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We study interfacial fluctuations in a Ginzburg-Landau model for ternary oil-water-surfactant
mixtures by Monte Carlo simulations. Space has to be discretized in order to apply the Monte
Carlo method. However, by an appropriate choice of the lattice constant of the background lat-
tice, discretization effects can be largely avoided. Strong fluctuation effects on the phase diagram
are observed, which can be explained by a fluctuation-induced lowering of the oil-water interfacial
tension. We determine several quantities, which characterize the structure of the microemulsion,
such as the internal interfacial area and the Euler characteristic. The microemulsion phase is shown
to have a disordered bicontinuous structure. In the lamellar phase, we observe an increase of the
interfacial area with increasing separation of the monolayers. A quantitative comparison with the
predictions of the effective curvature model of Helfrich [J. Phys. (Paris) 46, 1263 (1985)] yields
excellent agreement, when an exponential distance dependence of the interfacial tension is taken

into account.
PACS number(s): 82.70.—y, 61.20.Gy, 05.40.+j

I. INTRODUCTION

The reduction of the interfacial tension between oil and
water by a small amount of amphiphile is responsible
for a large number of interesting phenomena in ternary
amphiphilic systems [1]. For medium- and long-chain
amphiphiles, phases with a large amount of internal oil-
water interface are possible. Two phases are of particu-
lar importance in balanced systems: the lamellar phase, a
one-dimensional stack of oil and water films, separated by
amphiphilic monolayers, and the microemulsion, a ran-
dom array of monolayers separating two intertwined net-
works of oil and water channels [2, 3]. Due to the low or
vanishing interfacial tensions, fluctuations of the mono-
layers are controled by the bending energy in these sys-
tems [4]. The fluctuations lead to an entropic repulsion of
the monolayers [5], and thus to a swelling of the lamellar
phase. For small bending rigidity, fluctuations destroy
the lamellar order and stabilize the microemulsion [6].

In this paper we want to study these fluctuation ef-
fects in a Ginzburg-Landau theory of ternary amphiphilic
mixtures. We have studied interface fluctuations in this
model by the Gaussian approximation in the first paper
of this series [7]. However, this approximation works best
for small fluctuations, a condition which is not necessar-
ily satisfied in a system with small interfacial tensions.
Thus, we use Monte Carlo simulations in this work, a
method well suited for systems with large fluctuations.
Monte Carlo simulations have already been used to study
various lattice models [8] of ternary amphiphilic systems
[9-12]. The advantage of the Ginzburg-Landau model is
that it is defined in the continuum. In a computer sim-
ulation, it is of course necessary to discretize space, but
now the lattice constant a has no physical meaning. By
choosing a sufficiently small value for a, lattice effects can
be largely avoided in the simulations [13]. This is very
important for all properties where the scale invariance of
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the curvature energy is relevant.

The continuum Ginzburg-Landau model, as well as its
discretized version, are introduced in Sec. II. We show for
an exactly soluble case that the correlation functions cal-
culated by the Monte Carlo method for the discretized
model agree quite well with the continuum correlation
functions. In Sec. ITI, we determine the effect of fluctua-
tions on the phase diagram. We find that the fluctuations
stabilize the lamellar phase and the microemulsion. The
structure of the microemulsion is studied in Sec. IV. Here,
Monte Carlo simulations give a much more detailed pic-
ture of the microemulsion phase than all other methods.
In particular, we can study the topology of this phase
by calculating its Euler characteristic. The fluctuations
in the lamellar phase are investigated in Sec. V. We fo-
cus our attention on the change of the interfacial area
with the lamellar spacing. For a quantitative compari-
son with the predictions of Helfrich’s curvature model,
a distance-dependent interfacial tension [7, 14] has to be
taken into account. We are then able to show that our
Ginzburg-Landau results are consistent with the loga-
rithmic increase of the interfacial area with increasing
distance between interfaces as predicted by Helfrich [15].

II. GINZBURG-LANDAU MODEL

Our analysis is based on the free-energy functional [16]
F{®} = / B [c(A®)? +g(@)(VE)? + £(D) — @]

e

for a scalar order-parameter field ®(r), which is propor-
tional to the local difference of the oil and water con-
centrations. Here, u is the chemical potential difference
between oil and water. The amphiphile degrees of free-
dom are considered as being integrated out in this ap-
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proach [17]. The properties of the amphiphile and its
concentration enter the theory via the form of the func-
tions f and g, as well as the magnitude of the constant
c. In the absence of amphiphilic molecules, f(®) has two
minima at ® = &, and & = ®,,, which describe the oil
and water phases, and g(®) is a positive constant. When
amphiphile is added to the system, a third minimum of
f appears at ® = 0, which describes the homogeneous
microemulsion phase. Simultaneously, a minimum of g
develops at ® = 0. For strong amphiphiles g(®) becomes
negative in the microemulsion phase; this leads to a scat-
tering peak at nonzero wave vector ¢ as observed in many
neutron-scattering experiments [18].

We expand f and g in a power series in ®, so that we
arrive at a Ginzburg-Landau theory with

F(@) =w(® — ®,)%(®% + fo)(® — ®w)?,

(2)
9(®) =go + g29? .

In this paper we choose

g2 =4v/1+ fo—go+0.01, (3)

which ensures that the correlation function in the oil-rich
and the water-rich phases decays monotonically.

We will focus here on systems with oil-water symme-
try, so that —®, = ®,, = Ppuk = 1, and ¢ = 0. The
other parameters are taken to be ¢ = 1 and w = 1.
Phase diagrams are then calculated in the parameters fo
(measuring the deviation from oil-water-microemulsion
coexistence) and go (proportional to the chain length of
the amphiphile [19]). The mean-field phase diagram [20]
(which is obtained by minimizing the free-energy func-
tional F) for this model is shown in Fig. 1. In addition
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FIG. 1. Mean-field phase diagram of the Ginzburg-
Landau model (1). Full lines are first-order transitions,
dashed lines are second-order transitions. In the microemul-
sion phase, the Lifshitz line (LL), where the scattering in-
tensity loses its peak at ¢ > 0, and the disorder line (DOL),
where the oscillations in the correlation function vanish, are
indicated by dotted lines. The transition from oil-water co-
existence to the lamellar phase is indistinguishable from the
o = 0 line of a free oil-water interface, obtained from approx-
imation (A6).
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to the three homogeneous phases, oil, water, and mi-
croemulsion, a lamellar phase appears at large enough
negative go.

A. Discretized Ginzburg-Landau model

A Monte Carlo simulation of the continuum model is
not possible. We therefore have to discretize space. This
is done by introducing a cubic N x N x N lattice (lattice
constant a) with periodic boundary conditions. However,
the order parameter itself is kept as a continuous variable,
which can take any real value. A Monte Carlo step then
consists of an attempt to update the order parameter on
each lattice site in sequence by a random increment in the
interval [—s, s]. The maximal increment s is chosen such
that about 50% of the updating attempts are accepted.

The potential term f(®) remains unchanged by the
discretization. The gradient term becomes

/ Br 9(8)(VE)? — 3 g(2[0(r:) + B(x;)])
(4,3)
y (@(ri) —@(rj))z, @

a

where (i, j) denotes the sum over pairs of nearest neigh-
bors. Finally, the Laplacian term takes the form

/ Br c(AD)?

. CZ (zs: &(r; +ex) — 2<I;(2r,-) + ®(r; — ek)>2

1 k=1

(5)

where the e, are the three basic lattice vectors.

The lattice constant a is an additional parameter in the
discretized model. We want to choose the lattice constant
such that (i) @ is (much) smaller than all other character-
istic length scales, in particular the correlation lengths in
the bulk phases and the width of the oil-water interface,
in order to minimize lattice effects; (ii) the overall system
size Na is (much) larger than the correlation lengths of
the bulk phases, in order to avoid finite-size effects. Ob-
viously these requirements are contradictory and require
some compromise for given lattice size N. However, we
will see in Sec. II B that we are able to satisfy both con-
ditions with reasonable lattice sizes.

B. Simulation of the Gaussian Model

A special case of our model is the Gaussian model,
originally studied by Teubner and Strey [18] to describe
the scattering behavior of microemulsions. In this case
we have f(®) = w®? and g(®) = go =const. This model
can be solved exactly, both in the continuum and on the
lattice. It therefore serves as a test of the importance
of lattice and finite-size effects, and for the statistical
accuracy of the Monte Carlo data.

The correlation function in the Fourier space of the
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continuum system is given exactly by

(G(9) ™ =w+gog® +cq* . (6)
For the lattice system, we have

(G(@) ™" =w+9Q(a)* +cQ(a)* (7)
where

Q(q)? = ;1}2- [6 — 2cos (gza) — 2 cos (gya) — 2cos (qza)] .
(8)

To compare with the simulation results, we need the cor-
relation function in real space,

G(r) =) €9"G(q), (9)
q

where the sum is over all reciprocal-lattice vectors. With
(7), it is also possible to calculate the energy density,

(Fio)) _ 1
\% 2a3 "

The results for the correlation function G(r) in three
different directions of high symmetry in the cubic lat-
tice are shown in Fig. 2 for lattice constant a = 0.8 and
N = 27. It can be seen that the agreement between
the different directions is very good until the correlation
functions begin to be affected by the periodic boundary
conditions. Furthermore, the data also agree with the
continuum correlation function very well. Thus, we are
confident that with this choice of parameters lattice ef-
fects are small.

(10)

III. PHASE DIAGRAM OF TERNARY
AMPHIPHILIC SYSTEMS

We now want to determine the phase diagram of the
model (1), (2) for ternary amphiphilic mixtures. For the
calculation of thermal averages, we usually take averages
over 25000 to 150 000 Monte Carlo steps per site (MCS),
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0.1 . .
O vm A +++ 948 e X X = x r
10 20 ° 30 *

FIG. 2. Correlation function G(r) = (®(0)®(r)) of the
Gaussian model on the lattice for go = —1.9, ¢ = w = 1 with
a = 0.8, N = 27, the values used for most simulations. Data
are plotted for three directions of high symmetry in the cubic
lattice. The solid line is the correlation function G(r) for the
infinite continuum system.

4303

with the longer runs in the vicinity of the phase transi-
tions. The Monte Carlo phase diagram is shown in Fig. 3.
The phase transition between the microemulsion and the
lamellar phase is found to be very weakly first order (see
Sec. ITII C for details), so that its location could be deter-
mined easily. The transitions from oil-water coexistence
to both the microemulsion and the lamellar phase, how-
ever, are strongly first order; in this case, hysteresis ef-
fects make a precise determination of the transition line
difficult. We have located the transitions by determin-
ing the limits of metastability of oil-rich, water-rich, and
microemulsion phases.

A. Renormalization of the interfacial tension

A comparison of the Monte Carlo and the mean-field
phase diagrams, Figs. 1 and 3, shows that the region of
stability of the microemulsion increases due to the fluc-
tuations, both towards the oil-water coexistence and the
lamellar phase. Also the lamellar phase extends into re-
gions where the oil-rich or water-rich phases are stable
in mean-field theory. Thus, we find that the fluctuations
stabilize phases with an extensive amount of internal in-
terface, as expected.

We can understand the shift of the transition lines by
studying the renormalization of the interfacial tension
due to the fluctuations. The transition from oil-water
coexistence to a phase with internal interfaces should oc-
cur in close vicinity to the line where the renormalized
tension vanishes. For small displacements u(x) from a
flat reference state, we use the effective curvature Hamil-
tonian [4, 21]

Heure {1} = / &z {oo[l + 3(Vu)?] + 1x(Au)?}.  (11)
The renormalized tension is the free energy per unit area,

_ 1 N2 “chrv{u} 12
g = —_(Na)2 In [A /DU e ’ ( )

where X is a constant which makes the argument of the
logarithm dimensionless. With the quadratic approxima-
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FIG. 3. Phase diagram as obtained from the Monte Carlo
simulations. Error bars denote regions where metastable

phases occur; see discussion in the text. The dashed line

indicates a weakly first-order transition.
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tion (11) this is again a Gaussian functional integral. A
simple calculation in Fourier space yields

Nal

OR = 09 — In —m——.
zq: V200q% + 2kg4

This expression is evaluated by summing over the
reciprocal-lattice vectors of a two-dimensional N x N
square lattice. The result obviously depends on the value
of the parameter A [22]. A has the dimension of an in-
verse volume. We obtain the best agreement with the
Monte Carlo results when we take A to be of order a™3.
The resulting renormalized interfacial tension is shown
in Fig. 4(a). The line cr = 0 reproduces the shape of
the line of phase transition to oil-water coexistence quite
well.

Similarly, the phase transition from the microemulsion
to the lamellar phase can be understood by studying the
bending rigidity  of the interfaces. In this case, renor-
malization effects [23,15] are not important, because they
only change k by an additive constant. The bending
rigidity x, calculated within the mean-field approxima-
tion (see Appendix A), is shown in Fig. 4(b). The line
x = 2.5 describes the shape of the transition line reason-
ably well [24]. This behavior agrees with results obtained
from the curvature model [4], where the transition is ex-
pected to occur when the persistence length £k is of the

(13)

FIG. 4. (a) Contour plot of the interfacial tension of a free
oil-water interface. Dashed lines are the mean-field results,
solid lines give the interfacial free energy with capillary-wave
contributions included. Here, the parameter A = (0.45)73 is
used in (12). (b) Contour plot of the bending rigidity of the
oil-water interface in mean-field approximation; details of the
calculation are given in Appendix A.
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order of the lamellar spacing [6]. Since £k ~ exp(ck),
with a constant ¢ of order 1, this is equivalent to a tran-
sition at constant bending rigidity .

B. The phase-transition microemulsion—oil-water

We now want to study the transition from the mi-
croemulsion to oil-water coexistence in more detail. In
Figs. 5(a) and 5(b), we present data as a function of fo,
for gg = —1.5. In all figures the existence of metastable
states is clearly visible. The internal energy U = (F) and
the specific heat C = (F2) — (F)? are shown in Fig. 5(a).
The internal energy U increases roughly linearly with fo
in the microemulsion phase, as expected from the form
of the potential f(®), and is roughly constant in the oil
or water phase. The specific heat shows a strong peak
in the metastable region, which is an indication for the
position of the first-order transition.

More interesting in the context of amphiphilic systems
is the area of internal interfaces, as well as the magnitude
of the order-parameter fluctuations, shown in Fig. 5(b).
Since ® is proportional to the concentration difference
of oil and water, we define the internal interface as the

-—-o
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FIG. 5. Phase transition from microemulsion to oil-water
coexistence at go = —1.5. (a) Internal energy and specific
heat, (b) internal area and order-parameter variation, and
(c) order-parameter distribution function (not normalized).
Dashed lines indicate the width of the metastable region.
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®(r) = 0 surface. A few details about the calculation of
the internal area in the simulations are given in Appendix
B. In the oil and water phases, the internal area van-
ishes (or is extremely small), whereas the internal area in-
creases rapidly in the microemulsion phase with decreas-
ing fo. The fluctuations of the order parameter, (®2),
and the order-parameter distribution shown in Fig. 5(c),
give additional information about the structure of the
microemulsion: in the vicinity of the phase transition,
the order-parameter distribution in the microemulsion
becomes very broad, indicating that the system contains
large oil-rich and water-rich regions.

C. The phase-transition
microemulsion—lamellar phase

Data for the transition from the microemulsion to
the lamellar phase are shown in Figs. 6(a) and 6(b) for
go = —2.5, again as a function of f;. The behavior of
all thermal averages shown in these figures indicates that
this transition is very weakly first order, while it was
found to be second order in the mean-field approxima-

(a)
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© order parameter
distribution
5]
0 \\S
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FIG. 6. Phase transition from microemulsion to the lamel-
lar phase at go = —2.5. (a) Internal energy and specific heat,
(b) internal area, order-parameter variation, and Euler char-
acteristic, an (c) order-parameter distribution function (not
normalized).

4305

tion. Hysteresis effects have not been observed. The
transition to a lamellar phase is indeed expected to be
fluctuation-induced first order [25]. However, we want
to emphasize that in our simulation the periodicity of
the lamellar phase is restricted by the periodic boundary
conditions and the fixed system size to take a small num-
ber of discrete values. The order of the transition could
be different when the periodicity of the lamellar phase is
allowed to vary continuously.

The energy again increases approximately linearly in
the microemulsion, and is roughly independent of fy in
the lamellar phase, see Fig. 6(a). The peak in the spe-
cific heat signals the position of the phase transition.
The fluctuations of the order parameter, (®2), increase
strongly on the microemulsion side of the transition, as
shown in Fig. 5(b) and Fig. 6(b). Simultanously, the
area decreases; see Fig. 6(b). The behavior of the inter-
nal area in the lamellar phase will be studied in more
detail in Sec. V. The topology of the microemulsion can
be characterized by the Euler characteristic xg [26]. We
calculate this topological invariant by using a lattice for-
mulation [27], in which plaquettes between lattice sites
with different order-parameter signs are interpreted as
pieces of internal interface. The Euler characteristic is
strongly negative in the microemulsion; this indicates a
phase with multiply connected oil and water channels,
as expected for a bicontinuous structure. As the transi-
tion is approached, xg decreases in magnitude, i.e., the
characteristic length scale of the bicontinuous structure
increases.

D. The phase-transition lamellar phase—oil-water

The phase transition from oil-water coexistence to the
lamellar phase is a first-order transition in the mean-
field approximation. When fluctuations are taken into
account, a continuous unbinding transition is expected to
occur, if the fluctuations are dominated by the bending
energy and the interactions are sufficiently short ranged
[28]. Both conditions are fulfilled in our system. How-
ever, such a continuous unbinding transition cannot be
observed in our simulations, due to the restriction to a
discrete number of layers, as discussed in Sec. III C above.

We find that lamellar states on the oil-water side of
the transition, where the interfacial tension is positive,
are extremely long lived. Therefore, in the phase dia-
gram, Fig. 3, we have plotted the line were the homoge-
neous water phase becomes unstable with respect to the
lamellar phase in very long runs (typically 10° MCS).
A better determination of the transition line requires a
considerably larger effort.

IV. MICROEMULSION STRUCTURE

From the results presented in Sec. III, it can already
be seen that the simulations yield structural information
on the microemulsion phase going considerably beyond
what can be extracted from the mean-field and Ornstein-
Zernike approximations. The most interesting part of the
phase diagram is certainly the region near four-phase co-
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existence, where the microemulsion is characterized by
large order-parameter fluctuations, which we interpret
as coherent oil and water regions, which are separated
by amphiphilic monolayers. In the region fo < 0, on the
other hand, where the microemulsion is stable in mean-
field theory, the fluctuations are much smaller, as is the
typical length scale of homogeneous regions. Therefore,

FIG. 7. Typical equilibrium configurations in the mi-
croemulsion in the vicinity of the transition to the lamellar
phase at (a) go = —2.5, fo = 0.675 and (b) go = —2.5, fo =
0.695. Shown are only the ®(r) = 0 surfaces. It can be seen
that (b) is closer to the transition line, and shows already a
local lamellar structure.
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we focus our attention on fy > 0 and go < 0. Typical
configurations of the microemulsion phase are shown in
Fig. 7. A cut through this structure strongly resembles
the pictures of microemulsion structure obtained experi-
mentally by freeze-fracture microscopy [29].

A. Structure factor and typical length scales

The structure factor of the Ginzburg-Landau model
calculated from the Monte Carlo simulations will cer-
tainly be different from the Ornstein-Zernike result [30).
Nevertheless, the expansion of the scattering intensity for
small wave vector g to fourth order in g is still possible,

5(0)
1+ bg? + &g*
and turns out to be a convenient way to describe the

behavior of the scattering intensity near its maximum,

%

gt = \/—5/25, just as in experiment [18, 31]. By Fourier
transform of the scattering intensity (14) the correla-
tion length £ and the characteristic wave vector k of the
asymptotic decay of the correlation function can be ex-
tracted [18],

S(q) = (14)

11 15\
£= §7E+ZE , (15)
-\ +1/2
11 1b
F=\3vz 1z (16)

We find that the correlation length £ increases in the
vicinity of four-phase coexistence, and decreases with de-
creasing quality of the amphiphile (increasing go). The
characteristic wave vector k increases with increasing dis-
tance from oil-water coexistence, just as in the lamellar
phase. An important dimensionless quantity is the prod-
uct k€. With bpo = 24/¢[S5(0)]~1, the value of b at the
disorder line, it reads

(17)

In the limit & — —bpo, k¢ diverges. For b — 0, one
finds ¢* — 0 and k¢ — 1. The results for k£ and ¢*
obtained from the simulation are shown in Figs. 8(a) and
8(b), respectively. A maximum of k¢ is found to occur
at four-phase coexistence, just as in the Ornstein-Zernike
approximation.

Our values of k¢ can be compared with experimental
results. An analysis of scattering data for different am-
phiphilic systems [18, 31, 32] gives values for k€ in the
range from 1.67 to 4.77, with higher values for systems
with large amphiphile concentrations, i.e., near the lamel-
lar phase. This is in good agreement with the results
presented in Fig. 8(a).

B. Topology, internal area, and bicontinuity

We have seen in Sec. IIIC that the microemulsion can
also be characterized by its internal area A and its Eu-
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FIG. 8. Quantities characterizing the shape of the mi-
croemulsion structure factor: (a) the dimensionless product
k&, which is the ratio of the two length scales in the correlation
function, (b) the peak position ¢* in units of 2m/(Na). The
dashed lines indicate the positions of the phase transitions;
compare Fig. 3.

ler characteristic xg. Contour plots of A and xg are
shown in Figs. 9(a) and 9(b), respectively. We have al-
ready noted that the negative Euler characteristic in the
microemulsion phase indicates a bicontinuous structure
with multiply connected labyrinths of oil-rich and water-
rich regions. This conclusion is confirmed by an analysis
of the cluster statistics, where two large clusters contain
almost all sites. The internal area increases with decreas-
ing quality of the amphiphile (increasing distance from
the transition to the lamellar phase), i.e., the size of co-
herent oil and water regions decreases. This behavior,
however, indicates that the internal area cannot simply
be proportional to the amphiphile concentration, since
in experimental systems the amphiphile concentration in
the lamellar phase is larger than the concentration in the
microemulsion; such a proportionality would also con-
tradict our conclusions drawn from the behavior of k¢
in Sec. IVA. Thus, for weak amphiphiles the internal
interface can only be covered partially by a layer of am-
phiphiles.

In a bicontinuous structure, the area and the Euler
characteristic are not independent. Let us assume that
the microemulsion of total volume V = L3 is composed
of building blocks of typical length scale Ly. All these
elementary units have approximately the same struc-
ture and topology, with a typical Euler characteristic xo,
which is independent of Lg. Then, the Euler character-
istic of the whole system is
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FIG. 9. Quantities characterizing the structure of the mi-
croemulsion: (a) area A of internal oil-water interface, (b)
Euler characteristic xg. The dashed lines indicate the posi-
tions of the phase transitions; compare Fig. 3.
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xe(V) = xo (%)3 . (18)

The internal area of the elementary unit is A(Vp) = AL,
so that the area of the whole system is given by

3
Aavy=Arz (LY - avs Ll (19)
°\ Lo Lo

Eliminating L/Lg from Eqs. (18) and (19), we arrive at
the simple relation

[~xe(V)]Y3 = (—xoV ™ H)Y3A"L A(V) . (20)

Figure 10 demonstrates that the simulation data show
the scaling behavior (20) in the entire stability region of
the microemulsion. The small deviations from the linear
behavior for large areas (i.e., weak amphiphiles) are due
to a systematic error of the area calculation for small-
scale bicontinuous structures, as discussed in Appendix
B.

From the slope of the straight line in Fig. 10 we obtain
(=x0)Y/3/A ~ 0.56. This value characterizes the struc-
ture of the microemulsion within an elementary unit. It
can be compared with the value of (—xo)/3/A for or-
dered bicontinuous minimal surfaces (i.e., surfaces with
zero mean curvature) [33]. One finds (—x0)'/3/A ~ 0.680
for the Schwarz P surface, 0.657 for the D surface, and
values in the range 0.66-0.72 for more complicated struc-
tures. The deviation of our result from these values can
be explained by an increase of area due to thermal fluctu-
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FIG. 10. Scaling relation (20) for internal area A and Eu-
ler characteristic xg. Data are taken from the entire region of
stability of the microemulsion. The deviations for a large area
are due to a systematic error of the area calculation algorithm
(see Appendix B).

ations and a small number of micelles with positive Eu-
ler number and negligible area. Thus, our microemulsion
is best characterized as a fluid “plumber’s nightmare”
phase, with the interfaces forming an irregular “minimal”
surface.

V. THE LAMELLAR PHASE

The amphiphilic monolayers in the lamellar phase show
strong undulations due to thermal fluctuations. A typi-
cal Monte Carlo configuration [of the ®(r) = 0 surface]
is shown in Fig. 11. These fluctuations have been stud-
ied intensively within the curvature model (11) for mem-
branes [4]. In the lamellar phase, the fluctuations u(x)
are restricted due to the presence of other membranes, so
that (u2?) = pod?, where d is the distance between mem-
branes, and po of order 1 is a constant. For o = 0, this
leads to an entropic repulsion, which decreases as d—2 for
large membrane separations [5, 34].

In the simulations of our Ginzburg-Landau model, the

FIG. 11.

Typical equilibrium configuration in the lamellar
phase at go = —2.5, fo = 0.78. Shown are only the ®&(r) = 0
surfaces. Note that there is a passage between the two lowest
layers. (The structures at the upper face of the cube are
artifacts of the visualization program.)
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free energy cannot be calculated easily. Thus, to study
the effect of fluctuations in the lamellar phase, we focus
on the increase of the internal area due to fluctuations.
This is a quantity, which is accessible to experiment, and
has been measured recently [35].

A. Excess area

When the fluctuations of the monolayers are neglected,
the internal area of the lamellar phase is obtained from a
simple geometrical relation, A = Vd~!. When the fluc-
tuations are included, the internal area will be somewhat
larger than the projected area. The excess area depends
on the separation of the membranes. For small undula-
tions, the excess area is [15]

Ael—A roj
< raA ‘P J>=%<|VU|2>
proj

1 d2q 2 ~ 2 21
Using the equipartition theorem,
(0¢® + kg*) (la(g)[?) = ks T, (22)
we find
2

A 8rk o/k+ 2,
Here, the high momentum cutoff gma.x is determined by

the intrinsic width of the oil-water interface,

2m
Exink

dmax = & (24)
with a constant & = O(1). The low momentum cutoff is
@min = 2m/§)|, where || is the parallel correlation length.
It is determined by the requirement (u?) = pod?,

dmax d2q kBT
d? -——/ —_—— . 25
Ho gmin (2T)2 092 + kgt (25)
In the limit o — 0, one finds [36]
[ kT 1
Qmin = drrmg a‘ . (26)

The exact value of g is not known. For a single mem-
brane between two walls, po ~ § [5,37]. For the bending
rigidity x we use the mean-field results [24] (see Appendix
A for details). We want to emphasize that the unrenor-
malized bending rigidity has to be used in the result (23)
for the excess area [15].

Finally we have to take into account that the distance
d, which appears in the expressions (25), (26) for the
excess area, is the spacing available for the fluctuations
of a membrane. Therefore, the width of a single interface
has to be subtraced from the periodicity length of the
lamellar phase,

L
d == — 2xink , (27)
n
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where n is the number of interfaces in a system of length
L. Putting everything together, we obtain in the case
o = 0 the excess area

ad = ksl In ( X2TEH0 04
A dmk &kink

(28)

This logarithmic behavior of the excess area with mem-
brane separation has been confirmed experimentally [35]
for strongly swollen lamellar phases.

In the Monte Carlo simulations, we have used a sys-
tem of linear size N = 45 to determine the excess area, in
order to avoid finite-size effects in the direction parallel
to the membranes, and simultaneously to allow as many
different numbers of layers as possible. It is discussed
in Appendix B that we can determine the excess area
in the simulations very precisely. We have usually used
50000 MCS to calculate the averages, so that the statis-
tical error of the averaged excess area is of the order of a
few percent. We have studied the excess area at several
points in the phase diagram, all of them in the vicinity
of the four-phase point [38]. Only in this region of the
phase diagram is the lamellar spacing large enough, and
the bending rigidity small enough, that the interfacial
area is appreciably enlarged by the undulations.

Due to the finite system size, we cannot reach the
limit where all other length scales are small compared to
the interface separation in the simulations. Furthermore,
we have shown in Ref. [7] that the interfacial tension o
only vanishes for the equilibrium distance of the lamellar
phase; however, due to the finite system size, this optimal
distance usually cannot be reached. For all other sepa-
rations, exponential corrections to the interfacial tension
[7,14] have to be taken into account,

0 =00 + Fe—d/ Ebuik ,

(29)

where o is the renormalized interfacial tension calcu-
lated in Sec. IITA. We determine the bulk correlation
length €pyik from a simulation in the pure water phase; at
go = —2.25, fo = 1.125 we find &pyx = 0.759, somewhat
larger than the value obtained from the Ornstein-Zernike
approximation. The correction amplitude & can be cal-
culated from the spectrum of Gaussian fluctuations of a
membrane between walls [7]. We expect & =~ 10-20 from
this calculation.

The excess area for a point in the phase diagram near
the four-phase point is shown in Fig. 12 as a function of
the inverse interface separation 1/d. The data are com-
pared with the logarithmic behavior (28), which fits the
data only over a small interval. However, when the ex-
ponential distance dependence of the interfacial tension,
Eq. (29), is taken into account in Eq. (23), all data can be
explained very well. We want to emphasize that this is a
fit with almost no free parameters; only «a [see Eq. (24)]
and & are adjustable within narrow boundaries. Thus,
the existence of an exponential, d-dependent contribu-
tion in the interfacial tension is clearly confirmed by our
simulation results.

We can now go further and compare simulation data
with the theoretical expectation (23), (29) at different
points in the phase diagram. At each point, &kink, K,
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FIG. 12. Excess area in the lamellar phase at go = —2.25,
fo = 1.125 for various monolayer separations. Error bars

are of the order of the symbol size. The dashed line is the
theoretical prediction with ¢ = 0; the solid line is obtained
from (29) with 0o = 0.25. The parameters po = 0.16,7 = 12,
and a = 1.6 are used in Egs. (23) and (29).

and oo have been determined independently. However,
identical values of @ and @ are used in all theoretical
expressions for the excess area. Five sets of data points in
the range —2.125 < gg < —2.375 and 1.06 < fy < 1.125
are shown in Fig. 13. The scatter of the data is found to
be less than 10%.

B. Scattering intensity

The thermal fluctuations of a stack of membranes are
most easily studied experimentally by x-ray and neutron
scattering. Thus, we want to calculate the scattering
intensity from the Monte Carlo simulations. We have
shown in Ref. [7] that the scattering intensity of a small
number of interfaces between two walls, at any point in
the phase diagram where the lamellar phase is stable,
strongly depends on the number of interfaces and their
separation. In the simulations it turns out to be much
easier to compare the scattering intensities of a fixed
number of membranes with fixed intermembrane distance

0.2
—~ e
5 s
£0.1 -
< v A
<
< 7

0.0 ' 0.1 ' 02

AA/ A (Monte Carlo)
FIG. 13. Comparison of Monte Carlo data and theoreti-

cal predictions of excess area for five different points in the
phase diagram. Dashed lines indicate a deviation of +10%.
The parameters po, o, and « are the same as in Fig. 12.
(g0, fo) = (—2.375,1.06) (O); (—2.375,1.1) (A); (—2.3,1.09)
(x); (—2.25,1.125) (<); (—2.125,1.125) (+). The corre-
sponding values of o are 0.02, 0.10, 0.14, 0.25, and 0.35
(in the same order).
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FIG. 14. Scattering intensity for wave vector ¢ paral-
lel to a lamellar stack of six monolayers, for a system with
N = 45. Parameters are (9o, fo) = (—2.5,1.125), (—2.5,1.0),
(—2.375,1.06), (—2.25,1.125) (from above).

at different points in the phase diagram. In this case, the
optimal lamellar spacing varies, so that at some points in
the phase diagram the stack is effectively depressed, while
it is compressed at others. In the first case, the interfa-
cial tension is negative, which leads to a peak at nonzero
wave vector ¢ in the scattering intensity; in the latter case
the interfacial tension is positive, which implies a peak
at ¢ = 0. The data presented in Fig. 14 indeed show
the expected behavior. Note that the scattering inten-
sity shows several maxima and shoulders at wave vectors
g~ 0.3, 0.7, and 1.0. In the Gaussian approximation [7],
these maxima are due to undulation modes, for which
neighboring membranes fluctuate opposite to each other.

The behavior of the scattering intensity for large ¢
seems to follow a power-law decay, but has not yet
reached the asymptotic g~ behavior, which is expected
from the analysis of the Gaussian fluctuations [7]. The
upward trend at very large q is due to the periodic bound-
ary conditions.

VI. SUMMARY AND CONCLUSIONS

Fluctuations of oil-water-surfactant mixtures have
been studied in a Ginzburg-Landau model by Monte
Carlo methods. In order to apply the Monte Carlo
method to a continuum-field theory, a background lat-
tice has to be introduced. However, since the lattice con-
stant can be chosen to be much smaller than all other
typical length scales of the system, lattice effects can be
effectively avoided in our simulations.

The fluctuations alter the phase diagram quantita-
tively, as compared to the mean-field approximation.
The region of stability of the microemulsion increases,
both towards oil-rich and water-rich phases, and towards
the lamellar phase. The region of stability of the lamel-
lar phase also increases towards oil-rich and water-rich
phases. The topology of the microemulsion can be char-
acterized by the Euler characteristic x g, which measures
the connectivity of the surfactant film. The large nega-
tive value found in the simulations indicates a structure
with many handles. Furthermore, we have shown that
a “universal” ratio, (—XE)1/3V2/3A"1, can be derived
for a system with volume V and internal area A, which
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quantifies the internal structure of the microemulsion.
By comparing the value obtained from the simulations
with the known value for ordered bicontinuous phases,
we found that to view the microemulsion as a disordered
“minimal” surface is very appropriate. Finally, we have
determined the increase of the internal area in the lamel-
lar phase with increasing distance between lamelli. The
results are consistent with the predictions obtained from
the curvature model of Helfrich if a distance-dependent
contribution to the interfacial tension is taken into ac-
count. Thus, we have shown that the curvature Hamil-
tomian is contained as a limiting case in our Ginzburg-
Landau theory.
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APPENDIX A: THE OIL-WATER INTERFACE

The Euler-Lagrange equations for the order-parameter
profile of inhomogeneous structures in the mean-field ap-
proximation can be solved exactly only for special cases
[39] or for a piecewise parabolic (constant) approximation
to f (g) [16]. To calculate the profile of an interface be-
tween homogeneous oil-water phases in the model (1),(2),
we use the ansatz

®(2) = Ppuik tanh(z/Exink)

and minimize the free energy with respect to the interfa-
cial width &xink. This yields

i = _590+g2 /(590 +92 2+1+5f0 T
kink 24 24 12 ’

(A2)

(A1)

The elastic constants of the interface have been cal-
culated in Ref. [40] under the assumption that the in-
terfacial profile remains unchanged when the interface is
bent,

o= /oo dz [29(®)(V®)? + 4c(AD)?)

= /—00 dz ps(z), (A3)
K =2¢ / * d2(9'(2))?, (A4)
k= /—oo dz 22 ps(2) — 2k. (A5)

Evaluating these expressions for approximation (A1), we
find
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0= §€iink 90 + T5éink 92 + $bank & (A6)
K= ik & (A7)

R + 2k = go &kink (372 — 3)
+ &% (g2 Exink + 8c&igny) - (A8)

The ansatz (Al) for the interfacial profile gives a line of
vanishing interfacial free energy, which agrees very well
with the exact line of phase transitions from the oil-water
phase to the lamellar phase in mean-field theory [20].
Thus, we expect this ansatz also to give good results for
the bending moduli k¥ and &.

APPENDIX B: CALCULATION
OF INTERFACE AREA

The ®(r) = 0 surfaces in the lamellar and microemul-
sion phases can be interpreted as an internal interface
between oil and water domains. Its area is an extensive
quantity that is enlarged by fluctuations. In the simula-
tions we have continuous values of the order parameter ®
on a cubic lattice. To determine the position of the inter-
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face, we interpolate linearly between neighboring lattice
sites with a different sign of the order parameter, to ob-
tain the ® = 0 points on the bonds. These points are
then connected by a triangulated surface. With a lattice
constant a smaller than all relevant length scales, patho-
logical configurations, i.e., configurations which do not
allow a unique choice of the triangulated surface, occur
with low probability.

To implement this calculation efficiently, we reduced
the number of cases by dividing each unit cell of the
lattice into eight subcells. There are six different classes
of elementary subcells, with one or two triangles in each
subcell. From these triangles, the whole surface can be
constructed by sequentially investigating all unit cells of
the lattice.

The performance of the algorithm has been tested by
calculating the surface of cylindrical and spherical order-
parameter distributions. The error is lower than —1%
for the relevant radii of curvature, ie., 3a < r < 8a
for spheres, and 2a < r for cylinders. The area of the
bicontinuous simple cubic Schwarz P surface (see, e.g.,
Ref. [33]) was overestimated by about +1.5% for unit-
cell size Ly > 9a, while the error increased to +4.85% for
Ly = 5.4a.
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FIG.11. Typical equilibrium configuration in the lamellar
phase at go = —2.5, fo = 0.78. Shown are only the ®(r) =0
surfaces. Note that there is a passage between the two lowest
layers. (The structures at the upper face of the cube are
artifacts of the visualization program.)



FIG. 7. Typical equilibrium configurations in the mi-
croemulsion in the vicinity of the transition to the lamellar
phase at (a) go = —2.5, fo = 0.675 and (b) go = —2.5, fo =
0.695. Shown are only the ®(r) = 0 surfaces. It can be seen
that (b) is closer to the transition line, and shows already a
local lamellar structure.



