wavelength limit, when the growth rate is Inaximal. The dynamics of a confined plasma is considered.
This paper treats the planar geometry. Nonlinear reduced equations are derived for the instability,
which account for the nonlocal feedback resulting from mass conservation and the finite size of the sys-
tem. For a bistable heating-cooling function, it is shown that, in contrast to a number of previous studies
where the isobaricity condition was employed, one-dimensional coherent patterns (spatial coexistence of
two locally stable thermal equilibria, cool and hot) persist for a very long time.
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I. INTRODUCTION

Radiative condensations are generic phenomena intrin-
sic in optically thin plasmas subject to radiative cooling.
They are often encountered in astrophysical, solar, and
laboratory plasmas. Interstellar [1] and intergalactic [2]
clouds, solar prominences [3], "marfes" in tokamaks [4],
and many types of radiative contractions in laboratory
gas discharges [5] represent relatively cool and dense
plasma structures (patterns) which are surrounded by hot
and rarefied plasmas and which strongly radiate. Alter-
natively, "bubbles" of hot and rarefied plasmas surround-
ed by cool and dense plasmas are frequently discussed in
different astrophysical applications. Besides their astro-
physical or applications-oriented interest, the coherent,
strongly nonlinear patterns, forming from some "natu-
ral" initial conditions, represent an interesting example of
self-organization in extended nonequilibrium media and
deserve attention.

The radiative-condensation instability (RCI) has long
been invoked as a mechanism for the formation of radia-
tive condensations in various applications [6—8], and it
has been extensively studied, analytically and numerical-
ly, starting from the pioneering work by Field [6]. The
physics of the RCI is quite simple. Consider a uniform,
optically thin plasma and assume that some external
heating (for simplicity, uniform and constant in time) is
balanced by radiative cooling. Suppose there is a local in-
crease in the plasma density. Since the radiative cooling
rate grows with the density, the temperature in this re-
gion starts to fall. In order to maintain constant pres-
sure, plasma inQow starts, further increasing the density,
and so on. If the perturbation size is too small, the per-
turbation is erased by heat conduction. Otherwise, the
instability continues until a new equilibrium is reached.

The linear theory of the RCI has been developed quite
adequately [6]. As for nonlinear analyses, they have been
done numerically in many works, in the framework of full
systems of nonlinear fiuid dynamic (or magneto-

hydrodynamic) and thermal balance equations, one or
two dimensional. The numerical simulations show that
the instability is usually strong in the sense that it is not
stabilized by weak nonlinearities, and the final state (often
in the form of patterns) is very different from the initial
one.

Simultaneously, attempts have been made to treat the
nonlinear RCI analytically, and a number of sets of re-
duced nonlinear equations for the RCI were derived for
different limiting cases. These models have provided a
helpful physical insight into the nature of the instability.
In a number of cases, informative analytical solutions
have been obtained. Also, the reduced equations are
much easier for numerical solution and subsequent inter-
pretation. Finally, they have helped to find important
similarities between the nonlinear RCI and other self-
organization mechanisms.

The progress in analytical treatment is based on the ex-
plicit use of different time scales (and corresponding spa.-
tial scales) entering the problem. In the simplest case of
an unmagnetized plasma with no external fields, these are
the acoustic, radiative, and heat-conduction time scales.
In the long-wavelength limit, the radiative time scale is
the shortest, while the heat conduction is negligible.
Then it appears that under certain conditions the RCI
can be described by the Quid-dynamic equations with an
"effective" pressure ensuring a "negative compressibility"
of the gas over some range of densities [7,9,10]. If this
range of densities is very large, one can formally extend
the negative compressibility over the whole range of den-
sities. In this case, the unstable gas flow was shown to
develop, over a finite time internal, localized singularities
[9], which can be interpreted as (a) very dense and cold
states, and (b) very rarefied and hot states. These solu-
tions were obtained in a planar geometry. In a three-
dimensional (3D) geometry, the problem appears to be
similar to the problem of the nonlinear gravitational in-
stability, studied in many works (see [10] and references
therein), and so the formation of fiattened plasma con-
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densations ("thermal pancakes") in the strongly nonlinear
stage of the RCI was predicted [9]. Problems involving
the alternating-sign compressibility and effects of heat
conduction and viscosity in the long-wavelength limit of
the RCI have been considered recently [11].

Most of the work on the RCI has been done, however,
in the intermediate- and short-wavelength limits, when
the acoustic time scale is the shortest one, the two limits
differing in the role of heat conduction. In the
intermediate-wavelength limit, the heat conduction is
insignificant, at least in the beginning. This limit was
considered by Sasorov [12] in a 3D geometry. Assuming
isobaricity and choosing a model heating-cooling func-
tion with only one, unstable equilibrium, he showed that
the formation of thermal pancakes, earlier predicted in
the long-wavelength limit [9), persists in the
intermediate-wavelength limit as well [12].

In the short-wavelength limit of the RCI, the heat con-
duction is important from the very beginning. The first
consistent approach in this limit was taken, in a planar
geometry, by Doroshkevich and Zel'dovich [13], al-
though they considered the dynamics of a radiatively
cooling conductive plasma without heating (that is, not in
thermal equilibrium). Employing the isobaricity condi-
tion and transforming to the Lagrangian variables, they
reduced the governing equations to a generalized
reaction-diffusion equation (GRDE) for the plasma tem-
perature. This equation was used to study the evolution
of the interface between hot and cold gases (see also Ref.
[14]). Doroshkevich and Zel'dovich studied different re-
gimes of the interplay between the cooling and heat con-
duction and found different types of traveling tempera-
ture fronts, depending on the form of the cooling func-
tion. A similar planar GRDE in Lagrangian coordinates
was derived by Meerson [15], who employed it in both
the intermediate- and short-wavelength limits of the RCI.
First, he used this equation to analyze the instability dy-
namics, starting from a small-amplitude, intermediate-
wavelength perturbation around an unstable equilibrium.
He showed that the first, radiative stage of the dynamics
is completely determined by the form of the isobaric
heating-cooling function and initial conditions. For the
case of a bistable heating-cooling function (i.e., one with
two stable thermal equilibria, adjacent to the unstable
one), strong plasma stratification develops, and then heat
conduction starts to act. Also, in the short-wavelength
limit, a family of steady-state solutions in the form of
standing nonlinear periodic temperature waves was found
[15]; however, these solutions prove to be unstable for
both periodic and no-flux boundary conditions. In the
following, we shall limit ourselves to the case of the bist-
able heating-cooling function, frequently employed when
studying the dynamics of the interstellar and intergalactic
media. However, the set of reduced equations that we
derive (see below) is valid for an arbitrary heating-cooling
function.

Since reaction-diffusion equations of various forms
have also arisen in numerous other contexts, a number of
mathematically similar results were obtained in this field
independently by many workers (see, e.g., [16—18] and
references therein).

The problem of the long-time evolution of the strong
planar plasma stratification, found in the intermediate-
wavelength limit, was addressed in Ref. [19]. The same
GRDE with periodic boundary conditions for the plasma
temperature was used, and it was found that on a longer,
heat-conduction-determined time scale, only one of the
two locally stable thermal equilibria generally survives,
the other one being a metastable state. Transition to the
final uniform state occurs in the form of interaction be-
tween traveling temperature fronts which preserve their
identity until collision" and "annihilation. " For a spe-
cial value of the pressure, an individual temperature front
is standing rather than moving [14,15,19]. In this case,
the phase coexistence lasts for an exponentially long time
and breaks down only because of the exponentially weak
interaction between the neighboring fronts [20]. Howe&-
er, realization of this special case is highly unlikely in any
natural isobaric environment.

Recently, the same one-dimensional GRDE has been
used in the short-wavelength limit of the isobaric RCI
[21]. It has been found numerically that, similar to the
intermediate-wavelength limit, only one of the two stable
uniform states finally survives for the no-flux boundary
conditions.

The reason for this "uniformization" instability is su-
periority of the zero wave-number mode k=O in the
GRDE. Having the maximum growth rate, this mode
normally wins the mode competition. The uniformiza-
tion does not occur if prescribed temperatures and densi-
ties at the boundaries rather than the no-flux or periodic
boundary conditions are specified. Such boundary condi-
tions are frequently employed, for example, in the
analysis of solar coronal plasma loops, bounded by much
denser chromospheric plasma [22]. The prescribed
boundary temperatures can eliminate the pattern-
destroying k=O mode and thus make steady patterns
possible. However, in a number of one-dimensional nu-
merical simulations employing the complete fluid dynam-
ics and thermal balance equations, the no-flux boundary
conditions were applied, and the formation of long-living
coherent patterns was clearly observed [23]. Analyzing
these simulations, one can see that the steady-state pat-
terns do belong to the intermediate- or short-wavelength
limit since their sizes are much less than the acoustic
Field length c,r„, so that the plasma pressure can be as-
sumed uniform (c, is the acoustic velocity, r„ is the
characteristic radiative cooling time). However, the pres-
sure can vary in time. Therefore, the following question
arises: Is there a universal mechanism that would enable
the unstable plasma to adjust its floating" pressure prop-
erly and support long-living steady-state patterns, whose
typical sizes are determined solely by the local plasma pa-
rameters and external heating rate? In a qualitative
analysis of a similar system, McKee and Begelman [24]
suggested that the answer to this question can be positive.
In this paper we find the conditions for this suggestion to
be correct in a one-dimensional system, and we develop a
quantitative theory for the formation of long-lived pat-
terns via the RCI. We consider a thermally bistable plas-
ma, confined in a finite region of space by external forces
(such as those produced by the average gravitational field
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of stars in the Galaxy or, alternatively, sufriciently strong
magnetic field, providing confinement of laboratory plas-
mas), and derive a set of reduced nonlinear equations for
this system. This paper employs a planar geometry. We
shall use the reduced equations to show that the non-
linear RCI develops coherent patterns which persist for a
very long time. A subsequent paper will treat the two-
and three-dimensional dynamics, where qualitatively new
effects appear.

The present paper is organized in the following way.
Section II contains the derivation of the 1D reduced
equations for the nonlinear RCI. In Secs. III and IV we
employ the reduced equations to analyze the radiative
and conductive stages of the RCI, respectively. The re-
duced equations are solved numerically in Sec. V. Sec-
tion VI contains a brief summary and discussion of the
results.

II. REDUCED EQUATIONS

Let us consider a planar How of an optically thin, ideal
plasma of mass density p, temperature T, and velocity v,
which is heated by some external agent and cooled radia-
tively. We are interested in the intermediate- and short-
wavelength limits (the corresponding criteria are present-
ed below), when the plasma pressure p is close to uni-
form. In this case the governing equations can be written
in the following way [12,15]:

intermediate- and short-wavelength asymptotics of the
general expression for the linear growth rate, found by
Field [6]. It is seen from Eq. (5), that the radiative con-
densation mode is aperiodic, and the necessary condition
for the instability is [6]
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Thermal conduction always has a stabilizing effect, eras-
ing perturbations with wavelengths shorter than some
threshold one.

Being interested in the nonlinear evolution, we shall
somewhat simplify the set (1)—(4). First, we assume that
the temperature dependence of the heat conductivity is
powerlike: K (T)=KoT, so that the cases of electron-
dominated ( a =

—,
'

) and neutral-dominated ( a =
—,
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)

thermal conductivity can be accounted for properly. In-
stead of the plasma density, we introduce the specific
volume u(x, t)=p '(x, t) and eliminate the temperature
T(x, t), using the equation of state (4). Now the heating-
cooling function X(p, T) =X[u ', (p/R)pu] depends on
u and p. Introducing scaled variables u =u/uo and
P=P/Po, we define the dimensionless heating-cooling
function A.E ( u, P ):
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where the parameters uo and po and the coefficient Xo
are chosen in such a way that the function A,E(u,p) eval-
uated, for example, at u =1 and p =1, is equal to unity.
Following Begelman and McKee [28], we define the con-
ductive Field length 6z. In our notation,

(y —1)Kopou o+

y&o

Rp= pT
p

(4)

(y —1)p
rR

ar
a To

po aX —~ok
To apo

(5)

where ao =K ( To ) /po is the (unperturbed) thermal
diffusivity. Of course, Eq. (5) coincides with the

where dldt=a/at+ua/ax is the total time derivative,
X is the heating-cooling function (the difference between
the rate of radiative cooling and the rate of heating per
unit mass), K =K ( T) is the thermal conductivity, y is the
specific heat ratio, p is the effective molar mass of the
plasma, and R is the gas constant. The form of the func-
tion X(p, T) is determined by specific mechanisms of
heating and cooling (see, e.g., Refs. [1,25 —27] for the in-
terstellar medium, quasar gas, solar corona, and tokamak
plasma, respectively).

The simplest equilibria of the set (1)—(4) are
p=po=const, T= To=const, v =0, and X(po, To)=0.
Linearizing Eqs. (1)—(4) around such an equilibrium, and
looking for solutions in the form of exp(nt+ikx), we ob-
tain

au av au=Q v
at ax ax

(9)

p av a au+ +RE(u,p) —p u =0,
rp ax E ax ax

(10)

where p —=dp/dt and the carets are omitted. Equations
(9) and (10) must be supplemented by boundary condi-
tions. The case of isobaricity p =const corresponds to a
prescribed, constant value of the pressure, necessarily the
same at both boundaries. In this case Eqs. (9) and (10)
reduce to those employed in Ref. [15]. Instead, we shall
consider here a confined plasma and model this situation
by putting the plasma in a one-dimensional "box" of fixed
length L, so that the plasma velocity vanishes at both

5F shows the magnitude of the thermal conduction on the
radiation time scale. Intermediate wavelengths are much
longer than 5~ (however, much shorter than the acoustic
Field length; see above), while short wavelengths are
comparable to or smaller than 6F.

Now we can introduce the remaining scaled variables:
x =x/5~, t =Rot, and u =u/(5FXo), and rewrite Eqs. (1)
and (2) in the following form:
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boundaries. From this immediately follows mass conser-
vation:

~BQ, Q m
U(m, t)= f dm'= —f u dm' .

o Bt Bt o
(16)

L dx =M=const .
o u (x, t)

It is natural to prescribe the no-Aux boundary conditions
for the density (or, equivalently, temperature), which lead
to Bu /Bx =0 at x =0 and x =L. Then, integrating Eq.
(10) over x from 0 to L, we arrive at the following rela-
tion:

p 1= ——f dx Az(u, p),
yp I. o

(12)

which represents the evolution equation for the pressure
and makes the set of reduced Eqs. (9), (10), and (12)
closed. Equation (12) is very similar to the "global" pres-
sure equation used by Begelman and McKee [28] for a
qualitative analysis of the global effects of thermal con-
duction on "two-phase" media. Essentially, Eq. (12) cor-
responds to a particular limit of Begelman and McKee's
analysis. They call this limit "isochoric" in the sense that
"the mass is effectively contained within a fixed volume"
[28]. We adopt a similar model of a confined two-phase
plasma, but would rather call this limit "isochoric on the
average. " It should not be confused with the truly iso-
choric limit of thermal instability [6,29], which does not
involve plasma motions and requires both the isochoric
criterion (M,z /(3T) „&0 and the strong inequality
k «(c, r„) . If the second condition is not satisfied, so
that the characteristic wavelengths of the initial pertur-
bation become comparable to the acoustic Field length,
the isochoric criterion is irrelevant and plasma motions
are important. Furthermore, if k »(c,r„) ', the insta-
bility develops as the RCI rather than the isochoric
mode. We shall assume throughout the paper that the
uniform thermal equilibria described by the heating-
cooling function A,z(u, p) are isochorically stable.

Equations (9), (10), and (12) are also valid in the case of
periodic boundary conditions, which makes them appli-
cable for a 1D analysis of the RCI in tokamaks.

The reduced equations look simpler in Lagrangian
coordinates. Introduce the (scaled) Lagrangian mass
coordinate

(19)

The reduced set of equations (9), (10), and (12) in the
Eulerian coordinates or, alternatively, Eqs. (14) and (15)
in the Lagrangian coordinates, are valid for any heating-
cooling function. We shall concentrate in this paper on
important case of a bistable heating-cooling function,
widely employed when analyzing the interstellar and in-
tergalactic gas dynamics [6—8, 14,24,25,28]. For a fixed p,
the bistable heating-cooling function A,(u,p) (where
means either A,t or A,z) has an "unstable" root u„(p), sur-
rounded by two "stable" roots u, (p) & u„(p) and
u2(p) & u„(p); see Fig. 1 (here stability or instability refers
to the case of a zero heat conductivity). The signs of the
derivatives Bui(p)/Bp, Bu„(p)/Bp, and Buz(p)/Bp can be
established in the general case. Let us calculate
Bu (p)/Bp under the constraint A(u, p) =const. We have

Bu (p) (aX/ap)„
(aX/au),

(20)

We have assumed that the uniform equilibria are isochori-
cally stable: (M/BT)„&0 for u =ui, u„, and u2. Using

Finally, the relationship between Eulerian and Lagrang-
ian coordinates, necessary for a transformation to Euleri-
an coordinates x and t, is given by

x(m, t)= t™u(m', t)dm' . (17)
0

The mass conservation integral (11) looks trivial in the
Lagrangian coordinates: M=const. On the other hand,
the constancy of the "box" length, I.=const, while trivi-
al in the Eulerian coordinates, looks "nontrivial" in the
Lagrangian coordinates:

Mf u (m, t)dm =L =const . (18)
0

For p =const = 1 (the "physical" pressure p =p o ), Eq.
(14) reduces to the GRDE [13,15]:

dx
m =

o u(x, t)
(13)

Then, transferring from variables x and t to the new vari-
ables m and t in Eqs. (9), (10), and (12), we arrive at the
following two coupled equations:
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where A, L (u,p)=uk, z(u, p), with the boundary conditions
au /Bm =0 at m =0 and m =M.

Having found u (m, t) and p (t) from Eqs. (14) and (15),
we can determine the plasma velocity

FICx. 1. A sketch of the bistable heating-cooling function
A,(u,p), calculated at a fixed uniform pressure. The root u„ is
unstable with respect to the RCI, while the roots u l and u2 are
stable.
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the equation of state (4), we see that the derivative
(M, /Bp)„, entering Eq. (20), is equal to u (M, /c}T)„.
Therefore, it is always non-negative, and we have
(Bu (p)/Bp)&&0 for the isobarically stable equilibria u&

and u2, and (Bu (p)/Bp )&
~ 0 for the isobarically unstable

equilibrium u„.

III. RADIATIVE STAGE

u =XI (u,p) —1
up

re@(u,u)
up

(22)

It follows from Eq. (21) that the specific volume remains
unchanged: u (t) =uo. Then, assuming u, (p) & up & u2(p)
and using the inequality [Bu„(p)/Bp]&~0, we see from
Eq. (22) that the gas pressure approaches the value p„
such that u„(p„)=uo. In other words, at the radiative

Let us assume that the initial condition u (m, O) be-
longs to the intermediate-wavelength range and, as a first
step, neglect conductivity. Let us compare the dynamics
of the system (14) and (15) with those described by
GRDE, Eq. (19). In the case of GRDE, if we start with
an intermediate-wavelength perturbation u (m, O) around
the unstable root u„=const so that u (m, O) —u„ is of an
alternating sign, the system will segregate, on a time scale
of the order of unity (i.e., in several radiative cooling
times in the dimensional variables), into regions occupied
by the two stable phases with the specific volumes
u, =const and u2 =const [15] (we shall call them phase 1

and 2, respectively). (Note that in this and subsequent
order of magn-itu-de estimates we assume for convenience
that neither of the roots u &, u„, and u 2 nor their
differences are very large or small compared to unity, so
that they do not introduce any additional time scales.
This assumption can be obviously incorrect in applica-
tions, where thermal phases have temperatures and densi-
ties differing by two or more orders of magnitude [1—3].
In every such case the estimates should be worked out
separately. Also, if the initial Auctuations of u around
the unstable equilibrium are very small, the segregation
time will obviously increase. )

In the framework of the GRDE, the stage of segrega-
tion, which we call radiative stage, is described by a sim-
ple implicit analytic solution [15] in the Lagrangian coor-
dinates, which can be immediately obtained upon neglect
of the conduction term in Eq. (19}. The positions of the
interphase boundaries, or fronts, in the Lagrangian coor-
dinates coincide with the points where u (m, O) =u„, and
the fronts develop a zero thickness as t~ 00. When the
conduction is taken into account, the front width be-
comes of the order of 5~ [19].

System (14) and (15) is more complicated than the sin-
gle partial differential equation (19), and even for zero
conduction no analytic solution is generally possible.
However, for a uniform initial condition u (m, 0)=uo, the
analytic solution is simple and quite instructive. In this
case, Eqs. (14) and (15) reduce to

stage of the RCI the pressure adjusts itself so that an ar-
bitrary uniform initial condition u p such that
u, (p) & uo & u 2(p) becomes an equilibrium. However,
this uniform equilibrium is unstable with respect to
nonuniform perturbations, which must lead to segrega-
tion. One can therefore assume that any nonuniform ini-
tial condition in Eqs. (14) and (15) with conduction
neglected will also lead to segregation. In this sense, the
segregation properties of the system (14) and (15) must be
stronger than those of Eq. (19). Indeed, initial conditions
such that u (m, O) —uo is less than zero (or, alternatively,
larger than zero) everywhere do not cause segregation in
GRDE [Eq. (19)], the whole system approaching the
stable uniform state u =u, (correspondingly u = u 2 ). In
contrast, neither of the uniform phases 1 and 2 is general-
ly accessible in the system, described by Eqs. (14) and
(15}, because either of them would contradict integral
(18). Instead, the pressure will have to change in such a
way as to produce an alternating sign of the difference
u (m, t) —uo(p) and therefore cause segregation.

Figure 2 gives a typical example of the radiative segre-
gation, obtained by numerical solution of Eqs. (14) and
(15} without the conduction term. In this example (and
in other numerical simulations; see below) we chose the
bistable heating-cooling function A,l (u, p) in the form of a
cubic polynomial with respect to u:

A(u, p)= [u —u, (p)][u —u„(p)][u —u2(p)] . (23)

The results presented in Fig. 2 were obtained for
u, (p)=0.5/p, u„(p) =p, and u2(p) =2/p. It is seen that
a sharp front develops, the position of which does not
coincide with the point where u (m, O) =u„. Instead, the
front position is determined now by both the initial con-
dition and integral (18). For example, in the case of a sin-
gle front, developing from a monotonic initial profile
u (m, 0), the front position m/ is determined by the fol-
lowing relation:

u2M —L

u2 u)
or m&=

I.—u)M
u2 u)

(24)

depending on whether the function u (m, O) is increasing
or decreasing with m, respectively. In the Eulerian coor-
dinates, the corresponding front positions in these two
cases are x&=u, m& and x&=u2m&, respectively. Note
that the resulting specific volumes of the phases 1 and 2,
entering Eq. (24), are determined by the final value of the
plasma pressure. For the calculations presented in Fig. 2
we chose M =50 and the initial conditions p (0)= 1.0 and
u (m, 0)= 1.05+0.4 cos(n m /M), so that the system
length is L =52. 5. The second relation in Eq. (24)
correctly predicts the position of the developing front in
the Lagrangian coordinates m&=22. 5. In the Eulerian
coordinates it corresponds to x&=40.2. In the case of
two fronts, integral (18) predicts the distance between
them.

We conclude this section by saying that in the first, ra-
diative stage of the RCI, the thermally unstable plasma
generally segregates into "cool drops" of phase 2 sur-
rounded by the "hot gas" of phase 1 (or, alternatively,
into "hot bubbles" of phase 1 surrounded by the "cool
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FIG. 2. An example of segregation, developing at the radiative stage of the RCI of a confined plasma. Equations (14) and (15)
without the conduction term have been solved numerically for the bistable heating-cooling function XL (u,p) from Eq. (23). Parame-
ters are the following: u

&

=0.5/p, u 2
=2/p, u„=p, and M =50. Shown are (a) initial conditions, u ( m, 0)= 1.05

+0.4 cos(~m /M) and p (0)= 1.0; (b) —(d) subsequent evolution of u (m, t) and p (t) for scaled times t =4, 8, and 12, respectively.

fiuid" of phase 2). The slower conductive stage of the in-
stability determines the final state of the system (evapora-
tion of phase 2, condensation of phase 1, or their pro-
longed coexistence?) and requires a proper account of the
heat conduction.

IV. CONDUCTIVE STAGE

We assume throughout this section that the size of the
system is very large compared to the conductive Field
length, that is, L »1 in the scaled equations. Also, in
the intermediate-wavelength limit, the front width, which
is of the order of 5~ in "physical" units (and of the order
of unity in the scaled variables; see below), is very small
compared to the typical distance between the fronts. Fi-
nally, in a long system, a typical front is located very far
from the system's boundaries. Then, until an exponen-
tially large time (see Sec. VI), the form of the fronts and
their dynamics can be investigated ignoring exponentially
weak interactions between the fronts and the boundary
effects. Therefore, an "elementary" object of the conduc-
tive stage is a slowly evolving single front, standing or
moving. Our immediate aim is to exploit the strong in-

~ dQ0
dx dx

=p AE(u, p), (2&)

which should be solved, in view of what is mentioned
above, for each front under the following approximate
boundary conditions: u (x = —~ ) = u

& (p), u (x = + ~ )

=uz(p), and du/dx=0 at both —~ and + ~. When
this solution is found, the alternative solution, for which
u (x = —~ )=uz(p) and u (x =+ ao )=u&(p), is obtained
simply by putting —x instead of x.

Multiplying Eq. (25) by u du ldx, integrating it once,

equality L »1 and consider the statics and dynamics of
the single front.

Let us return to Eqs. (9), (10), and (12) in Eulerian
coordinates. (All the results in this section can be ob-
tained in Lagrangian coordinates as well. However, we
prefer to employ the Eulerian coordinates at this stage,
since some of the following equations will also be used in
the two- and three-dimensional cases, where Lagrangian
coordinates become less convenient. ) Let us look for an
equilibrium 8/Bt = v =0. We arrive at the following
equation:
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and using the boundary conditions, we obtain
2

1 du =u p f u Az(up)du
u1(P)

under condition
u&(p)f u kz(u, p)du =0 .

u&(p)
(27)

2u„(p)=ui(p)+uz(p) . (28)

We assume that such a value of p is unique and denote it
by p ~, so that we can replace p by p, in the equilibrium
relation (26). Now we obtain from Eq. (26) the equilibri-
um solution in the following form:

1/2
p g

I

x +const=
2

tl Q dQ

f P~E(k p. )dk

(29)

Generally, Eq. (27) can be satisfied only for some discrete
values ofp. For example, if Az(u, p) has the form of a cu-
bic polynomial (23) and a=0, the values of p are the
roots of the equation

. du ~ GQ
+AE(u&p~ )+p(u)bp —p u =0 . (31)

The term (yp, ) '(dip/dt) is of the next order of small-
ness (see below) and has therefore been neglected. Also,
because of the smallness of j, we can replace du/dg in
the first term of Eq. (31) by its equilibrium value from Eq.
(26). At this stage, we notice that using the quantity j is
not very convenient, since, for a fixed front, the sign of j
depends on our choice of the direction of the coordinate
axis (or, alternatively, for a fixed coordinate axis, on the
sign of du /dg). Instead, we can introduce the projection
j„=j n of the Aux vector j onto the unit vector n, normal
to the front and directed, for concreteness, from phase 1

to phase 2. In the planar case, which we are working
with now, such a definition makes the subsequent equa-
tions independent of the sign of du/dg, which is quite
convenient. Also, this definition becomes very con-
venient in the two- and three-dimensional cases, as will be
seen in the subsequent paper [30].

Multiplying Eq. (31) by u du /dg, integrating it over g
from —~ to + ~ and using the single-front boundary
conditions and Eq. (27), we arrive at the following linear
relation between j„and the small pressure mismatch Ap:

The equilibrium solution can be conveniently found in
the particular case of the heating-cooling function (23)
and a =0:

j.= —g ~p»

where

(32)

AE(u&p) =RE(u p~ )+&p(u)Ap & (30)

where p(u)=M. E(u,p)/Bp calculated at p =p . We are
looking for the traveling-wave solutions of Eqs. (9) and
(10): u (x, t)=u (g) and u(x, t)=u(g), where g=x ct, c-
is the front velocity. Equation (9) yields u(g) =c+ju (g),
where j=const is the fIux of material through the front
in the reference frame where the front is at rest. We sub-
stitute this relation and Eq. (30) into Eq. (10) and obtain

u 1 +Q2 Q2
u, (x)= + tanh (x +const)

2 2 2+2p „
where u 1 and u 2 should be evaluated at p =p, from Eq.
(28).

In the context of RCI, criterion (27) appeared in Refs.
[14,15,19,20] and it represents the condition for a single
front being standing rather than moving, thus making
possible a prolonged two-phase coexistence. An
equivalent criterion in the Lagrangian coordinates is ob-
tained from Eq. (27) by replacing A,z by A,~/u. Equation
(27) has also been encountered in the theory and
numerous applications of the reaction diffusion -equation,
where it is called "the area rule" (see [16—18] and refer-
ences therein). In a natural isobaric system, realization of
the special case described by the area rule is highly un-
likely. On the contrary, we can assume that in confined
plasrnas with a "Aoating" pressure, the pressure can ap-
proach this special value p ~ and make long-lived patterns
possible. To verify this assumption, we shall consider
first the slow motion of a single front, arising when the
plasma pressure is close but not equal to the equilibrium
pressure p, : p=p, +bp, where ~bp &&p, . Using the
latter strong inequality, we can write

Qp

p, i t u p(u)du
1

2f ii A, (i),p )di)
1/2

dQ

(33)

v 1n
—c~ gQ 1 AP, v2n

—cn gQ 2' (34)

for phase 1 and 2, respectively.
The g factor in Eq. (33) can be calculated conveniently

if we use the cubic polynomial (23) for A.z and consider
the case e =0. The result is the following:

1 duu
g = — 2u'2 dp

GQ1

dp

Q2

GP
(35)

which should be evaluated at p =p ~ .
Now we shall use Eq. (32) to obtain the evolution equa-

tion for the pressure in the case of ~hp ~
&&p„. The pres-

sure is changing because of the global dynamics of the
system (global feedback); therefore we shall now consider
the whole system, which pressure is already close to the
equilibrium one

~ hp ~
&&p ~ and the mass transfer be-

tween neighboring regions occupied by phases 1 and 2
proceeds according to the local relation (32). Neglecting
the front widths, we can write down the conditions of
constancy of the system length and total mass:

L1 +L2 =L M1 +M2 (36)

Equation (32) implies that the fiux of material from, say,
phase 1 into phase 2 is the same for every front, as long
as the fronts are sufticiently far from each other and from
the boundaries. Defining the normal plasma velocity
components in phases 1 and 2 and the normal component
of the front velocity c in the same way as before, we have
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where indices 1 and 2 correspond to the regions of phases
1 and 2, respectively. If N is the total number of fronts,
then the net mass rate of "evaporation" is dMz fdt =j„N,
while the net mass rate of "condensation" is
dMi /dt = —j„X. Recalling that L, (t) =M, ( t)u, (t) and
Lz(t) =Mz(t)uz(t), using relations (32) and (36) and not-
icing that du, z /dt = (Bu, z /Bp)„(dp /dt), we arrive at
the fol lowing evolution equation for the pressure:

dp
dt

g(uz —u, ) (u &(p —p, )

Bu Bu z(L & (u —(u &) +((u &
—u, )

Bp Bp

(37)

where ( L &
=L /X is the average size of the spot occu-

pied by any of the phases, while ( u & =L /M =const is
determined by the initial condition u (x, O):

( u
1 ~ dx
L o u (x,O)

(38)

Generally, u, z depend on p. In this case Bu, z /Bp has
been shown previously to be negative [see Eq. (20)]. The
expressions g, u z

—( u &, and ( u &
—u, are all positive.

Therefore, Eq. (37) predicts relaxation of the pressure to
the equilibrium value p ~p, . [Note that there is a de-
generate case, in which both u, and u z are independent
of the pressure, so that the right-hand side of Eq. (37)
goes formally to infinity and the pressure relaxation time
to zero. Actually, Eq. (37) is inapplicable in this case,
and the relaxation time is of the order of the radiative
time; see later. ]

Equation (37) is valid in the Lagrangian coordinates as
well. One should only use the s™pierelation between A,L
and A,z . A,L

=u kz, when calculating the g factor from Eq.
(33).

In deriving Eq. (37), we assumed that the number of
fronts N is constant . In the beginning of the conductive
stage, this assumption is generally not correct, and fast
motions, "collisions" and "annihilations" of the fronts,
occur (similar to the case of the GRDE [19]),so that irre-
gularities in the pressure dynamics can be expected.
However, towards the end of the conductive stage, when
Ap is already sufficiently small, the front motion de-
eelerates significantl and the assumption of a constant
becomes true as well, which makes the final pressure re-
laxation to p, monotonic. Moreover, at this stage the
quantities u „uz, Bu, /Bp—and Bu z /Bp, entering Eq. (37),
should be evaluated at p =p, ~ As a result, the final pres-
sure relaxation, described by Eq. (37), is always exponen-
tial in time: hp ~ exp [ t /( C (L & ) ], wh—ere the constant
C is determined from Eq. (37). If neither large nor small
factors are introduced by the roots of heating-cooling
function, the constant C is of the order of unity, so that
the (scaled) e-fold time of the pressure relaxation is of the
order of (L &, which is the large parameter of the theory.

Since the average distance between the fronts (L
proves to be an important characteristic of the dynamics,
a few words seem to be in order on how to determine it.
In simple cases, (L & is determined by the form of the
Fourier spectrum of the initial perturbations. For exam-
ple, if the Fourier spectrum has a pronounced maximum

at some wavelength (belonging to the intermediate-
wavelength limit), this wavelength will normally define
( L & . An extreme limit would be a monochromatic ini-
tial perturbation, like in Fig. 2, when (L & is simply equal
to a half of the perturbation wavelength. Qn the con-
trary, if the initial perturbation spectrum has the form of
a broadband noise with no preferential wave number, an
a priori determination of ( L & is difficult, and numerical
solution of the reduced equations (9), (10), and (12) [or, al-
ternatively, ( 14) and ( 15)] is required (see below).

So far, we have described the two-stage evolution of a
thermally bistable, confined plasma and been able to
show analytically (though for small pressure mismatches
only) that the mass conservation and length constancy of
the system do provide a universal mechanism of pattern
formation: the plasma pressure approaches the special
value p„for which the fronts stop and the patterns exist
for a very long time. However, since the analytical
theory is unable to describe the "violent" part of the con-
ductive stage, when the pressure mismatches are still
large, and fast front motions, collisions, and annihilations
occur, we performed numerical simulations of the
system 's dynamics .

V. NUMERICAL SIMULATIONS

For the numerical simulations we employed the bist-
able heating-cooling function from Eq. (23) and solved
numerically both the Eulerian equations (9), ( 10), and
( 12), and the Lagrangian equations (14) and ( 1 5).

For the Eulerian simulations we put n =0 and y =
3

and chose
A + ( u, p) from Eq. (23) with two sets of equili-

bria u, , u „,and u z . The first set exemplified the nonde-
generate case, when al 1 the equilibria are p dependent.
The second set corresponded to the degenerate case,
when u „depended on p, but u

&
and u z were constant.

The boundary conditions were the same as above:
Bu /Bx =0 at x =0 and L,. The initial velocity was always
taken to be zero.

For the first set of equilibria, we took u i
= 1 /( 2p ),

u„=p, and u z
=2/p. In this case, the correct order of

the equilibria, u, & u „&u z, is provided at
I /&2 (p (&2, while the equilibrium pressure found
from Eq. (28) is p, =&5 /2. The initial condition for the
specific volume u (x,0) had the form of a very small-
amplitude broad-band noise with a zero average around
some constant value ( u &, which belonged to the interval
[u i (p ), uz (p ) ] for the initial value of the pressure p (0).
Note that the chosen initial condition included both
intermediate- and short-wavelength Fourier components.

%'e performed a number of simulations, varying the
system length and the initial conditions for the specific
volume and pressure. A typical example of the nonlinear
dynamics of the RCI is shown in Fig. 3, where the profile
of the specific volume of the plasma is presented at four
successive moments in time: 16, 30, 40, and 300, and in
Fig. 4, where the pressure evolution is shown, starting
from the initial values ( u & =0.8 and p (0)= 1.0. The
(sealed) total length of the system L was taken to be 150.
The (scaled) total mass of the gas was therefore

o 8 187 5 It is seen that in the beginning the pres-
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FIG. 3. Development of steady-state patterns in the process
of nonlinear RCI (nondegenerate case). Shown is the spatial
profile of the specific volume u(x, t), found by the numerical
solution of Eqs. (9), (10), and (12), vs time. The heating-cooling
function A,E( u, p) is taken from Eq. (23) with u

&

=0.5/p,
Qp= p~ Qg —p,=2/, u„=p parameter +=0 and y=5/3. The initial con-
dition for u (x, t) represents broadband noise with a very small
amplitude around 0.8; the initial velocity is zero, the initial pres-
sure is 1.0. The evolution is shown in four successive (scaled)
time moments: 16 (short dashes), 30 (medium dashes), 40 (long
and short dashes), and 300 (solid line).

sure rapidly "jumps down" to ( u ) =0.8. In other words,
the initial condition for the specific volume becomes a
small perturbation around an unstable equilibrium, as
predicted by the "uniform" equations (21}and (22). Then
the linear stage of the RCI starts. The perturbations wit
t short wavelengths are strongly damped in agreementoo

~ 0

3with Eq. (5), so that they are already absent in Fig.
(Noteworthy in this stage is the U-shaped valley around
t =15 in Fig. 4. It is explained by the fact that pressure
variations vanish in the linear theory with respect to u
and v, and appear only in the second order in the pertur-
bation amplitudes. ) After that the instability develops
nonlinearly causing segregation (around t =30},while the

plasma pressure rapidly grows. Since the initial perturba-
tion amplitudes are very small in this example, the radia-
tive stage takes a somewhat longer time. After a tran-
sient process, a steady coherent pattern forms, which
consists of a lower-density, higher-temperature bubble,
surrounded by two higher-density, lower-temperature
drops. The equilibrium phase boundaries represent two
symmetric fronts, described in the beginning of Sec. IV.
The pattern reaches its steady state around t =80—ILOO.

The distance between the fronts coincides with that pre-
dicted by the length and mass conservation (the total
mass was preserved by our numerical scheme up to the
sixth digit after the decimal point). The plasma pressure
finally relaxes monotonically to a value very close to
p =+5/2= 1.12, as predicted by the theory. For larger
scaled times (up to t =300) the profile of u and the plas-
ma pressure do not show any change. We compared the
final stage of the pressure relaxation, found numerica y,11

with that predicted by Eq. (37). To this end, we calculat-
ed the coefficients entering Eq. (37) for the chosen
A,L(u, iu), evaluating them at p=p, =&5/2. Equation
(35) for the g factor gives g=2&2. The only quantity
that cannot be found analytically is the final number of
fronts; therefore we took it from the numerical results:
N=2, which gives (L ) =—",'=75. Substituting all the
coefficients into Eq. (37), we obtain
dp/dt= —0.057(p —p, ), so that the theoretical predic-
tion of the relaxation rate is 0.057. Figure 5 shows, on a
logarithmic scale, the final stage of the pressure relaxa-
tion found numeri". ally, and its linear approximation. It
is seen that the relaxation is indeed exponential, starting
from t =50. The relaxation rate found numerically is ap-
proximately 0.058, so that the theory predicts the relaxa-
tion rate with a very good accuracy.

For the second set of equilibria (degenerate case) we
used u„=p and different constant values of u, and uz.
Figures 6 and 7 show an example of the dynamics of the
RCI for u

&
=0.5 and uz =2.0. This time we started with

t =0 to show the initial condition for the specific volume:

0.0

-5.0

1.10

1.00
CL

-10.0

0.90
-15.0

50.0 150.0
t

250.0

0.80
0.0 50.0 100.0 150.0

FIG. 4. Plasma pressure vs time corresponding to Fig. 3.

FIG. 5. Final pressure relaxation corresponding to Fig. 4.
Shown are the natural 1ogarithm of Q (where Q is the absolute
value of the difference between the pressure and its equilibrium
value p+ =&5/2) vs time and its linear approximation.
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proportional to the temperature) and chose the heating-
cooling function A, L ( u, p ) from Eq. (23) (that is, a
heating-cooling function diferent from that in the previ-
ous example). We performed simulations with different
sets of equilibria and different initial conditions. W'e do
not present these results here because they closely resem-
ble those shown in Figs. 3 —7. We always observed for-
mation of long-lived patterns, accompanied by pressure
relaxation to the special value determined by the "area
rule" for a single front.

.5— !~g. l g

20 30 40 50
VI. SUMMARY AND DISCUSSION

FIG. 6. Development of steady-state patterns in the process
of nonlinear RCI (degenerate case) ~ Shown is the spatial profile
of the specific volume u (x, t), found by the numerical solution
of Eqs. (9), (10), and (12), vs time. The heating-cooling function
A,E(u,p) is taken from Eq. (23) with ul =0.5, u&=2. 0, u„=p;
parameter a=0 and y=5/3. The initial condition for u(x, t)
represents a small-amplitude broadband noise around 1.05. The
initial pressure is 1.05; the initial velocity is zero. The evolution
is shown in three successive (scaled) moments of time: 0 (dotted
line), 10 (short dashes), and 200 (solid line).

1.3

0 50
! J

100 150 200

FIG. 7. Plasma pressure vs time corresponding to Fig. 6.

a small-amplitude broadband noise around the unstable
equilibrium u„[p (0)]. The results are very similar to
those found in the nonde generate case: damping of
short-wavelength perturbations, radiative segregation,
and development of a long-lived steady pattern due to re-
laxation of the pressure to the special value p, [in this
case p „=( u

&
+ u 2 ) /2 = 1.25 ]. Again, the distance be-

tween the fronts is determined by the length and mass
conservations. However, there is an important difference
in the final pressure relaxation dynamics. It is seen from
Figs. 6 and 7 that the relaxation time in this case is of the
order of the radiatiUe time. Also noteworthy in Fig. 7 is
the pronounced "overshoot" before the final pressure re-
laxation. This overshoot was seen in every numerical run
with constant u, and uz, and it was normally absent in
nondegenerate cases.

For the numerical solution of the Lagrangian equations
(14) and (15), we took a= 1 (a model thermal diff'usivity,

We have considered the nonlinear dynamics of the ra-
diative condensation instability in a planar geometry. We
have found a universal mechanism, by which long-lived
coherent patterns develop in the process of the instabili-
ty. This mechanism is provided by a global feedback in
the instability dynamics, resulting from the mass conser-
vation and constancy of the system length, which are nat-
ural for plasmas confined by external forces. The global
feedback makes a thermally bistable plasma relax to a
strongly nonuniform equilibrium, representing coex-
istence of the two phases: cool and dense, and hot and
rarefied. This coherent two-phase equilibrium becomes
possible because the plasma pressure approaches the spe-
cial value for which individual fronts separating the
phases become standing rather than moving. Numerica 1

simulations strongly support and even reinforce our
theoretical predictions, eliminating the limitation of small
pressure mismatches used in the theory.

In the nondegenerate case, when all the equilibria are
pressure dependent, the dynamics of the confined,
thermally bistable plasma consists of two main stages.
During the first radiative stage, the duration of which is
determined by the radiative cooling time (and is the order
of 10 in our scaled examples), the plasma segregates into
two thermal phases with sharp boundaries (fronts) be-
tween them. The plasma pressure varies significantly
during this stage. The mass ratio of the two phases, the
number and location of homogeneous spots in each of
them, and the gas pressure at the end of the radiative
stage depend on the initial conditions. Then the much
slower conductive stage starts, when the phase interfaces
(fronts) move with velocities of the order of 5~No (which
is unity in the scaled equations). Some of the fronts can
collide and annihilate, leading to irregular pressure dy-
namics. At the end of the conductive stage, the fronts
steadily decelerate and finally stop, with p approaching

exponentially. This implies development of a long-p e
~ ~

Alived stratification or pattern formation via the RCI.
t ical duration of the second phase is of the order of theypica
average distance between the fronts, divided by the typi-
cal front speed. In the scaled units, the duration is of the
order of (l. ), which is the large parameter of the theory.
It is important that, for a given heating-cooling function,
the equilibrium ratio of masses of the two phases, which
sets in at the end of the conductive stage, depends only
on the total plasma mass and the system length. The
equilibrium plasma pressure, developing towards the end
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of the conductive stage, is determined by the "area rule"
and depends only on the form of the heating-cooling
function.

In the previous isobaric studies of the nonlinear RCI
long-lived nonuniform equilibria were found only when
the special value of the plasma pressure was prescribed
by the boundary conditions, which is very unlikely. Be-
sides, if the pressure of an isobaric system slightly devi-
ates from the special value, a slow front motion will start.
The front speed will be only linearly small with the pres-
sure deviation, so that the characteristic time for the ero-
sion of patterns in the isobaric case will be inversely pro-
portional to the pressure deviation (and directly propor-
tional to the large parameter (L ) [19]). In contrast, in a
confined plasma with a "Aoating" pressure, the lifetime of
the patterns is exponentially large with respect to the
large parameter (L ), no matter what the initial pressure
LS.

An interesting question concerns the final, third stage
of the development of the RCI, when the weak interfront
interaction and boundary effects become important. The
question is of academic interest for sufficiently large sys-
tems (such as many interstellar clouds). However, for
smaller systems (closer to the short-wavelength limit),
this stage can become attainable. The present work has
not addressed this question, but we can make some sim-
ple predictions, which have to be elaborated in the future.
First, because of the mass conservation, no complete
"uniformization" is possible at the third, "superlong"
stage, in contrast to the isobaric case, considered recently
[20]. Therefore, some (at least elementary) pattern struc-
ture must exist "forever. " On the other hand, a family of
exact equilibrium solutions of Eq. (25) in an unbounded
medium exists, which represent nonlinear periodic stand-
ing temperature (and density) waves [15]. Solutions, con-
sisting of an integer number of "segments" of such tem-
perature waves and satisfying the no-Aux boundary con-

ditions, can always be constructed, unless the system is
too short. These solutions provide all possible candidates
for the final state, and one can assume that the "simplest"
of them, containing only one front, will generally be
stable and, therefore, realizable as t~ ~. The expected
(scaled) duration of the third stage must be of the order
of exp', which is exponentially large with respect to the
ratio of the system length to the conductive Field length,
the large parameter of the theory.

As has been noted earlier, we assumed that the roots
u „u„,and u2 of the heating-cooling function do not in-
troduce large or small parameters into the theory. In
many applications this assumption can be violated. For
example, if u2 ))u„, the electron heat conduction (which
grows with the temperature like T ~

) can become impor-
tant before the full phase segregation develops. Such
cases should be analyzed separately within the framework
of the reduced equations.

In the two- or three-dimensional case, the conductive
stage becomes more complex, as a new factor, the front
curvature, affects the dynamics. This and related prob-
lems will be treated in a subsequent paper [30].
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